Understanding Our Universe 1st Edition Palen Test Bank

TRUE/FALSE

1.	The equator is the only place on Earth where you can see the entire celestial sphere (day or night) over
	the course of 24 hours.

ANS: T DIF: Easy REF: 2.1 OBJ: Factual TOP: II.C.i

2. Earth revolves around the Sun in the same direction Earth spins about its axis.

ANS:	Т	DIF:	Easy	REF:	2.1	OBJ:	Factual
TOP:	III.B I.B						

3. If a star rises on the eastern horizon, it will set on the western horizon 6 hours later.

ANS: F DIF: Medium REF: 2.1 OBJ: Applied TOP: II.C.i.b

4. The meridian is half of a great circle in the sky that passes through an observer's zenith and the Earth's poles.

ANS: T DIF: Medium REF: 2.1 OBJ: Factual TOP: II.B.i

5. Constellations are arbitrary groupings of stars in the sky.

ANS:	Т	DIF:	Easy	REF:	2.2	OBJ:	Factual
TOP:	III.E.i.a						

6. The longest day of the year in the Northern Hemisphere occurs on the summer solstice.

ANS: T DIF: Easy REF: 2.2 OBJ: Factual TOP: V.E.i

7. On the autumnal equinox, the lengths of both day and night are 12 hours.

ANS: T DIF: Easy REF: 2.2 OBJ: Factual TOP: V.E.ii

8. The altitude of the Sun as it crosses the meridian changes during the year.

ANS: T DIF: Medium REF: 2.2 OBJ: Factual TOP: V.C

9. A person who lives at the equator will see the Sun directly overhead at noon every day of the year.

ANS: F DIF: Medium REF: 2.2 OBJ: Applied TOP: V.C

10. The seasons on Earth are caused by the change in distance between the Sun and Earth.

ANS: F DIF: Medium REF: 2.2 OBJ: Factual TOP: V.B

16 | Chapter 2

11.	The fact that we always see the same side of the Moon indicates that the Moon does not rotate about an axis.							
	ANS: TOP:	F VI.B.i	DIF:	Medium	REF:	2.3	OBJ:	Conceptual
12.	A new	Moon will alv	vays be	in the eastern s	sky at si	unrise.		
	ANS: TOP:	T VII.A	DIF:	Medium	REF:	2.3	OBJ:	Applied
13.	When	a solar eclipse	occurs,	the Sun lies be	tween	the Earth and M	loon.	
	ANS: TOP:	F VIII.A.i	DIF:	Easy	REF:	2.4	OBJ:	Conceptual
14.	When eclipse	a lunar eclipse e.	occurs,	on average mo	ore peoj	ple will witness	it as a	partial eclipse than as a total
	ANS: TOP:	T VIII.A.ii	DIF:	Medium	REF:	2.4	OBJ:	Factual
15.	Johani Galile	nes Kepler obta o used to prove	ined ac that pl	curate data on a anets revolved	the posi around	itions of the pla the Sun.	inets in	the sky over time, which
	ANS: TOP:	F IX.A	DIF:	Easy	REF:	2.5	OBJ:	Factual
16.	Planet	s orbit the Sun	on circ	ular orbits.				
	ANS: TOP:	F IX.C.i	DIF:	Easy	REF:	2.5	OBJ:	Factual
17.	A plar	net travels faste	st when	it is closest to	the Sur	1.		
	ANS: TOP:	T IX.C.ii	DIF:	Easy	REF:	2.5	OBJ:	Factual
18.	As we which	move farther f planets travel	rom the	e Sun, the circu	mferen	ces of planetary	v orbits	are larger and the speeds at
	ANS: TOP:	F IX.C.iii	DIF:	Easy	REF:	2.5	OBJ:	Factual
19.	Planet elliptio	s with circular cal orbits chang	orbits ti ge their	cavel at the same speeds at differ	e speed ent poi	l at all points in nts in their orbi	n their c its.	orbits, whereas planets with
	ANS: TOP:	T IX.C.ii	DIF:	Medium	REF:	2.5	OBJ:	Factual

20. Even though they move at faster average speeds, the outer planets in the Solar System have longer periods than the inner planets because they are so far from the Sun that their orbits are enormous.

