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PREFACE

This manual/web page contains the solutions to many (but not all) of the problems that are given at the end
of each chapter, in particular for problems on topics that are commonly covered in a first (or, at least, second)
graduate course on radiative heat transfer. Thus, solutions to problems of Chapters 1 through 6, 9 through
11, 13, 14 and 18 are almost complete; for other chapters (7, 15, 16, 19) only around half of solutions are
given, for problems on the more basic aspects covered in that chapter. Quite a few solutions, together with
Fortran90 codes, are also given for Chapter 20, not so much intended as homework solutions, but perhaps
useful for semester projects and/or to aid the researcher to write his/her first Monte Carlo code. At this date
no problem solutions are provided for the remaining chapters. However, it is the intent to periodically update
this web-based solution manual, at which time additional solutions may be posted.

Most solutions have been checked, and some have been rechecked. Still, only a major miracle could have
prevented me from making an occasional error or overlooking an occasional typo. I would appreciate it very
much if any such errors in the manual (or, for that matter, in the text) would be reported to me. In addition,
for the benefit of other instructors who will receive future editions of this manual, any reasonably written up
solutions to presently unsolved problems would also be appreciated.

This manual is posted as a pdf-file with hyperreferences enabled, including a Table of Contents and a
Bookmark column listing all chapters and problems. This enables the reader to immediately jump back and
forth within the document to locally referenced items (chapters, problems, figures, equations). References to
equations, figures, etc., in the book itself can, of course, not be reached in this way. Users of Adobe Acrobat® can
easily assemble individual problem set solutions from this manual. To make this also possible for instructors
with access to only the shareware postscript/pdf viewer Ghostview®, each individual problem is started at the
top of a new page.

State College, PA Michael F. Modest
December 2002 Department of Mechanical Engineering
The Pennsylvania State University

University Park, PA 16802

e-mail: mfm6@psu. edu
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CHAPTER 1

1.1 Solar energy impinging on the outer layer of earth’s atmosphere (usually called “solar constant”) has been
measured as 1367 W/m?. What is the solar constant on Mars? (Distance earth to sun = 1.496 x 10'! m, Mars
to sun = 2.28 x 10 m).

Solution
The total energy emitted from the sun Q = 47R 0T,

sun goes equally into all directions, so that

R 2
1e(R) = Q/ATR® = oTh,, (5
Gecmars _ (&)2 (&)2_(&)2_ L8x10" \* _
qSCearth - RM RE - RM B 228)(1011 e

G = 0.4305 X 1367 = 588 W/m> \




CHAPTER 1 3

1.2 Assuming earth to be a blackbody, what would be its average temperature if there was no internal heating
from the core of earth?

Solution
Without internal heating an energy balance for earth gives

Qabsorbed = Qemitted
2
Qabs = {sol X Aproj = qsolnRE
Qem = 0TA =4nR} 0T

Thus

Gsol )1/4 ~ ( 1367 W/m? )”4

T, = ( -
F 4o 4x5.670x10-8 W /m2K*

| Tr = 279K = 6°C|




4 RADIATIVE HEAT TRANSFER

1.3 Assuming earth to be a black sphere with a surface temperature of 300 K, what must earth’s internal heat

generation be in order to maintain that temperature (neglect radiation from the stars, but not the sun) (radius
of the earth Rg = 6.37 X 10° m).

Solution
Performing an energy balance on earth:

Q = Qemitted - Qabsorbed = O_Té A- {sol Aproj
4mR2 0T} — geoimRE: = RE (40T} = el

2
7 x (637x10°m) [4><5.670><1(r8 % 3004 K4 — 1367%

m2K4

[0 =600x10°W]|




CHAPTER 1 5

1.4 To estimate the diameter of the sun, one may use solar radiation data. The solar energy impinging onto the
earth’s atmosphere (called the “solar constant”) has been measured as 1367 W/m?. Assuming that the sun
may be approximated to have a black surface with an effective temperature of 5777 K, estimate the diameter
of the sun (distance sun to earth Sgs ~ 1.496 x 10'! m).

Solution
The sun’s energy travels equally into all directions. Thus, on a spherical “shell” around the sun (such that
earth’s orbit lies on that shell): total energy leaving sun

Qsun = dsol X 4n S%S = aT;lun 4T[R§.

