Si mul ation Modeling and Analysis 5th Edition Law Sol uti ons Manual

Solutions to Problems in Chapter 1 of
Simulation Modeling and Analysis, 5th ed., 2015, McGraw-Hill, New York
by Averill M. Law

Visit TestBankDeal .comto get conplete for all chapters

https://testbankdeal.com/download/simulation-modeling-and-analysis-5th-edition-law-solutions-manual/

[(8

{(a) If it’s small enough and feasible, then a physical experiment might be possible. Otherwise, simulate.

(&) Probably a simulation model would be used.

(¢) A mathematical mode! (as opposed to a physical) model should be used. The complexity of the situation
would probably prelude a valid analytical model being developed, resulting in the use of a simulation
model.

(d) Since the stakes might not be too great in the short run, a physical model might be tried. If the operation

is very large, then a simulation model would probably have to be used.

() A physical experiment might be tried if not too disruptive, but otherwise a simulation model.

(/) If a prototype communications network is available, then field tests could be performed for a limited
number of scenarios. The results from these tests could be used to validate a simulation model, which
could then be used to test other scenarios of interest.

1.2. All the systems would appear to require a dynamic model. Most of the systems would appear to be
stochastic, so should be modeled as such unless the amount of system variability is very small. In most cases,
a discrete model would seem to be in order. However, if the number of cars to be modeled in (6) is very
large, then a continuous differential-equation model might be a useful (and faster to execute) approximation.

1.3, @ l:lo. since when the system is empty and the server is idle, L(f) = O(s) = 0; as long as the server is busy, it
is true that L(#) = Q) + 1. In any case, it is always true that L(8) = Q(1) + B(1).

16

3_
L{¢)

2

0

|
|
|
I =
|
|
I [T T I T I
0 1 2 3 4 5 & T] * 9
f T(6)=8.6

(2} Reading the areas of rectangles off the graph in {b),
£6)=[(0.4-0)x0+(L6-0.4)x1+(2.1-16)x2+(2.4-2.1)x3+
(31-24)x2+(33-3Dx1+(3.8-3)x0+(4.0-3.8)x1+
(4.9-4.0)%x2+(5.6-4.9)x1+(5.8-5.6)x2+(7.2-5.8)x3+
(8.6-7.2)x4]/8.6
=17.6/8.6
=2.05
which is an estimate of the expected time-average number of customers in the sysiem over the time pericd
needed i observe a = 6 delays in queue; this performance measure could be denoted by £(6).
{d A box in the “Statistical counters” area of each part of the figure would be added, keeping track of the
accumulated area under L{1); its values at the fourteen values of the simulation clock are:
Clock| 0 0.4 16 21 24 31 33 38 4.0 49 56 58 72 B.6
Areaundec L3l 0 0.0 1.2 22 31 45 47 47 49 67 74 78120176
Note that at each clock value, the area under L(i) is equal 1o the sum of the areas under Q(r) and under B(s),
as expected since L(f) = 0(:) + B(1) for all imes 1. When implementing this, il is important 1o compute the
area of the rectangle at each event using the old value of L{#), i.c., before the corresponding state variable is

updated.

1.4. We would no longer need Lo keep track of the times of arrival of the customers in queue, since the only thing
they were used for was to compute the customers' delays in queue. We could thus eliminate the array holding
these Bmes of arrival, and delete the code in the subprogram for the departure event 1o move the queue up one
customer whenever anyone leaves the queue and enters service; we could also delete the check in the subprogram
for the arrival event to check whether there is enough space in the queue 0 hold the arriving customer. We
would still need 10 have a state variable to hold the number of customers in queue, since that is used to get the
time-average number of customers in queue, which we still want.