ANS: F DIF: Medium REF: 2.5 OBJ: Applied TOP: IX.C.iii

21. Johannes Kepler found that a planet's period was inversely proportional to the cube of its semimajor axis.

ANS: F DIF: Medium REF: 2.5 OBJ: Conceptual TOP: IX.C.iii

22. Kepler's third law holds true mathematically only if the period is expressed in years and the semimajor axis is expressed in AU.

ANS:	F	DIF:	Medium	REF:	Working It Out 2.2
OBJ:	Applied	TOP:	IX.C.iii		

MULTIPLE CHOICE

1.	. The direction directly overhead of an observer defines his/her:						
	a. meridian			с.	circumpolar p	olane	
	b. celestial pole			d.	zenith		
	ANS: D TOP: II.B.ii	DIF: E	Easy	REF:	2.1	OBJ:	Factual

2. No matter where you are on Earth, stars appear to rotate about a point called the:

a. zenith		c. meridian	
b. celestial pole		d. equinox	
ANS: B	DIF: Easy	REF: 2.1	OBJ: Factual
TOP: II.A.i			

- 3. If the star Polaris has an altitude of 35° then we know that:
 a. our longitude is +55°
 b. our latitude is +55°
 c. our longitude is +35°
 d. our latitude is +35°
 - ANS: D DIF: Medium REF: 2.1 OBJ: Applied TOP: II.C.i.c

4. At a latitude of +50°, how far above the horizon is the north celestial pole?
a. 0°
b. 40°
c. 50°
d. 90°

ANS: C DIF: Medium REF: 2.1 OBJ: Applied TOP: II.C.i.c

- 5. The meridian is defined as a great circle on the sky on which lie the:
 - a. celestial equator and vernal equinox
 - b. north and south celestial poles
 - c. zenith and the north and south celestial poles
 - d. zenith and east and west directions

ANS: C DIF: Medium	REF: 2.1	OBJ: Factual	TOP: II.B.i
--------------------	----------	--------------	-------------

6.	At what latitude is the a. 0° b. $+30^{\circ}$ c. $+60^{\circ}$	e north	celestial pole l	ocated a d. e.	at your zenith? +90° This occurs a	t every	latitude.
	ANS: D TOP: II.C.i.c	DIF:	Medium	REF:	2.1	OBJ:	Applied
7.	At what latitude is the a. 0° b. $+30^{\circ}$ c. $+60^{\circ}$	e north	celestial pole a	t your l d. e.	norizon? +90° This can neve	er happ	en.
	ANS: A TOP: II.C.i.c	DIF:	Medium	REF:	2.1	OBJ:	Applied
8.	The apparent path of a. prime meridian b. ecliptic plane	the Su	n across the cel	estial sp c. d.	ohere during a y circumpolar p celestial equa	year is o plane ttor	called the:
	ANS: B TOP: III.D	DIF:	Easy	REF:	2.2	OBJ:	Factual
9.	The ecliptic plane is a. the Moon b. the Sun	defined	by the motion	of c. d.	in the Polaris the stars	sky.	
	ANS: B TOP: III.D	DIF:	Easy	REF:	2.2	OBJ:	Factual
10.	How far away on ave a. 8.3 million kilon b. 45 million kilom	erage is neters leters	the Earth from	the Sur c. d.	n? 93 million kil 150 million k	lometer ilomete	'S ers
	ANS: D TOP: III.A	DIF:	Easy	REF:	2.2	OBJ:	Factual
11.	If you go out at exact will move westward a. The Earth's rotat b. The revolution of c. The revolution of d. The revolution of	tly 9 P.M by tens tion on f the Ea f the M f the Su	A. each evening of degrees. Wh its axis arth around the oon around the in around the E	over th nat caus Sun Earth arth	e course of one ses this motion?	e month	a, the position of a given star
	ANS: B TOP: III.E	DIF:	Easy	REF:	2.2	OBJ:	Applied
12.	The shortest day of t a. summer solstice b. vernal equinox	he year	for a person liv	ving in t c. d.	the NORTHER winter solstic autumnal equ	N Hem e iinox	isphere is the:
	ANS: C TOP: V.E.i	DIF:	Easy	REF:	2.2	OBJ:	Applied