Thus

q | 1/2
R — S SO.
ST (aTgﬂm)

1367 W /m> )“ 2

1.496 x 10M m( 5
5.670x10-8x57774 W/m'

]RS =696 %10 m




1.5

RADIATIVE HEAT TRANSFER

Solar energy impinging on the outer layer of earth’s atmosphere (usually called “solar constant”) has been
measured as 1367 W/m?. Assuming the sun may be approximated as having a surface that behaves like a
blackbody, estimate its effective surface temperature. (Distance sun to earth Sgs ~ 1.496 x 10! m, radius of
sun Rs =~ 6.96 X 10% m).

Solution
The sun’s energy travels equally into all directions. Thus, on a spherical “shell” around the sun (such that the
earth’s orbit lies on that shell): total energy leaving sun

Qsun = dsol X 4n S%S = aTgun 4T[R§.

Thus
Tsun _ (@)1/4 (%)1/2
o Rs
_ ( 1367 W/m? )”4(1.496>< 101 )”2
5.670x10-8 W/m*K* 6.96x108

Toun = 5777K




CHAPTER 1 7

1.6 A rocket in space may be approximated as a black cylinder of length L = 20m and diameter D = 2m. It
flies past the sun at a distance of 140 million km such that the cylinder axis is perpendicular to the sun’s
rays. Assuming that (i) the sun is a blackbody at 5777 K and (ii) the cylinder has a high conductivity (i.e.,
is essentially isothermal), what is the temperature of the rocket? (Radius of sun Rs = 696,000 km; neglect
radiation from earth and the stars).

Solution
The total energy emitted from the sun Q = 47R% 0T,

<un 80es equally into all directions, so that the flux arriving
at the rocket a distance Sgs away from the sun is

R 2
G = Q/4nSis = 0Teun (S_S) = flux/unit projected area of rocket
RS

Energy emitted = AroTg = (27IR2 + 2nRL) 0Ty = 2nR(R + L) 0T

2
Energy absorbed = A,q; = 2RL oT? . (5_5)
RS

. 2RL (&)221 20

T4 = = (5777K)*
R™ 2nR(R +L) ™ € ) (

6.96x10%\
71+20

Srs 140x 106




8

RADIATIVE HEAT TRANSFER

1.7 Ablack sphere of very high conductivity (i.e., isothermal) is orbiting earth. What is its temperature? (Consider
the sun but neglect radiation from the earth and the stars). What would be the temperature of the sphere if
it were coated with a material that behaves like a black body for wavelengths between 0.4 ym and 3 ym, but
does not absorb and emit at other wavelengths?

Solution
Making an energy balance on the sphere
(a)
Qabsorbed = Qemitted
Qabsorbed = qSOIApl‘Oj = 5]5017_(Rz
Qemitted = oT*A = oT* 4nR?
Thus

1367 W/m? 1

- (@)““ _ (
40 4x5.670x108 W/m2K+*

|T =279K = 6°C|

(b) If absorption and emission takes place only over the wavelength interval 0.4 yum < A < 3 um, both Qaps
and Qem will be reduced. Since the sphere is spectrally black, we have

3 um
Qem = 41R? f EprdA = 4nR? oT* [f(3 umXT) — £(0.4 umxT)]
0.4 um

Solar emission is black, i.e., gso1 & Epi(Tsun), OF

Gsol,A _ Eb/\(Tsun)

{sol UTgun ’
and
3um Gsol 3um
Qabs = TLRZ f Gsol,A dA = nR? SZ f Eb/\(Tsun) dA
0.4 um Olgyn Jo4 um
= TLRZEISOI [f(3 ,Umszun) - f(04 ,umszun)]
Thus,

40T [fGumT) - f(04umT)] = ool [f(Bum Tsun) — f(0.4 pm Tsyn)]
= 1367 W/m2[f(17,331) — £(2311)]

1367
4x5.670x10-8
5.1630 x 10° K*

T*[f(3 umT) — £(0.4 umT)] (0.9788-0.1222)

This nonlinear relation must be solved by iteration, leading to T =~ 600K (< 601 K)

600* x [0.03934 — 0] = 5.0985 x 10°




CHAPTER 1 9

1.8 A 100 Watt light bulb may be considered to be an isothermal black sphere at a certain temperature. If the
light flux (i.e., visible light, 0.4 yum < A < 0.7 ym) impinging on the floor directly (2.5m) below the bulb is
42.6 mW/m?, what is the light bulb’s effective temperature? What is its efficiency?

