Chapter 2

2-1 From Tables A-20, A-21, A-22, and A-24c,
(a) UNS G10200 HR: $S_{u t}=380$ (55) MPa (kpsi), $S_{y t}=210$ (30) MPa (kpsi) Ans.
(b) SAE $1050 \mathrm{CD}: S_{u t}=690(100) \mathrm{MPa}(\mathrm{kpsi}), S_{y t}=580(84) \mathrm{MPa}(\mathrm{kpsi})$ Ans.
(c) AISI 1141 Q\&T at $540^{\circ} \mathrm{C}\left(1000^{\circ} \mathrm{F}\right): S_{u t}=896(130) \mathrm{MPa}(\mathrm{kpsi}), S_{y t}=765$ (111) MPa (kpsi) Ans.
(d) 2024-T4: $S_{u t}=446$ (64.8) $\mathrm{MPa}(\mathrm{kpsi}), S_{y t}=296(43.0) \mathrm{MPa}(\mathrm{kpsi})$ Ans.
(e) Ti-6Al-4V annealed: $S_{u t}=900(130) \mathrm{MPa}(\mathrm{kpsi}), S_{y t}=830(120) \mathrm{MPa}(\mathrm{kpsi})$ Ans.

2-2 (a) Maximize yield strength: Q\&T at $425^{\circ} \mathrm{C}\left(800^{\circ} \mathrm{F}\right)$ Ans.
(b) Maximize elongation: $\mathrm{Q} \& \mathrm{~T}$ at $650^{\circ} \mathrm{C}\left(1200^{\circ} \mathrm{F}\right)$ Ans.

2-3 Conversion of $\mathrm{kN} / \mathrm{m}^{3}$ to $\mathrm{kg} / \mathrm{m}^{3}$ multiply by $1\left(10^{3}\right) / 9.81=102$ AISI 1018 CD steel: Tables A-20 and A-5

$$
\frac{S_{y}}{\rho}=\frac{370\left(10^{3}\right)}{76.5(102)}=47.4 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kg} \quad \text { Ans. }
$$

2011-T6 aluminum: Tables A-22 and A-5

$$
\frac{S_{y}}{\rho}=\frac{169\left(10^{3}\right)}{26.6(102)}=62.3 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kg} \quad \text { Ans. }
$$

Ti-6Al-4V titanium: Tables A-24c and A-5

$$
\frac{S_{y}}{\rho}=\frac{830\left(10^{3}\right)}{43.4(102)}=187 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kg} \quad \text { Ans. }
$$

ASTM No. 40 cast iron: Tables A-24a and A-5.Does not have a yield strength. Using the ultimate strength in tension

$$
\frac{S_{u t}}{\rho}=\frac{42.5(6.89)\left(10^{3}\right)}{70.6(102)}=40.7 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{kg} \quad \text { Ans }
$$

2-4
AISI 1018 CD steel: Table A-5

$$
\frac{E}{\gamma}=\frac{30.0\left(10^{6}\right)}{0.282}=106\left(10^{6}\right) \text { in Ans. }
$$

2011-T6 aluminum: Table A-5

$$
\frac{E}{\gamma}=\frac{10.4\left(10^{6}\right)}{0.098}=106\left(10^{6}\right) \text { in Ans. }
$$

Ti-6Al-6V titanium: Table A-5

$$
\frac{E}{\gamma}=\frac{16.5\left(10^{6}\right)}{0.160}=103\left(10^{6}\right) \text { in Ans. }
$$

No. 40 cast iron: Table A-5

$$
\frac{E}{\gamma}=\frac{14.5\left(10^{6}\right)}{0.260}=55.8\left(10^{6}\right) \text { in Ans. }
$$

2-5

$$
2 G(1+v)=E \quad \Rightarrow \quad v=\frac{E-2 G}{2 G}
$$

Using values for E and G from Table A-5,

$$
\text { Steel: } \quad v=\frac{30.0-2(11.5)}{2(11.5)}=0.304 \quad \text { Ans. }
$$

The percent difference from the value in Table A-5 is

$$
\frac{0.304-0.292}{0.292}=0.0411=4.11 \text { percent } \quad \text { Ans. }
$$

$$
\text { Aluminum: } \quad v=\frac{10.4-2(3.90)}{2(3.90)}=0.333 \quad \text { Ans. }
$$

The percent difference from the value in Table A-5 is 0 percent Ans.