1.5. From the first nine interarrival times and the first six service limes given ai the beginning of Sec. 1.4.2 for the
realization there, the most we can figure oul in terms of the record of arrival times, service-starting times,

departure times, and limes in gystem of customers is this:

Customer number (i} | Time of arrival Time service starts | Time of departure Wy
1 0.4 04 2.4 2.0
2 1.6 2.4 31 1.5
3 21 3.1 3.3 1.2
4 3.8 38 4.9 1.1
5 4.0 4.9 8.6 4.6
6 5.6 8.6 9.2 36
7 5.8 9.2
8 1.2
9 9.1

Thus, the average of the times in system of the first five customers to depart is (2.0 + 1.5+ 1.2 + 1.1 + 4.6)/5
= 2.08. But we must think of how 10 get this out of the simulation logic and code.

With the stopping rule for the simulation as given in the problem {m customers have exited the system) rather
than originally (» customers have completed their delay in queue), we could get by without any new state
variables, since all customers entering service during the simulation will leave service (and thus the system)
before the simulation ends, The time in system for a customer could thus be computed at the time of his or her
entry into service, as the sum of the delay in queue (just computed) plus the service time (generated now); this
would be added into a counter to be divided by m when the simulation ends. We would add a box in the
*“Siatistical counters” area of each part of Fig. 1.7 to keep track of the accumulated (imes in system; ils value is
incremented whenever a service lime starts (marked with a * below), and at the fourteen values of the simulation
clock it is:

Clock] 0 04% 16 2.1 24%3.1* 33 38* 40 49* 56 58 72 86°
Total imeinsystem| 0 2.0 2.0 2.0 35 47 47 58 58104 104 104 104 140
{Although we are able to determine that Wg = 3.6, this is not used in computing w(5)=10.4 /5=2.08.) If the
only performance measure were w(5), we could stop the simulation at time 4.9 since we know the value of W5
at that time even though customer 5 does not leave until time 8.6, However, if we wanted other performance
measures (such as the time-average nomber in queue) defined for the period required for 5 cusiomers to leave, we
would have to continue the simulation until customer 5 actually leaves, i.e., until time 8.6.

An alternative approach, which seems more natural but does involve introducing another state variable, is to
wait until a customer actually finishes service and Jeaves before computing his or her time in system, and adding
it into an accumulator. Here, we would need a state variable giving the time of arrival 1o the system of the
customer currently in service (being undefined if the server is idle}, which is subtracted from the clock when the
customer leaves, While this produces the same result for this stopping rule, the times at which the new
accumulator is incremented are different:

Clock| 0 D4 16 2.1 24*31* 33* 38 40 49* 56 58 7.2 B.6*
Total timeingystem| 00 0 0 0 20 35 47 47 47 58 58 58 5K 140
again giving w{5)=10.4/5=2.08. Unlike the first approach, we would definitely have to run the simulation
out to time 8.6 to compute even w{5)}, let alone other performance measures.

Although the second approach involves an additional state variable and might require running the simulation
longer, it would allow us to change the form of the stopping rule, for instance to the original one in the text or
to a fixed-time-of-stopping rule, and the average time in system would still be compuled correctly, being based
only on those customers who actually left the sysiem during the simulation, however terminated. The first
approach, on the other hand, could give incorrect results. For example, if our stopping rule in this realization
were to run the simulation until (exactly) time ¢ = 9, then five customers would complete their times in system,
with an average of 10.4/5 = 2.08; the second approach would produce this result correctly, but the first approach,
since customer six began (but did not complete) service before the simulation ends, would incorrectly produce
14.0/6 = 2.33.

1.6.