13.	On wh a. Ve b. Su	nich day of the ernal equinox ummer solstice	year do	es the Sun reac	h its no c. d.	northernmost point in the sky?c. Autumnal equinoxd. Winter solstice				
	ANS: TOP:	B V.E.i	DIF:	Easy	REF:	2.2	OBJ:	Factual		
14.	When a. sp b. su	the Northern H ring mmer	Iemispł	nere experience	s summ c. d.	her, the Souther fall winter	n Hemi	isphere experiences:		
	ANS: TOP:	D V.C	DIF:	Easy	REF:	2.2	OBJ:	Factual		
15.	The Ea a. 20 b. 1,5	arth's rotationa 00 years 800 years	ıl axis p	recesses in spa	ce and c c. d.	completes one 1 26,000 years 51,000 years	evoluti	on every:		
	ANS: TOP:	C V.G.i	DIF:	Easy	REF:	2.2	OBJ:	Factual		
16.	Leap y a. the b. the c. the d. the	years occur bec e Earth's orbita e Earth's orbita e Gregorian cal e Earth speeds	ause: al period al period lendar c up in it	d around the Su d is 365.24 days contains only 1 s orbit when it o	in is dec s 1 month comes c	creasing as closest to the Su	ın			
	ANS: TOP:	B V.F.ii	DIF:	Easy	REF:	2.2	OBJ:	Conceptual		
17.	If the I the Su a. Th b. Su	Earth's axis we n, which would ne seasons wou immers would	ere tilted d be TR ld rema be warr	d by 5° relative UE? in the same. ner.	to the c c. d.	lirection perper Winters woul Winters woul	ndicular d last lo d be wa	r to its orbital plane around onger. armer.		
	ANS: TOP:	D V.D	DIF:	Medium	REF:	2.2	OBJ:	Factual		

18. Assume you are observing the night sky from a typical city in the United States at a latitude of +40°. Use the figure below to determine which constellation of the zodiac would be nearest the meridian at midnight in March.

ANS: D	DIF:	Medium	REF: 2.2	OBJ: Applied
TOP: III.E.i				

19. We experience seasons because:

- a. the Earth's equator is tilted relative to the plane of the solar system
- b. the Earth is closer to the Sun in summer and farther from the Sun in the winter
- c. the length of the day is longer in the summer and shorter in the winter
- d. the Earth moves with a slower speed in its orbit during summer and faster during winter

ANS:	А	DIF:	Medium	REF:	2.2	OBJ:	Applied
TOP:	V.D						

20. If you went out tonight and looked at the sky at midnight, at what time would you have to observe 6 months from now in order to find the stars in exactly the same position in the sky? Assume that you could see the stars at any time, day or night.

a. 6 A.M.b. Noon			с. d.	6 р.м. Midnight		
ANS: B TOP: III.E	DIF: D	Difficult	REF:	2.2	OBJ:	Applied

21. Assume you are observing the night sky from a typical city in the United States at a latitude of +40°. Use the figure below to determine which month it is if the zodiac constellation Taurus is on your meridian at midnight.

TOP: V.E.i

- 23. For a person who lives at a latitude of +40°, when is the Sun directly overhead at noon?a. Only on the summer solstice
 - b. Only on the vernal and autumnal equinoxes
 - c. Never
 - d. Always

ANS:	С	DIF:	Difficult	REF:	2.2	OBJ:	Applied
TOP:	V.C						

24. Assume you are observing the night sky from a typical city in the United States at a latitude of +40°. Use the figure below to determine which constellation of the zodiac would be nearest the meridian at 6 P.M. in September.

ANS: A	DIF:	Difficult	REF:	2.2	OBJ:	Applied	TOP: III.E.i

25. Assume you are observing the night sky from a typical city in the United States at a latitude of +40°. Use the figure below to determine which constellation of the zodiac would be rising at 10 P.M. in May.