$$
\text { Beryllium copper: } \quad v=\frac{18.0-2(7.0)}{2(7.0)}=0.286 \quad \text { Ans. }
$$

The percent difference from the value in Table A-5 is

$$
\frac{0.286-0.285}{0.285}=0.00351=0.351 \text { percent } \quad \text { Ans. }
$$

$$
\text { Gray cast iron: } \quad v=\frac{14.5-2(6.0)}{2(6.0)}=0.208 \quad \text { Ans. }
$$

The percent difference from the value in Table A-5 is

$$
\frac{0.208-0.211}{0.211}=-0.0142=-1.42 \text { percent Ans. }
$$

2-6 (a) $A_{0}=\pi(0.503)^{2} / 4=0.1987 \mathrm{in}^{2}, \sigma=P_{i} / A_{0}$

For data in elastic range, $\int=\Delta l / l_{0}=\Delta l / 2$
For data in plastic range, $\grave{o}=\frac{\Delta l}{l_{0}}=\frac{l-l_{0}}{l_{0}}=\frac{l}{l_{0}}-1=\frac{A_{0}}{A}-1$
On the next two pages, the data and plots are presented. Figure (a) shows the linear part of the curve from data points 1-7. Figure (b) shows data points 1-12. Figure (c) shows the complete range. Note: The exact value of A_{0} is used without rounding off.
(b) From Fig. (a) the slope of the line from a linear regression is $E=30.5 \mathrm{Mpsi}$ Ans.

From Fig. (b) the equation for the dotted offset line is found to be

$$
\begin{equation*}
\sigma=30.5\left(10^{6}\right) /-61000 \tag{1}
\end{equation*}
$$

The equation for the line between data points 8 and 9 is

$$
\begin{equation*}
\sigma=7.60\left(10^{5}\right) /+42900 \tag{2}
\end{equation*}
$$

Solving Eqs. (1) and (2) simultaneously yields $\sigma=45.6 \mathrm{kpsi}$ which is the 0.2 percent offset yield strength. Thus, $S_{y}=45.6 \mathrm{kpsi}$ Ans.

The ultimate strength from Figure (c) is $S_{u}=85.6 \mathrm{kpsi}$ Ans.
The reduction in area is given by Eq. (2-12) is
$R=\frac{A_{0}-A_{f}}{A_{0}}(100)=\frac{0.1987-0.1077}{0.1987}(100)=45.8 \%$

Data Point	P_{i}	$\Delta l, A_{i}$	\int	σ
1	0	0	0	0
2	1000	0.0004	0.00020	5032
3	2000	0.0006	0.00030	10065
4	3000	0.001	0.00050	15097
5	4000	0.0013	0.00065	20130
6	7000	0.0023	0.00115	35227
7	8400	0.0028	0.00140	42272
8	8800	0.0036	0.00180	44285
9	9200	0.0089	0.00445	46298
10	8800	0.1984	0.00158	44285
11	9200	0.1978	0.00461	46298
12	9100	0.1963	0.01229	45795
13	13200	0.1924	0.03281	66428
14	15200	0.1875	0.05980	76492
15	17000	0.1563	0.27136	85551
16	16400	0.1307	0.52037	82531
17	14800	0.1077	0.84506	74479

(c) The material is ductile since there is a large amount of deformation beyond yield.
(d) The closest material to the values of $S_{y}, S_{u t}$, and R is SAE 1045 HR with $S_{y}=45 \mathrm{kpsi}$, $S_{u t}=82 \mathrm{kpsi}$, and $R=40 \%$. Ans.

2-7 To plot $\sigma_{\text {true }}$ vs. ε, the following equations are applied to the data.

$$
\sigma_{\text {true }}=\frac{P}{A}
$$

Eq. (2-4)

$$
\begin{array}{ll}
\varepsilon=\ln \frac{l}{l_{0}} \quad \text { for } 0 \leq \Delta l \leq 0.0028 \text { in } & (0 \leq P \leq 8400 \mathrm{lbf}) \\
\varepsilon=\ln \frac{A_{0}}{A} \text { for } \Delta l>0.0028 \text { in } \quad(P>8400 \mathrm{lbf})
\end{array}
$$

where $\quad A_{0}=\frac{\pi(0.503)^{2}}{4}=0.1987 \mathrm{in}^{2}$
The results are summarized in the table below and plotted on the next page. The last 5 points of data are used to plot $\log \sigma$ vs $\log \varepsilon$