The general mathematical expression would be

max Q{1
05:<T(n)

where T(n) is the time the simulation ends (when the nth customer compleies his or her delay in queue), and Q)
15 the number of customers in queus at time ¢,

To compute this during the simulation, add a box to the “Statistical counters™ area of each part of Fig. 1.7 to
keep track of the maximum length the queue has attained so far. Before the state variables for each event have
been updated, we would check to see if the current value of the number in queue (i.e., the value that has been in
force since the last event) exceeds the largest value we had seen previously for it; if so, this largest value is
~eplaced by the current (larger) value. At the fourteen values of the simulation clock in the realizadon of the
hand simulation in Sec. 1.4.2, this would be

Clock| 0 04 1.6 21*24*31 33 38 40 49 56 58 7.2 B.6*

Maximum numberinguene| 0 0 0 1 2 2 2 2 2 2 2 2 2 3
where the times that a new maximum is observed are marked with a *. The output performance measure is
simply the final value in this box, being 3 in this case.

As an altemmative approach, the check for a new maximum could be made after the state variables (including
the queue length) are updated in the event. For this realization, we would thus get

Clock| 0 04 1.6*21*24 31 33 38 40 49 56 58 72*86
Maximum numberinquene| 0 0 1 2 2 2 2 2 % 2 ¥ 2 3 3
which again gives a value of 3.

Either of the above two approaches is valid for this stopping rule, since the simulation stops either when a
customer leaves service and the nth customer is in queue and enters service (in which case the queue length falls
by 1), or when an arrival (the nth one) finds the server idle (in which case the queue length remains at zero); in

neither case can the queug length grow at termination, 5o nothing is mlssed in the first approach by doing the
check before updating the state variables.

For a different type of stopping rule, though, the first approach could be wrong. For instance, if the
simulation stopped when the 100th customer arrives 1o the system, it could be that this arrival would establish a
new maximum queue length, which we would want to count since the time interval over which the maximum is
taken includes the final time of the simulation; the first approach would miss this, and thus produce a result that
is too small (by one). [On the other hand if we defined the maximum slightly differently to exclude the final
time of the clock (i.e., a “<” rather than a “<" in the second inequality under the “max” operator above), it would
instead be the second approach that would be wrong.] The moral is to be very careful both in defining exactly
what it is that is supposed 1o be computed, and in deciding the order in which to execute updates of state
variables and statistical counters in the simulation code.

1.7,

@

®)

©
{@

()

We used the logic in Prob. 1.3, with a new state variable representing L{f) = the total number of customers
in the system at any time, Whenever a customer arrives this variable is incremented by 1, and whenever a
customer finishes service and departs it is decremented by 1; the area update is done alongside the earlier code
1o compute the area under Q).

We used the second approach of Prob, 1.5, i.e., introduced a new state variable giving the time of arrival to
the system of the customer currently in service, and subtracted this from the clock time of departure for each
customer; the values were added into a new statistical accumulator. Since the stopping rule for the
simulation is when n = 1000 delays have been completed, there will have been n ~ 1 = 999 times in service
completed [regardless of whether the simulation ends with the ath arrival’s seeing an idle server (and thus
there were n — 1 departures), or whether the ath entry inio service is from the queue upon the {n - 1)st
departure), so the divisor is n - 1 rather than a.

We used the second approach in Prob. 1.6, checking for a new maximum queue length after the state
changes are made in each event.

A new statistical counter, the maximum delay in queue observed so far, is created and initialized 10 0, Each
time a delay in queue is observed, it is checked 1o see if it is a new maximum; if so, it becomes the current
maximum,

A new statistical counter, the maximum time in system observed so far, is created and initialized to 0, Each
time a time in system is observed, it is checked to see if it is a new maximum; if so, it becomes the current
maximurmn.

A new statistical counter, the number of delays in excess of 1 minute, is created and initialized 10 0. Each
time a (nonzero) delay in queue is observed, this new statistical counter is incremented by 1 if the delay is >
1; it is divided by n = 1000 at the end of the simulation to get the desired proportion,

Here are the new variables:

Definition Variable
Input parameter:
Definition of “long” delay (=1.0 here) long delay def
Modeling variables:
Number of customers now in system num in sys
Time of arrival of customer in service time arrival servee
Maximum gueue length so far max_num_in g
Area under L({) so far area num in sys
| Total of times in system so far total time in sys
| Maximum delay so far max_delay
| Maximum time in system so far max_time in_sys
| Number of delays > 1 minute numn_long_delays
| Time in system of a customer time in sys

In the code below, lines where there were changes or additions to the file in Sec. 1.4.4 are marked with vertical lines
on the left, with the actual changes’ being in italics.