26.	The Moon undergoe a. rotational period b. rotational period c. rotational period d. Moon does not	es synchro d of the M d of the M d of the M rotate as it	nous rotation, foon equals the foon equals the foon equals the t orbits the East	and as e orbita e rotatic e orbita rth	a consequence l period of the onal period of t l period of the	e the: Moon a he Earti Earth ai	round the Earth h round the Sun
	ANS: A TOP: VI.B.i	DIF:	Easy	REF:	2.3	OBJ:	Conceptual
27.	In regard to the phase a. less than half-ill b. more than half-i	se of the N luminated illuminate	Aoon, the term d	n <i>waxin</i> c. d.	g means: becoming sm increasing in	aller brightn	ess
	ANS: D TOP: VII.A	DIF:	Easy	REF:	2.3	OBJ:	Factual
28.	If tonight the Moon a. new phase b. full phase	is in the v	vaxing gibbou	s phase c. d.	, in three days third quarter first quarter p	the Mo phase bhase	on will most likely be in the:
	ANS: B TOP: VII.A	DIF:	Easy	REF:	2.3	OBJ:	Applied
29.	If there is a full Moo phase? a. Three to four da b. One week	on out ton tys	ight, approxin	nately h c. d.	ow long from Two weeks One month	now wi	ll it be in the third quarter
	ANS: B TOP: VII.A	DIF:	Easy	REF:	2.3	OBJ:	Applied
30.	Which of the followa. Everyone on Eab. The phases of thc. In some phases,d. The observed pl	ring is FAI orth observ ne Moon c the Moor hase of the	LSE? yes the same p cycle with a pe n can be obser e Moon chang	hase of riod of ved dur es over	the Moon on a approximately ing the day. the course of o	n given n one mo	night. onth. nt.
	ANS: D TOP: VII.A	DIF:	Easy	REF:	2.3	OBJ:	Applied
31.	At what time does a weeks after a new M a. 12 midnight b. 12 noon	third quan Ioon.)	rter Moon rise	e? (Hint c. d.	: A third quarte 6 A.M. 6 P.M.	er Mooi	n occurs approximately 3
	ANS: A TOP: VII.A	DIF:	Medium	REF:	2.3	OBJ:	Applied
32.	What time does a th a. 12 midnight b. 12 noon	ird quarte	r Moon rise?	c. d.	б А.М. б Р.М.		
	ANS: A TOP: VII.A	DIF:	Difficult	REF:	2.3	OBJ:	Applied

33.	At what time does the v a. 3 P.M. b. 9 A.M.	waxing gibbous phase	e rise? c. d.	3 a.m. 9 p.m.				
	ANS: A I TOP: VII.A	DIF: Difficult	REF:	2.3	OBJ:	Applied		
34.	If a person on Earth cur Earth appear to a perso a. Waxing crescent b. Waxing gibbous	rrently views the Moon n on the Moon?	on in a c. d.	waxing crescer Waning gibbo Waning cresc	nt phase ous ent	e, in what phase	would t	he
	ANS: C I TOP: VII.B	DIF: Difficult	REF:	2.3	OBJ:	Applied		
35.	During which lunar pha a. New b. First quarter	ase do solar eclipses o	occur? c. d.	Full Third quarter				
	ANS: A I TOP: VIII.A.i	DIF: Easy	REF:	2.4	OBJ:	Conceptual		
36.	A partial lunar eclipse of a. the Sun appears to b. the Moon passes th c. the Moon shadows d. the Earth passes the	occurs when: go behind the Moon rough part of the Ear part of the Sun rough part of the Moo	th's sha on's sha	adow adow				
	ANS: B I TOP: VIII.A.ii	DIF: Easy	REF:	2.4	OBJ:	Conceptual		
37.	 Solar and lunar eclipses a. the Moon's orbital equator b. the Moon's orbital c. the Moon's orbital equator d. the Moon's orbital 	s are rare because: plane is tipped by 5.2 plane is tipped by 5.2 plane is tipped by 23 plane is tipped by 23	2° relat 2° relat .5° rela .5° rela	ive to the plane ive to the Earth ative to the plan ative to the Eart	e define 's orbit le defin h's orb	d by the Earth's tal plane ed by the Earth' ital plane	S	
	ANS: B I TOP: VIII.B.i	DIF: Medium	REF:	2.4	OBJ:	Conceptual		
38.	Approximately how off a. Twice every year b. Once per month	ten do lunar eclipses	occur? c. d.	Twice every 1 Once every 1	1 mont 1 years	ths		
	ANS: C I TOP: VIII.B.ii	DIF: Difficult	REF:	2.4	OBJ:	Factual		
39.	When the Earth catches overtakes a slower runn a. exhibits retrograde b. slows down becaus c. decreases in bright d. moves into a more ANS: A	s up to a slower moviner in an outside lane motion se it feels the Earth's ness as it passes through a structure elliptical orbit DIF: Easy	ng oute , the pl gravita 1gh the REF:	er planet and pa anet: tional pull Earth's shadow 2.5	usses it w W OBJ:	in its orbit like a Factual	faster r TOP:	unner IX.B