The curve fit gives $\quad m=0.2306$

$$
\log \sigma_{0}=5.1852 \Rightarrow \sigma_{0}=153.2 \mathrm{kpsi} \quad \text { Ans. }
$$

For 20\% cold work, Eq. (2-14) and Eq. (2-17) give,

$$
\begin{gathered}
A=A_{0}(1-W)=0.1987(1-0.2)=0.1590 \mathrm{in}^{2} \\
\varepsilon=\ln \frac{A_{0}}{A}=\ln \frac{0.1987}{0.1590}=0.2231
\end{gathered}
$$

Eq. (2-18): $S_{y^{\prime}}=\sigma_{0} \varepsilon^{m}=153.2(0.2231)^{0.2306}=108.4 \mathrm{kpsi} \quad$ Ans.
Eq. (2-19), with $S_{u}=85.6$ from Prob. 2-6,
$S_{u}^{\prime}=\frac{S_{u}}{1-W}=\frac{85.6}{1-0.2}=107 \mathrm{kpsi} \quad$ Ans.

P	Δl	A	ε	$\sigma_{\text {true }}$	$\log \varepsilon$	$\log \sigma_{\text {true }}$
0	0	0.1987	0	0		
1000	0.0004	0.1987	0.0002	5032.71	-3.699	3.702
2000	0.0006	0.1987	0.0003	10065.4	-3.523	4.003
3000	0.0010	0.1987	0.0005	15098.1	-3.301	4.179
4000	0.0013	0.1987	0.00065	20130.9	-3.187	4.304
7000	0.0023	0.1987	0.00115	35229	-2.940	4.547
8400	0.0028	0.1987	0.0014	42274.8	-2.854	4.626
8800		0.1984	0.00151	44354.8	-2.821	4.647
9200		0.1978	0.00454	46511.6	-2.343	4.668
9100		0.1963	0.01215	46357.6	-1.915	4.666
13200		0.1924	0.03222	68607.1	-1.492	4.836
15200		0.1875	0.05802	81066.7	-1.236	4.909
17000		0.1563	0.24002	108765	-0.620	5.036
16400		0.1307	0.41889	125478	-0.378	5.099
14800		0.1077	0.61245	137419	-0.213	5.138

2-8 Tangent modulus at $\sigma=0$ is

$$
E=\frac{\Delta \sigma}{\Delta \grave{o}} \approx \frac{5000-0}{0.2\left(10^{-3}\right)-0}=25\left(10^{6}\right) \mathrm{psi} \quad \text { Ans. }
$$

At $\sigma=20 \mathrm{kpsi}$

$$
E_{20} \approx \frac{(26-19)\left(10^{3}\right)}{(1.5-1)\left(10^{-3}\right)}=14.0\left(10^{6}\right) \mathrm{psi} \quad \text { Ans. }
$$

$\int\left(10^{-3}\right)$	$\sigma(\mathrm{kpsi})$
0	0
0.20	5
0.44	10
0.80	16
1.0	19
1.5	26
2.0	32
2.8	40
3.4	46
4.0	49
5.0	54

2-9 $\quad W=0.20$,
(a) Before cold working: Annealed AISI 1018 steel. Table A-22, $S_{y}=32 \mathrm{kpsi}, S_{u}=49.5$ $\mathrm{kpsi}, \sigma_{0}=90.0 \mathrm{kpsi}, m=0.25, \mathcal{C}_{f}=1.05$
After cold working: Eq. (2-16), $\int_{u}=m=0.25$
Eq. (2-14), $\quad \frac{A_{0}}{A_{i}}=\frac{1}{1-W}=\frac{1}{1-0.20}=1.25$
Eq. (2-17),$\quad \varepsilon_{i}=\ln \frac{A_{0}}{A_{i}}=\ln 1.25=0.223<\varepsilon_{u}$
Eq. (2-18), $\quad S_{y}{ }^{\prime}=\sigma_{0} \varepsilon_{i}^{m}=90(0.223)^{0.25}=61.8 \mathrm{kpsi} \quad$ Ans. 93% increase Ans.
Eq. (2-19), $\quad S_{u}{ }^{\prime}=\frac{S_{u}}{1-W}=\frac{49.5}{1-0.20}=61.9 \mathrm{kpsi}$ Ans. 25% increase Ans.
(b) Before: $\quad \frac{S_{u}}{S_{y}}=\frac{49.5}{32}=1.55 \quad$ After: $\quad \frac{S_{u}{ }^{\prime}}{S_{y}{ }^{\prime}}=\frac{61.9}{61.8}=1.00 \quad$ Ans.