Below is the code, omitting functions timing and expon, which are exactly as in Figures 1.13 and 1.18, respectively.

|7+ External definitions for Prob, 1.7. ./

tinclude <stdio.h>»

finclude <math, h>

finclude "rand.h* /* Header flle for random-number generator.
fdefine Q_LIMIT 100 /* Limit on queue laength, */

fdefine BUSY 1 /* Mnemonics for sarver's being busy */
ddetfine IDLE 0 /* and idle, */
int next_avent _typa, num_custa_delayed, num_delays required,

float

FILE
void
volid
void
vold
void
void
float

num_events, num _in_g, server_status, num_in_sys, max_num_in_ q;
area_num_ln_q, area_server_status, maan_interarrival,
mean_service, time, time_arrival (Q LIMIT + 1],
tima_last_event, time_next_sevent (3], total of delays,
arma_num_in_sys, time_arrival_servee, total time in_sys,
max_celay, max_tims_in _sys, num long delays, long delay daef}
*Iinfile, *outfile;

initialize(vold};

timing (volid};

arrive(vold);

depart (vold)

report (vold))

update_tlme_avg stats{void);

expon (float mean);

*/

main{} /* Maln functlon. »/
{ .

/* Open input and output filles. ¥/
infile = fopan({“problp?.in™, "I");
outfile = fopen{"problp?,out”, “w");
/* Speclfy the numbar of events for the timing function. */
num_events = 2;
/* Read lnput parameters, */
fscanf(infile, "%f %f &d 4f™, ¢mean_interarrlval, &mean_ssrvice,
ténum_delays_requlred, &long delay def);
/* Write report headlng and input parameters, */
fprintf{cutfile, "Prcbiem 1, 7\n\n")s
fprintf{cutfile, “Maan interarrival time%11,3f minutes\nin",
mean_interarrival);
fprintf{outfila, “Meazn service time%l€.3f minutes\n\n",
mean_service);
fprintf{outfile, "Number of customars%lddinin®,
. num_delays required);
fprintf(outfile, "Definition of long dalay$%,3f minutesin\n®,
lonyg_delay def};
/* Initlalize the simulation. */
initiallizet);
/* Run the simulation while more delays are still needed. */
while (num_custs_delayed < num_delays_required) {
/* Determine the next event, */
timing();
/* Update time-average statlstical accumulators, */
update_time_avg_stats();
/* Invoke the approprlate event function, */
swltch (next_event_type) (
casa 1:
arrive();
break;
case 2:
depart ()}
break;
}
/* Check to gee If a new maximum gqueue length was Just
astablished. */
If (num_in g > max _num in q} max _num_in q = num_in_q:
}
/* Invoke the report generator and end the simulation. */
report ()
feloae{infile);
fclosa{cutfile)
ratyrn 0;

vold initlalize(vold) /* Initlalization function. */
{

/* Initialize the simulation clock, */
time = 0.0;

/* Initialize tha state variables. */
server_status = IDLE;

num_in_q = 07
t.‘l.me_la_st__event = 0.0z
num_in_sys = 0

/* Initialize the statistical counters, */

num_custs_delayed = 0;

total of_delays

area_num_in_q

area server_status

area_num_1in_sys

total time in sys

max_num_in_g

max_delay

max _time_in_sys

num_long delays 0.07

/* Initialize event list, Since no customers are presant, the
departure (service completion) event is eliminated from
consideration, */

time_next_event[l] = time + exponi{mean_interarrival);

time_next_event (2] = 1,0e+30;

T2 a2y v a1
oo QoOo
.