40.	If the Sun i a. Earth b. The Mo c. Nothing d. This is	s located at one f oon g a trick question.	ocus of Earth's An ellipse has	elliptic	al orbit, what is e focus.	s at the	other focus?
	ANS: C TOP: IX.C	DIF: C.i.a	Easy	REF:	2.5	OBJ:	Factual
41.	The averag a. radius b. minor a	e distance betwe axis	en a planet and	the Sur c. d.	is given by the eccentricity semimajor ax	e is	of its elliptical orbit.
	ANS: D TOP: IX.C	DIF: C.i.a	Easy	REF:	2.5	OBJ:	Factual
42.	Which of tha. The conditionb. The conditionc. This conditiond. The conditionsame.	ne following is T met's speed is gr met's speed is gr met's speed is zo met's speed is co	RUE about a co eatest when it is eatest when it is ero. Instant because	omet tha s farthe s neares its mass	at is on an ellips st from the Sun st the Sun. s and the Sun's	tical orl mass s	bit around the Sun? tay approximately the
	ANS: B TOP: IX.C	DIF: C.ii	Easy	REF:	2.5	OBJ:	Applied
43.	The time it a. period b. frequer	takes a planet to	complete one f	full orbi c. d.	tal revolution is orbital domai velocity	s comm n	only known as its:
	ANS: A TOP: IX.C	DIF: C.iii	Easy	REF:	2.5	OBJ:	Factual
44.	Kepler's th a. gravitat b. acceler	ird law is a relati tional force and r ation and mass	onship betweer nass	n an orb c. d.	iting object's: velocity and period and se	period mimajo	or axis
	ANS: D TOP: IX.C	DIF: C.iii	Easy	REF:	2.5	OBJ:	Factual
45.	A circle has a. 1; 0 b. 1; 1	s an eccentricity	of	and a l c. d.	ine has an ecces 0; infinity 0; 1	ntricity	of
	ANS: D TOP: IX.C	DIF: C.i.a	Medium	REF:	2.5	OBJ:	Factual
46.	The eccentra. 0 b. 1	ricity of the majo	rity of the plan	etary or c. d.	bits in our Sola 0.5 0.2	ır Syste	m is approximately:
	ANS: A TOP: IX.0	DIF: C.i.a	Medium	REF:	2.5	OBJ:	Factual

47.	If you travel 20 mil a. 20 mph b. 40 mph	es from home to	school in 30 n c. d.	ninutes, what is your average velocity? 0.7 mph 5 mph
	ANS: B OBJ: Applied	DIF: Easy TOP: IV.A	REF:	Working It Out 2.1
48.	Kepler's third law a . $P = A$ b. $P^2 = A^2$	can be expressed	mathematicall c. d.	y as: $P^2 = A^3$ $P^3 = A^2$
	ANS: C OBJ: Factual	DIF: Easy TOP: IX.C.i	REF: ii	Working It Out 2.2
49.	Suppose an asteroid once around the Su	d had an orbit wi n?	th a semimajor	axis of 4 AU. How long would it take for it to orbit
	a. 2 yearsb. 4 years		c. d.	8 years 16 years
	ANS: C OBJ: Applied	DIF: Difficu TOP: IX.C.i	ılt REF: ii	Working It Out 2.2
50.	If Jupiter has an orl a. 2 AU b. 25 AU	bital period of 12	years, what is c. d.	its average distance from the Sun? 10 AU 5 AU
	ANS: D OBJ: Applied	DIF: Difficu TOP: IX.C.i	ult REF: ii	Working It Out 2.2