Lost most of its ductility.

2-10 $W=0.20$,
(a) Before cold working: AISI 1212 HR steel. Table A-22, $S_{y}=28 \mathrm{kpsi}, S_{u}=61.5 \mathrm{kpsi}$, $\sigma_{0}=110 \mathrm{kpsi}, m=0.24, \delta_{f}=0.85$
After cold working: Eq. (2-16), $\int_{u}=m=0.24$

Eq. (2-14), $\quad \frac{A_{0}}{A_{i}}=\frac{1}{1-W}=\frac{1}{1-0.20}=1.25$
Eq. (2-17), $\quad \varepsilon_{i}=\ln \frac{A_{0}}{A_{i}}=\ln 1.25=0.223<\varepsilon_{u}$
Eq. (2-18), $\quad S_{y}^{\prime}=\sigma_{0} \varepsilon_{i}^{m}=110(0.223)^{0.24}=76.7 \mathrm{kpsi} \quad$ Ans. 174% increase Ans.
Eq. (2-19), $\quad S_{u}{ }^{\prime}=\frac{S_{u}}{1-W}=\frac{61.5}{1-0.20}=76.9 \mathrm{kpsi} \quad$ Ans. 25% increase Ans.
(b) Before: $\quad \frac{S_{u}}{S_{y}}=\frac{61.5}{28}=2.20 \quad$ After: $\quad \frac{S_{u}{ }^{\prime}}{S_{y}{ }^{\prime}}=\frac{76.9}{76.7}=1.00 \quad$ Ans.

Lost most of its ductility.

2-11 $W=0.20$,
(a) Before cold working: 2024-T4 aluminum alloy. Table A-22, $S_{y}=43.0 \mathrm{kpsi}, S_{u}=$
$64.8 \mathrm{kpsi}, \sigma_{0}=100 \mathrm{kpsi}, m=0.15, \int_{f}=0.18$
After cold working: Eq. (2-16), $f_{u}=m=0.15$
Eq. (2-14), $\quad \frac{A_{0}}{A_{i}}=\frac{1}{1-W}=\frac{1}{1-0.20}=1.25$
Eq. (2-17), $\quad \varepsilon_{i}=\ln \frac{A_{0}}{A_{i}}=\ln 1.25=0.223>\varepsilon_{f} \quad$ Material fractures. Ans.

2-12 For $H_{B}=275$, Eq. (2-21), $S_{u}=3.4(275)=935 \mathrm{MPa}$ Ans.

2-13 Gray cast iron, $H_{B}=200$.
Eq. (2-22),$\quad S_{u}=0.23(200)-12.5=33.5 \mathrm{kpsi}$ Ans.
From Table A-24, this is probably ASTM No. 30 Gray cast iron Ans.

2-14 Eq. (2-21), $0.5 H_{B}=100 \Rightarrow H_{B}=200 \quad$ Ans.

2-15 For the data given, converting H_{B} to S_{u} using Eq. (2-21)

H_{B}	$S_{u}(\mathrm{kpsi})$	$S_{u}{ }^{2}(\mathrm{kpsi})$
230	115	13225
232	116	13456
232	116	13456
234	117	13689
235	117.5	13806.25
235	117.5	13806.25
235	117.5	13806.25
236	118	13924
236	118	13924
239	119.5	14280.25
$\Sigma S_{u}=$	1172	$\Sigma S_{u}{ }^{2}=137373$

Eq. (1-6)

$$
\bar{S}_{u}=\frac{\sum S_{u}}{N}=\frac{1172}{10}=117.2 \approx 117 \mathrm{kpsi} \quad \text { Ans } .
$$

Eq. (1-7),

$$
s_{S_{u}}=\sqrt{\frac{\sum_{i=1}^{10} S_{u}^{2}-N \bar{S}_{u}^{2}}{N-1}}=\sqrt{\frac{137373-10(117.2)^{2}}{9}}=1.27 \mathrm{kpsi} \quad \text { Ans. }
$$

2-16 For the data given, converting H_{B} to S_{u} using Eq. (2-22)