Solution

The total heat rate (100 W) leaving the light bulb will go at equal per-unit-area amounts through any (hy-
pothetical) sphere around the bulb. Take a sphere which has the spot on the floor on its surface (radius
h =25m)

Qbulb
oor,visible = {fv = T) - T
Gfloorvisible = qiv = [f(A2T) = f(A1T)] y—m
f(AT) = f(MT) = 4nh*qe/Qpup = 412.5°m*42.6 x 107° ﬂz / 100 W
m

0.03346

By trial and error:

T=2500K —> AT = 0.4 um x 2500K = 1000 ym K
AT = 0.7 um x 2500K = 1750 um K

f(AT) = f(MT) = 0.03369 — 0.00032 = 0.03337

’ T =2500K; n = 3.34% is converted into visible light

The answers for f(A1T) and f(A,T) are the same whether Appendix C or program planck.exe are employed,
since no interpolation is necessary.




10 RADIATIVE HEAT TRANSFER

1.9 When a metallic surface is irradiated with a highly concentrated laser beam, a plume of plasma (i.e., a gas
consisting of ions and free electrons) is formed above the surface that absorbs the laser’s energy, often blocking
it from reaching the surface. Assume that a plasma of 1cm diameter is located 1 cm above the surface, and
that the plasma behaves like a blackbody at 20,000 K. Based on these assumptions calculate the radiative heat
flux and the total radiation pressure on the metal directly under the center of the plasma.

Solution
Radiation emitted from the plasma (= black disk) hits the spot below it generating an incoming radiative heat

flux and a radiative pressure. From equation (1.36), for a black source
_— plasma

f I, cos 6.dQ)
21 Icm 0

I b f cos 9 dQ Omax
Qplasma

Omax
2711;,[ cos O sin0do
0

Jin

1 670x 1078 x 2 4 2
EbsinzemaX:begz 5.670 x 10 ><50,000 W/m

in = 1.814 x 10° W/m? = 181.4kW/cm?

This should be compared to the maximum flux at the center of an unobstructed laser beam, which may be
several MW/cm?.
The radiation pressure is found similarly, from equation (1.42) as

2nl, (O 2E 2E 4\3?
p = il cos? 0 sin0do = 3—b(1—cos2 Gmax)z—b[l—(—)

c Jo c 3c 5

2 5.670x1078 20, 000* W/m? Ws N
== ’ 1-0.7155] = 5.735— = 5.735—
3 3x108m/s [ ] m3 m?

p =5.735N/m?




CHAPTER 1 11

1.10 Solar energy incident on the surface of the earth may be broken into two parts: A direct component (traveling
unimpeded through the atmosphere) and a sky component (reaching the surface after being scattered by the
atmosphere). On a clear day the direct solar heat flux has been determined as gsun = 1000 W/m? (per unit area
normal to the rays), while the intensity of the sky component has been found to be diffuse (i.e., the intensity of
the sky radiation hitting the surface is the same for all directions) and Iy, = 70 W/ m?sr. Determine the total
solar irradiation onto earth’s surface if the sun is located 60° above the horizon (i.e., 30° from the normal).

Solution

Since earth’s surface is tilted away from the sun, less energy per unit surface area hits earth than is carried by
the sunshine (per unit area normal to the rays), as seen from Fig. 1-8 (by a factor of cos Osyn = cos 30°). Thus
from equation (1.36)

QSun

qin

sun €OS Ogun + f Isky cos 6.dQ Isky\\\i‘l/’A//
2n

27 /2 '/'//
Gsun COS Ogun + f f cos 0 sin0dO dy
o Jo

esun

fsun COS qun + T(Isky
1000 X cos 30° + 7 X 70 = 1086 W/m? 60°)

earth

Jin = 1086 W/m?
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1.11 A window (consisting of a vertical sheet of glass) is exposed to direct sunshine at a strength of 1000 W/m?.
The window is pointing due south, while the sun is in the southwest, 30° above the horizon. Estimate the
amount of solar energy that (i) penetrates into the building, (ii) is absorbed by the window, and (iii) is reflected
by the window. The window is made of (a) plain glass, (b) tinted glass, whose radiative properties may be
approximated by

pr = 0.08 for all wavelengths (both glasses),

B {0.90 for 0.35um < A < 2.7 um lain ol
=0 for all other wavelengths (plain glass)
{090 for0.5um <A <1l4um .
= {0 for all other wavelengths (tinted glass).

(c) By what fraction is the amount of visible light (0.4 um < A < 0.7 um) reduced, if tinted rather that plain
glass is used? How would you modify this statement in the light of Fig. 1-11?