vold arrive{void) /* Arrival event function. */
{

float delay;
/* Increment number in system. %/
+enum_In_ayss
/* Schedule next arrival., */
time_next_eventl]) = time + expon {mean_lnterarrival);
/* Check to see whether server ls busy. */
1f (server_status == BUSY) {
/* Server is busy, so increment number of customers in queue.
./
++num_1n_q:
/* Check to sea whether an overflow conditiecn exists. */
if (num_in g > Q_LIMIT) {
f* Tha queue has cverflowad, so stop the simulation. */

fprintf{outfile, "\nOverflow of the array time_arrival at");

ferrintf{outfile, * time %f"™, time);
exlt (2);

}

/* There is still room in the queue, so store the time of
arrival of the arriving customer at the (new) end of
time_arrival. */

time_arrival(num_in_gq] = time;

}
else {
f* Server ls idle, so arrlving customer has a delay of zero.

(The following two statements arae for program clarity and do

not affact the results of the simulation.) */
delay = 0.0;
total of delays += delay;
/* Increment the number of customers delayed, and make server
busy. */
++num_custs_delayed;
sexver_status = BUSY;
/* Set time of arrival of servee. */
time_arrival_servee = time:
/* Schedule a departure ({service completion). */
time_next_event [2] = time + expon (mean_sarvice);

vold depart(vold) /* Departure event functlon, */
{

int 1;
fleat delay, time_In_sys;
/* Dacrement number in system, */
==num_In _sysr g
/* Compute the time in system of the departing customer and update
the total cime in system accumulator., */
time_in sps = time - time_arrival_servee;
total time_in_sys += time_in_sys;
/* Check to sea If this was a new maximum time in system. */
it (time_in_sys > max_time_in_sys) max_time_in_sys = time_In_sys;
/* Check to ses whether the queue i3 empty. %/
if {num_in_g == 0) ([.
/* The queue is empty so make the server ldle and eliminate the
departure (service completion) event from consideration. */
servar_status = IDLE;
time_pext_event (2] = 1,0e+30;
}
else {
/* The queue is nconempty, so decrement the numbar of customears
in queuva. */
=<pum_1in_q;
/* Compute tha delay of the customar who 13 beglnnlng service
and update the total delay accumulator, */
delay = time -~ time_arrival(l);
total of delays += delay;
/* Check to see if this was a new maximum delay, */
if (delay > max_delay) max_delay = delays
/% Check to see If this was a long delay. */
1f (delay > long_delay def) ++ num_long dalays;
/* Increment tha number of customers delayed, and schedule
departure., "/
+4num_cuata_delayed;
time_next_event(2) = time + expon{mean_service); .
/* Set time of arrival of servese, */
time_arrival servee = time arrivalfl};
/* Move each customer in queue (if any) up one place. */
for (1 = 1; 1 <= num _In_q; ++1)
time_arrival[i] = time_arrivalfi + 1);

vold reportivold) /+* Report generator function. */
{

1

/* Compute and write estimates of desired measures of performance.
*f

fprintf{cutfila, "\n\nAverage dalay ln queue¥ll.3f minutes\n\n®,
total _of_delays / num_custs_delayad);

fprintfioutiile, "Average number in gueuedl0.3f\n\n",
area_num_in_q / time};

fprintf(outfila, FSer#ar utilizacion%l5.3€\n\n",
area_server_astatus / time);

fprintfioutfile, "Average number In system#9.3f\n\n",
area_num_in_sys / time);

fprintfioutfile, “Average time In systemdll,.3f minutesin\n",
total_time_{a_sys / {num custs _delayed - 1));

fprintf(outfile, "Maximum number in queustl0d\n\n®, max num In q):

fprintffoutfile, “Maximum delay In queuedll,3f minutesin\n",
max_delay):

rprintffoutfile, "Maximum time in system¥ll.3f minutes\n\n",
max_time_ln_sys);

fprintffoutfile, "Proportlen of lang delays%8.3f\n\n",
num_long delays / num_custs delayed);

fprintf{ocutfile, "Time simulation endedd¥l2.3f minutes™, time);

vold update_time_avg_stats(vold) /* Update area accumulators for

{

time-avarage statistics, +/

float time since_last_event;