H_{B}	$S_{u}(\mathrm{kpsi})$	$S_{u}{ }^{2}(\mathrm{kpsi})$
230	40.4	1632.16
232	40.86	1669.54
232	40.86	1669.54
234	41.32	1707.342
235	41.55	1726.403
235	41.55	1726.403
235	41.55	1726.403
236	41.78	1745.568
236	41.78	1745.568
239	42.47	1803.701
$\Sigma S_{u}=$	414.12	$\Sigma S_{u}{ }^{2}=17152.63$

Eq. (1-6)

$$
\bar{S}_{u}=\frac{\sum S_{u}}{N}=\frac{414.12}{10}=41.4 \mathrm{kpsi} \quad \text { Ans. }
$$

Eq. (1-7),

$$
s_{S_{u}}=\sqrt{\frac{\sum_{i=1}^{10} S_{u}^{2}-N \bar{S}_{u}^{2}}{N-1}}=\sqrt{\frac{17152.63-10(41.4)^{2}}{9}}=1.20 \quad \text { Ans }
$$

2-17 (a) Eq. (2-9) $\quad u_{R} \approx \frac{45.6^{2}}{2(30)}=34.7 \mathrm{in} \cdot \mathrm{lbf} / \mathrm{in}^{3} \quad$ Ans.
(b) $A_{0}=\pi\left(0.503^{2}\right) / 4=0.19871 \mathrm{in}^{2}$

P	ΔL	A	$\left(A_{0} / A\right)-1$	\int	$\sigma=P / A_{0}$
0	0			0	0
1000	0.0004			0.0002	5032.
2000	0.0006			0.0003	10070
3000	0.0010			0.0005	15100
4000	0.0013			0.00065	20130
7000	0.0023			0.00115	35230
8400	0.0028			0.0014	42270
8800	0.0036			0.0018	44290
9200	0.0089			0.00445	46300
9100		0.1963	0.01228	0.01228	45800
13200		0.1924	0.03280	0.03280	66430
15200		0.1875	0.05979	0.05979	76500
17000		0.1563	0.27134	0.27134	85550
16400		0.1307	0.52035	0.52035	82530
14800		0.1077	0.84503	0.84503	74480

From the figures on the next page,

$$
\begin{aligned}
u_{T} & \approx \sum_{i=1}^{5} A_{i}=\frac{1}{2}(43000)(0.0015)+45000(0.00445-0.0015) \\
& +\frac{1}{2}(45000+76500)(0.0598-0.00445) \\
& +81000(0.4-0.0598)+80000(0.845-0.4) \\
& \approx 66.7\left(10^{3}\right) \mathrm{in} \cdot \mathrm{lbf} / \mathrm{in}^{3} \quad \text { Ans. }
\end{aligned}
$$

2-18, 2-19 These problems are for student research. No standard solutions are provided.

2-20 Appropriate tables: Young's modulus and Density (Table A-5) 1020 HR and CD (Table A20), 1040 and 4140 (Table A-21), Aluminum (Table A-24), Titanium (Table A-24c)

Appropriate equations:
For diameter, $\quad \sigma=\frac{F}{A}=\frac{F}{(\pi / 4) d^{2}}=S_{y} \quad \Rightarrow \quad d=\sqrt{\frac{4 F}{\pi S_{y}}}$

Weight/length $=\rho A, \quad$ Cost/length $=\$ / \mathrm{in}=(\$ / \mathrm{lbf})$ Weight/length,
Deflection/length $=\delta / L=F /(A E)$
With $F=100 \mathrm{kips}=100\left(10^{3}\right) \mathrm{lbf}$,

Material units	Young's Modulus Mpsi	Density lbf/in ${ }^{3}$	Yield Strength kpsi	Cost//bf \$/lbf	Diameter in	Weight/ length lbf/in	Cost/ length \$/in	$\begin{aligned} & \text { Deflection/ } \\ & \text { length } \\ & \text { in/in } \end{aligned}$
1020 HR	30	0.282	30	0.27	2.060	0.9400	0.25	$1.000 \mathrm{E}-03$
1020 CD	30	0.282	57	0.30	1.495	0.4947	0.15	$1.900 \mathrm{E}-03$
1040	30	0.282	80	0.35	1.262	0.3525	0.12	$2.667 \mathrm{E}-03$
4140	30	0.282	165	0.80	0.878	0.1709	0.14	$5.500 \mathrm{E}-03$
Al	10.4	0.098	50	1.10	1.596	0.1960	0.22	$4.808 \mathrm{E}-03$
Ti	16.5	0.16	120	7.00	1.030	0.1333	\$0.93	$7.273 \mathrm{E}-03$

The selected materials with minimum values are shaded in the table above. Ans.