Solution

If we want to determine how much sunshine penetrates through the window (for the entire window area, or
per unit window area), we need to determine the angle between a normal to the window (fi) and a vector
pointing to the sun (8), or cos § = ii-§. From geometric relations it follows that cos § = cos 30°xcos 45° = 0.6124.
Thus sunshine on the window, per unit window area, is gi, = 612.4 W/ m?. Of that the fraction 0.08 is reflected,
ie.,

Gref = 0.08 X 612.4 = 49.0 W/m? of window area.
(a) Plain glass: The transmitted sunshine may be calculated as

0 2.7 um
Jtrans = f TA Gin,A dA = 090[ Jin, A dA
0 0

.35 um

= 0.90gin [f(2.7 pm Tsyn) — f(0.35 pm Tsyn)]
= 0.90 X 6124 W/m? [£(15,598 um K) — £(2022 umK)]
= 0.90 x 612.4 x (0.9720 — 0.0702) = 497.0 W/m2

It follows that

Jabs = Gin — Gref — Jtrans = 612.4 —49.0 — 497.4 = 66.0 W/m?

(b) Tinted glass: Similarly,
Jerans = 0.90 X gin [f(1.4 pm X 5777 K) = f(0.5 um X 5777 K)]

0.90 x 612.4 x [ £(8088) — £(2889)] W/m>
0.90 X 612.4 x (0.8597 — 0.2481) = 337.1 W/m?,

Girans = 337.1W/m?

i.e., heat gain is reduced by 160 W/m? (or 32%).

(c) The tinted glass loses some visible light, since it is not transmissive for 0.4 ym < A < 0.5 um. The fractional
reduction is

0.90 gin [ £(0.5 um Tsun) — £(0.4 pm Tun)]

0.90 Gin [ f(0.7 pm Tsyn) — £(0.4 pm Teyn) |

f£(2889) — f(2311)  0.2481 — 0.1222

f(4044) — £(2311) ~ 0.4888 — 0.1222

fractional reduction =

’ fractional reduction = 34.3% ‘

Therefore, the tinted glass appears to cause an equivalent loss of visible light. However, Fig. 1-11 shows that
the human eye is not very responsive to wavelengths below =~ 0.5 um, so that the actual reduction of visible
light is considerably less.
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1.12 On an overcast day the directional behavior of the intensity of solar radiation reaching the surface of the
earth after being scattered by the atmosphere may be approximated as Isy(6) = Isy (6 = 0) cos 0, where 0
is measured from the surface normal. For a day with I (0) = 100 W/ m?sr determine the solar irradiation
hitting a solar collector, if the collector is (a) horizontal, (b) tilted from the horizontal by 30°. Neglect radiation
from the earth’s surface hitting the collector (by emission or reflection).

Solution

(a) For a horizontal collector the
solar irradiation is readily deter-
mined from equation (1.36) as

-

2n /2
Jin f f (Ip cos 0) cos O sin 0dO dy Earth’s surface
0 0

/2
2
2n10f cos” 0 sin 06 = I = - x 100
0

Gin = 209.4W/m?

(b) To evaluate gy, for a tilted collector, equation (1.36) becomes
mn= [ o g0
730

where k - § = cos 0 gives the variation of sky intensity with sky polar angle 6, while fi - 8 = cos 0 is the cosine
of the angle between the surface normal and a unit vector pointing into the sky, §. This unit vector may be

A

expressed in terms of 1, §, k (unit vectors for an earth-bound coordinate system), with
i =cosai-sinak, § =, i=sinai+cosak,
as

sin @ cos 1+ sin O sinyj + cos Ok

»
Il

sin@’ cos Y’ 1’ +sin O’ siny’§’ + cos 6’ .
Substituting for ¥’, §" and fi, §(6’, ) becomes

8§ =(sin® cosy cosa + cosb’ sina)i+sinf’ siny)’j

+ (cos @ cosa —sin@ cosy’ sina)k.

Equation (1.36) may be evaluated by evaluating k - § in collector coordinates (i.e., integrating over 6’ and ),
or by determining i - § in global coordinates (integrating over 8 and ). Choosing the former, one obtains

Jin = f Ip(cos 0" cosa —sin 6’ cos )’ sina) cos 6’ sin 0’ d9’ dy’

= R
N

¢

The integration limits imply that only directions above the collector (0 < 8 < 11/2) and above the horizontal
k-8=cos0 = cost cosa—sin6 cosy’ sina >0

are to be considered. Solving the last expression for cos 1)’ yields

cosy’ < cota cot®’,
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and using symmetry

/2 b4
gin = 2Ip f f (cos 6’ cosa —sin 6’ cosy’ sina)
0 cos~(cosa cos 6)

X cos 8’ sin@’ dy’ do’.