SHORT ANSWER

1. The figure below is a time exposure of the sky, showing the motion of the stars through the night. What is the name for the stars that never rise or set below the horizon?

2. The center of the Milky Way lies approximately 30° south of the celestial equator. From what latitudes on the Earth is it impossible to view the center of our galaxy?

```
ANS:
```

At latitudes $> 90^{\circ} - 30^{\circ} = 60^{\circ}$, it would be impossible to see the center of our galaxy because it would lie below the horizon.

DIF: Easy REF: 2.1 OBJ: Applied TOP: II.C.i

3. On what place(s) on Earth can you stand and have the great circle of the celestial equator be at the same height relative to your horizon for all 360° of its circumference?

ANS:

You can stand at either the North Pole or the South Pole.

DIF: Medium REF: 2.1 OBJ: Applied TOP: II.A.ii

4. For the following figure, label the north and south celestial poles, the celestial equator, and the ecliptic.

ANS:

DIF: Medium REF: 2.1 OBJ: Factual TOP: II.A

5. How is the observed height of Polaris above the horizon related to an observer's latitude? (Hint: Consider three cases of observers located at the equator, the North Pole, and latitude = $+45^{\circ}$.)

ANS:

The observed height of Polaris above the horizon is equal to an observer's latitude. For an observer at the equator (latitude = 0°), Polaris is on the horizon. For an observer at the North Pole (latitude = $+90^{\circ}$), Polaris is at the zenith or 90° above the horizon. For an observer at latitude = $+45^{\circ}$, Polaris is 45° above the horizon.

DIF: Medium REF: 2.1 OBJ: Applied TOP: II.C.i.c

6. What would be the effect on the seasons if the tilt of the Earth's axis were 10° rather than 23.5° ?

ANS:

If the tilt of the Earth's axis were smaller, there would be a less dramatic temperature shift between the seasons because the angle of the Sun's rays would vary less and the length of day/night would be more equal throughout the year.

DIF: Easy REF: 2.2 OBJ: Applied TOP: V.D

7. Earth experiences seasons due to the tilt of its axis. What are the two consequences of this tilt that contribute to the seasons?

ANS:(1) Variation in the length of day(2) Variation in the directness of the Sun's rays

DIF: Medium REF: 2.2 OBJ: Applied TOP: V.D

8. What makes the equinoxes and solstices special?

ANS:

The equinoxes occur when the Sun is directly above the equator; the entire world experiences a 12hour day and a 12-hour night. The solstices occur when the Sun is farthest from the equator (north or south). On these days, one hemisphere experiences its longest day and shortest night, while the other hemisphere experiences its shortest day and longest night.

DIF: Medium REF: 2.2 OBJ: Factual TOP: V.E

9. For an observer in Seattle, Washington, which is located at latitude = $+47^{\circ}$, what is the minimum height above the southern horizon that the Sun will have throughout the year, and approximately when will this occur?

ANS:

The Sun will be at its minimum height above the southern horizon at noon on the winter solstice (Dec. 22). In Seattle at a latitude of $+47^{\circ}$, the celestial equator will have a height of $90^{\circ} - 47^{\circ} = 43^{\circ}$ above the southern horizon. Because the Earth's axis is tilted by 23.5° relative to the direction perpendicular to its orbital plane around the Sun, the Sun will reach a height of $43^{\circ} - 23.5^{\circ} = 19.5^{\circ}$ above the southern horizon at noon on the winter solstice.