2-21 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three would favor steel, cast iron, or maybe a less common ferrous material. The expectation would likely be hot-rolled steel. If it is desired to confirm this, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 7.95 lbf , the unit weight is determined to be

$$
w=\frac{W}{A l}=\frac{7.95 \mathrm{lbf}}{\left[\pi(1 \mathrm{in})^{2} / 4\right](36 \mathrm{in})}=0.281 \mathrm{lbf} / \mathrm{in}^{3}
$$

which agrees well with the unit weight of $0.282 \mathrm{lbf} / \mathrm{in}^{3}$ reported in Table A-5 for carbon steel. Nickel steel and stainless steel have similar unit weights, but surface finish and darker coloring do not favor their selection. To select a likely specification from Table A-20, perform a Brinell hardness test, then use Eq. (2-21) to estimate an ultimate strength
of $S_{u}=0.5 H_{B}=0.5(200)=100 \mathrm{kpsi}$. Assuming the material is hot-rolled due to the rough surface finish, appropriate choices from Table A-20 would be one of the higher carbon steels, such as hot-rolled AISI 1050, 1060, or 1080.

Ans.

2-22 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three favor a softer, non-ferrous material like aluminum. If it is desired to confirm this, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 2.90 lbf , the unit weight is determined to be

$$
w=\frac{W}{A l}=\frac{2.9 \mathrm{lbf}}{\left[\pi(1 \mathrm{in})^{2} / 4\right](36 \mathrm{in})}=0.103 \mathrm{lbf} / \mathrm{in}^{3}
$$

which agrees reasonably well with the unit weight of $0.098 \mathrm{lbf} / \mathrm{in}^{3}$ reported in Table A-5 for aluminum. No other materials come close to this unit weight, so the material is likely aluminum. Ans.

2-23 First, try to find the broad category of material (such as in Table A-5). Visual, magnetic, and scratch tests are fast and inexpensive, so should all be done. Results from these three favor a softer, non-ferrous copper-based material such as copper, brass, or bronze. To further distinguish the material, either a weight or bending test could be done to check density or modulus of elasticity. The weight test is faster. From the measured weight of 9 lbf , the unit weight is determined to be

$$
w=\frac{W}{A l}=\frac{9.0 \mathrm{lbf}}{\left[\pi(1 \mathrm{in})^{2} / 4\right](36 \mathrm{in})}=0.318 \mathrm{lbf} / \mathrm{in}^{3}
$$

which agrees reasonably well with the unit weight of $0.322 \mathrm{lbf} / \mathrm{in}^{3}$ reported in Table A-5 for copper. Brass is not far off ($0.309 \mathrm{lbf} / \mathrm{in}^{3}$), so the deflection test could be used to gain additional insight. From the measured deflection and utilizing the deflection equation for an end-loaded cantilever beam from Table A-9, Young's modulus is determined to be

$$
E=\frac{F l^{3}}{3 I y}=\frac{100(24)^{3}}{3\left(\pi(1)^{4} / 64\right)(17 / 32)}=17.7 \mathrm{Mpsi}
$$

which agrees better with the modulus for copper (17.2 Mpsi) than with brass (15.4 Mpsi). The conclusion is that the material is likely copper. Ans.

2-24 and 2-25 These problems are for student research. No standard solutions are provided.

2-26 For strength, $\sigma=F / A=S \quad \Rightarrow A=F / S$

For mass, $m=A l \rho=(F / S) l \rho$
Thus, $\quad f_{3}(M)=\rho / S$, and maximize $S / \rho \quad(\beta=1)$
In Fig. (2-19), draw lines parallel to S / ρ

The higher strength aluminum alloys have the greatest potential, as determined by comparing each material's bubble to the S / ρ guidelines. Ans.

2-27 For stiffness, $k=A E / l \Rightarrow A=k l / E$
For mass, $m=A l \rho=(k l / E) l \rho=k l^{2} \rho / E$
Thus, $\quad f_{3}(M)=\rho / E$, and maximize $E / \rho \quad(\beta=1)$
In Fig. (2-16), draw lines parallel to E / ρ

From the list of materials given, tungsten carbide (WC) is best, closely followed by aluminum alloys. They are close enough that other factors, like cost or availability, would likely dictate the best choice. Polycarbonate polymer is clearly not a good choice compared to the other candidate materials. Ans.