/* Compute time since last event, and update last-event-time
marker, */

time_since_last_event = time - time_last_event;

time_last_event = time;
/* Update area under numbar-in-queve function. */
area_num_in_gq += num_in_gq * time_since_last_event;

/* Update area under sarvar-busy indicator fupction. */
area_server_status += server_status * time since last_event;)
/¢ Update aresa under number-in-system function. */
area_num_in_sys += num_in_sys * time since last eventy

Here are the resulis from running the program:

IProblem 1.7

Mean interarrival time
Mean service time
Number of customers

|Definition of long delay

Average delay in queue
Average number in queue
Server utilization
Average number in system
Averaga time in system
Maximum number in gqueue
Maximum delay 1ln queue

Maximum time in system

Proportlion of long delays

Time simulation anded

The new output values seem, at least, to be reasonable. Note that the average time in system (0.903) is close to
the sum of the average delay in gueue (0.430) and the expected service time (0.5), and that the time-average
number in system (0.878) is exactly equal to the sum of the time-average number in queue (0.418) and the server
utilization (0.460), as it must be. It is also interesting that the three maximum values are all a loz larger than
their respective average values, indicating that there was evidently appreciable variability during the course of the

simulation.

1.000

0.560

1000

1,000

0.430

0.418

0.460

p.878

¢.203

11

4.128

4.549

0,162

10627.914

minutes

minutes

minutes

minutes

minutes

minutes

minutes

minutes

1.8.

To restate the original algorithm in words, we take the natural logarithm of a U(0, 1) random variable (i.e.,)
and multiply the result by —f8. In the proof that this works, the only point where probability came up was when
we made use of the fact that U/ (what we take the logarithm of) has a U(0, 1} distribution. Now, consider the
random variable 1 - U. Clearly, it is between:0 and 1, and for 0 < x < 1, its distribution function is
Pl-Usx)=P(U21-x)=1-P(U<1-x)=1-(l-x}=x

50 that 1 - I/ has a U(C, 1) distribution as well. So the formula =8 In(1 - I7), in words, says 10 take Lhe natral
logarithm of a U(0, 1) random variable (1 - U this time) and multiply the result by —5; this is probabilistically
equivalent to the original statement. While it may seem ridiculous 10 use the new formula (it requires another
operation, the subtraction of U/ from 1, so would be slower), it does have merit for other reasons; see Chap. 8.

Si mul ation Modeling and Analysis 5th Edition Law Sol uti ons Manual

1.9. The following are the results from making ten independent replications of the single-server queueing system:

Replication | Average delay | Average number | Server utilization | Time simulation
in gueue in queue ended
1 0.430 0413 0.460 1027.914
2 0.437 0.438 0.489 997.530
3 0.493 0.506 0.508 975.400
4 0.536 0.538 0.504 997.671
5 0417 0.412 0.491 1012.722
6 0411 0416 0.504 990.372
7 0.515 0.520 0.506 990.208
8 0.394 0.378 0.465 1042.093
9 0.436 0.426 0.487 1023.938
10 0.549 0.588 0.514 940.969

Note the variation for a particular cutput measure across the replications; for example, average delay in queue
ranges from 0.394 to 0.549. This variation is due to the fact that different random numbers were used

to drive each replication, and indicates that just making a single run of a simulation is nof enough to understand
the meaning of the output. This subject is addressed in Chapters 9 through 12.

Visit TestBankDeal.comto get conplete for al

chapters

https://testbankdeal.com/download/simulation-modeling-and-analysis-5th-edition-law-solutions-manual/