DIF: Difficult REF: 2.2 OBJ: Applied TOP: V.C

10. The figure below shows four locations of the sun on the ecliptic. Label each appropriately with the labels: autumnal equinox, vernal equinox, summer solstice, and winter solstice.

11. On which great celestial circle(s) on the celestial sphere would you find the position of the autumnal equinox?

ANS:

On both the celestial equator and the ecliptic planes.

DIF:	Difficult	REF:	2.2	OBJ:	Factual	TOP:	V.E.ii
------	-----------	------	-----	------	---------	------	--------

12. The figure below shows the different phases of the moon. Label each phase of the moon shown.

ANS: The answer appears on the following page.

32 | Chapter 2

13. The figure below shows the different phases of the Moon. Label each phase of the Moon. Approximately what time would the full Moon rise above your horizon? The third quarter Moon? The new Moon? The first quarter Moon?

ANS: The answer appears on the following page.

The full Moon would rise at sunset. The third quarter Moon would rise at midnight. The new Moon would rise at sunrise. The first quarter Moon would rise at noon.

DIF: Medium REF: 2.3 OBJ: Conceptual TOP: VII.B

14. The figure below shows the different phases of the Moon. Label each phase of the Moon. What time would the full Moon be on your meridian? The new Moon?

ANS: The answer appears on the following page.

The full Moon would be on the meridian at midnight. The new Moon would be on the meridian at noon.

DIF: Medium REF: 2.3 OBJ: Conceptual TOP: VII.B

15. Explain why we always see the same side of the Moon from Earth.

ANS:

The amount of time it takes for the Moon to rotate once about its axis is exactly equal to the amount of time it takes to orbit once around Earth.

DIF: Medium REF: 2.3 OBJ: Conceptual TOP: VI.B.i

16. If the Moon was full three days ago, what phase will it be tonight and when will it rise and set?

ANS:

The Moon's phase cycles on a 29.5 day period. Therefore the Moon tonight will be approximately halfway between the full and third quarter phases, and thus it will be in the waning gibbous phase. It will be on an observer's eastern horizon and rising halfway between 6 P.M. and midnight, which is 9 P.M. It will set 12 hours later at 9 A.M.

DIF: Difficult REF: 2.3 OBJ: Applied TOP: VII.B

17. The figure below shows a solar eclipse. What type of solar eclipse is it?

ANS: An annular solar eclipse.

DIF: Easy REF: 2.4 OBJ: Factual TOP: VIII.A.i

18. What do we customarily call the semimajor axis of a circle? What is the value of the eccentricity of a circle? What would the value of the eccentricity be for a comet on a very elliptical orbit around the Sun?

ANS:

The radius of the circle. The eccentricity of a circle is 0. The eccentricity of a comet on a very elliptical orbit around the Sun would be close to 1.0.

DIF: Easy REF: 2.5 OBJ: Factual TOP: IX.C.i.a

19. Earth has an average radius of approximately 6.4×10^3 km. What is the average speed of the ground due to the rotation of Earth at its equator in km/s if there are 8.64×10^4 seconds per day?

ANS:

Here the students need to convert the radius of Earth to its circumference: $C = 2\pi r = 4.02 \times 10^4$ km. Divide this distance by the number of seconds, and we get a speed of 0.465 km/s = 1676 km/hr.

DIF: Difficult REF: Working It Out 2.1 OBJ: Applied TOP: I.A | IV.A

Understanding Our Universe 1st Edition Palen Test Bank

20. Saturn has a semimajor axis of 9.6 AU. How long does it take Saturn to orbit once around the Sun?

ANS:

Using Kepler's third law $P^2 = A^3$, and comparing it to the Earth's orbital period of 1 year and semimajor axis of 1 AU, Saturn's period *P* is equal to $(P/1 \text{ yr})^2 = (9.6 \text{ AU}/1 \text{ AU})^3$ gives us $P = 1 \text{ yr} \times (9.6)^{3/2} = 9.6^{1.5} \text{ yr} = 30 \text{ yr}.$

DIF: Difficult REF: Working It Out 2.2 OBJ: Applied TOP: IX.C.iii

38 | Chapter 2