2-28 For strength,

$$
\begin{equation*}
\sigma=F l / Z=S \tag{1}
\end{equation*}
$$

where $F l$ is the bending moment and Z is the section modulus [see Eq. (3-26b), p. 104]. The section modulus is strictly a function of the dimensions of the cross section and has the units $\mathrm{in}^{3}(\mathrm{ips})$ or $\mathrm{m}^{3}(\mathrm{SI})$. Thus, for a given cross section, $Z=C(A)^{3 / 2}$, where C is a number. For example, for a circular cross section, $C=(4 \sqrt{\pi})^{-1}$. Then, for strength, Eq. (1) is

$$
\begin{equation*}
\frac{F l}{C A^{3 / 2}}=S \quad \Rightarrow \quad A=\left(\frac{F l}{C S}\right)^{2 / 3} \tag{2}
\end{equation*}
$$

For mass,

$$
m=A l \rho=\left(\frac{F l}{C S}\right)^{2 / 3} l \rho=\left(\frac{F}{C}\right)^{2 / 3} l^{5 / 3}\left(\frac{\rho}{S^{2 / 3}}\right)
$$

Thus, $\quad f_{3}(M)=\rho / S^{2 / 3}$, and maximize $S^{2 / 3} / \rho \quad(\beta=2 / 3)$
In Fig. (2-19), draw lines parallel to $S^{2 / 3} / \rho$

From the list of materials given, a higher strength aluminum alloy has the greatest potential, followed closely by high carbon heat-treated steel. Tungsten carbide is clearly not a good choice compared to the other candidate materials. .Ans.

2-29 Eq. (2-26), p. 77, applies to a circular cross section. However, for any cross section shape it can be shown that $I=C A^{2}$, where C is a constant. For example, consider a rectangular section of height h and width b, where for a given scaled shape, $h=c b$, where c is a constant. The moment of inertia is $I=b h^{3} / 12$, and the area is $A=b h$. Then $I=h\left(b h^{2}\right) / 12$ $=c b\left(b h^{2}\right) / 12=(c / 12)(b h)^{2}=C A^{2}$, where $C=c / 12$ (a constant).

Thus, Eq. (2-27) becomes

$$
A=\left(\frac{k l^{3}}{3 C E}\right)^{1 / 2}
$$

and Eq. (2-29) becomes

$$
m=A l \rho=\left(\frac{k}{3 C}\right)^{1 / 2} l^{5 / 2}\left(\frac{\rho}{E^{1 / 2}}\right)
$$

Thus, minimize $f_{3}(M)=\frac{\rho}{E^{1 / 2}}$, or maximize $M=\frac{E^{1 / 2}}{\rho}$. From Fig. (2-16)

From the list of materials given, aluminum alloys are clearly the best followed by steels and tungsten carbide. Polycarbonate polymer is not a good choice compared to the other candidate materials. Ans.

2-30 For stiffness, $k=A E / l \Rightarrow A=k l / E$
For mass, $m=A l \rho=(k l / E) l \rho=k l^{2} \rho / E$
So, $\quad f_{3}(M)=\rho / E$, and maximize E / ρ. Thus, $\beta=1 . \quad$ Ans.
2-31 For strength, $\sigma=F / A=S \Rightarrow A=F / S$

For mass, $m=A l \rho=(F / S) l \rho$
So, $f_{3}(M)=\rho / S$, and maximize S / ρ. Thus, $\beta=1$. Ans.

2-32 Eq. (2-26), p. 77, applies to a circular cross section. However, for any cross section shape it can be shown that $I=C A^{2}$, where C is a constant. For the circular cross section (see p.77), $C=(4 \pi)^{-1}$. Another example, consider a rectangular section of height h and width b, where for a given scaled shape, $h=c b$, where c is a constant. The moment of inertia is $I=b h^{3} / 12$, and the area is $A=b h$. Then $I=h\left(b h^{2}\right) / 12=c b\left(b h^{2}\right) / 12=(c / 12)(b h)^{2}=C A^{2}$, where $C=c / 12$, a constant.

Thus, Eq. (2-27) becomes

$$
A=\left(\frac{k l^{3}}{3 C E}\right)^{1 / 2}
$$

and Eq. (2-29) becomes

$$
m=A l \rho=\left(\frac{k}{3 C}\right)^{1 / 2} l^{5 / 2}\left(\frac{\rho}{E^{1 / 2}}\right)
$$

So, minimize $f_{3}(M)=\frac{\rho}{E^{1 / 2}}$, or maximize $M=\frac{E^{1 / 2}}{\rho}$. Thus, $\beta=1 / 2$. Ans.

2-33 For strength,

$$
\begin{equation*}
\sigma=F l / Z=S \tag{1}
\end{equation*}
$$

where $F l$ is the bending moment and Z is the section modulus [see Eq. (3-26b), p. 104]. The section modulus is strictly a function of the dimensions of the cross section and has the units in^{3} (ips) or m^{3} (SI). The area of the cross section has the units in ${ }^{2}$ or m^{2}. Thus, for a given cross section, $Z=C(A)^{3 / 2}$, where C is a number. For example, for a circular cross section, $Z=\pi d^{3} /(32)$ and the area is $A=\pi d^{2} / 4$. This leads to $C=(4 \sqrt{\pi})^{-1}$. So, with $Z=C(A)^{3 / 2}$, for strength, Eq. (1) is

$$
\begin{equation*}
\frac{F l}{C A^{3 / 2}}=S \quad \Rightarrow \quad A=\left(\frac{F l}{C S}\right)^{2 / 3} \tag{2}
\end{equation*}
$$

For mass,

$$
m=A l \rho=\left(\frac{F l}{C S}\right)^{2 / 3} l \rho=\left(\frac{F}{C}\right)^{2 / 3} l^{5 / 3}\left(\frac{\rho}{S^{2 / 3}}\right)
$$

So, $f_{3}(M)=\rho / S^{2 / 3}$, and maximize $S^{2 / 3} / \rho$. Thus, $\beta=2 / 3$. Ans.

2-34 For stiffness, $k=A E / l$, or, $A=k l / E$.
Thus, $m=\rho A l=\rho(k l / E) l=k l^{2} \rho / E$. Then, $M=E / \rho$ and $\beta=1$.
From Fig. 2-16, lines parallel to E / ρ for ductile materials include steel, titanium, molybdenum, aluminum alloys, and composites.

For strength, $S=F / A$, or, $A=F / S$.
Thus, $m=\rho A l=\rho F / S l=F l \rho / S$. Then, $M=S / \rho$ and $\beta=1$.
From Fig. 2-19, lines parallel to S / ρ give for ductile materials, steel, aluminum alloys, nickel alloys, titanium, and composites.

Common to both stiffness and strength are steel, titanium, aluminum alloys, and composites. Ans.

2-35 See Prob. 1-13 solution for $\bar{x}=122.9$ kcycles and $s_{x}=30.3$ kcycles. Also, in that solution it is observed that the number of instances less than 115 kcycles predicted by the normal distribution is 27; whereas, the data indicates the number to be 31 .

From Eq. (1-4), the probability density function (PDF), with $\mu=\bar{x}$ and $\hat{\sigma}=s_{x}$, is

$$
\begin{equation*}
f(x)=\frac{1}{s_{x} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}\right]=\frac{1}{30.3 \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-122.9}{30.3}\right)^{2}\right] \tag{1}
\end{equation*}
$$

The discrete PDF is given by $f /(N w)$, where $N=69$ and $w=10$ kcycles. From the Eq. (1) and the data of Prob. 1-13, the following plots are obtained.

Range midpoint (kcycles)	Frequency	Observed PDF	Normal PDF
x	f	$f /(N w)$	$f(x)$
60	2	0.002898551	0.001526493
70	1	0.001449275	0.002868043
80	3	0.004347826	0.004832507
90	5	0.007246377	0.007302224
100	8	0.011594203	0.009895407
110	12	0.017391304	0.012025636
120	6	0.008695652	0.013106245
130	10	0.014492754	0.012809861
140	8	0.011594203	0.011228104
150	5	0.007246377	0.008826008
160	2	0.002898551	0.006221829
170	3	0.004347826	0.003933396
180	2	0.002898551	0.002230043
190	1	0.001449275	0.001133847
200	0	0	0.000517001
210	1	0.001449275	0.00021141

Plots of the PDF's are shown below.

It can be seen that the data is not perfectly normal and is skewed to the left indicating that the number of instances below 115 kcycles for the data (31) would be higher than the hypothetical normal distribution (27).