Any radiation from earth’s surface hits the collector with a polar angle of 6’ > 60°, making a negligible
contribution to gin. Thus, as a first approximation, the lower limit for ¢’ may be replaced by 0, such that

/2 bid
Gin = 21, f f (cos 6’ cosa —sin B’ cos Y’ sina) cos 8’ sin 6’ dy’ do’
0 0

2 2
?”10 cosa = ?“ % 100 X cos 30° = 181.4W/m>.

Gin = 181.4W/m?

This number is a little bit too low because the additionally considered radiation from the earth has ak - 8 =
cos 0 < 0.
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1.13 A 100 W light bulb is rated to have a total light output of 1750Im. Assuming the light bulb to consist of a
small, black, radiating body (the light filament) enclosed in a glass envelope (with a transmittance 7, = 0.9
throughout the visible wavelengths), estimate the filament’s temperature. If the filament has an emittance of
€r = 0.7 (constant for all wavelengths and directions), how does it affect its temperature?

Solution
The total heat rate leaving the light bulb by radiation (going equally into all directions) is

Qbub = 7 Qs = T(Agi €61 0Tgy).
Thus the radiative heat flux on a large, hypothetical sphere of radius R surrounding the bulb is

Qoub _ _Asi tes Tl (Tar) = I(R) dQgy

R) =
q( ) Asphere Asphere

where I(R) indicates that the flux at R is coming from a very small solid angle normal to the surface and is,
therefore, simply a normal intensity multiplied by the small solid angle.

From equation (1.47) the luminous flux at R is

Im 0.7 um
Jrum(R) = LdQg = 286W I\ (R) dA Qg
0.4 um

With gray (i.e., constant) values for €g; and 7 (at least over the visible wavelengths), this makes I (R) oc Iy (Tr),
and

Jrum(R) = 2861%1(R) dQg [£(0.7 um Tr1) — f(0.4 um Tgy)] .

Qum = q1um(R)Asphere

1
286 %Aﬁ]TEfﬂ ﬂlb(Tfﬂ) [f(07 Hm Tﬁ]) - f(04: Hm Tfﬂ)]

1
286%71’[ Qe [£(0.7 um Tar) — £(0.4 um Te)],

where Qjum is the total luminous flux leaving the bulb. Thus

A N Qlum ~ 1750 Im
f(0.7Tsw) - f(04Tq) = 286(Im/W) 17 Qs 286(Im/W) 7t X 0.9 X 100 W
= 0.02164.

By trial and error, one finds from Appendix C, for T =~ 2320K
£(0.7 x 2320) — f(0.4 x 2320) = 0.02165 — 0.00013 = 0.02152.

T ~2320K

This expression does not include the filament emittance: e = 0.7 would leave Tf; unchanged (however, Ag
would have to increase by a factor of 1/0.7 = 1.43, in order to emit 100 W of power).




16 RADIATIVE HEAT TRANSFER

1.14 A pyrometer is a device with which the temperature of a surface may be determined remotely by measuring
the radiative energy falling onto a detector. Consider a black detector of 1 mm x 1 mm area, that is exposed
to a 1ecm? hole in a furnace located a distance of 1m away. The inside of the furnace is at 1500K and
the intensity escaping from the hole is essentially blackbody intensity at that temperature. (2) What is the
radiative heat rate hitting the detector? (b) Assuming that the pyrometer has been calibrated for the situation
in (a), what temperature would the pyrometer indicate if the nonabsorbing gas between furnace and detector
were replaced by one with an (average) absorption coefficient of ¥ = 0.1 m~'?

Solution
(a) A total radiative intensity of I;(Ttumace) leaves the hole, equally into all directions. From the definition of
intensity the total heat rate hitting the detector—assuming the detector to be directly opposite the hole—is

A v
Qi = Aholelb(Tf) AdOhole-detector = Aholelb(Tf)%
hd
Ahole 0T4 Adetector
_ f
U=
Tt 9ha
1em? % 5.670 X 1072 W/em? K* x 15004 K* X 1 mm?

711 m?

Qi =9.137 X 107 W = 9.137 uW

(b) The signal would now be attenuated by a factor of exp(—«Sng), or

Qi

Qu exp(—«Sha) = 9.137 uW X exp(=0.1m™! x 1 m)
8.2675 uW

Since the d calibration is Q, o T;f we have

% Q:f x4 Q;

= - TH=2"T!
T T foQa
2675\
= (—89 16375 ) 1500 = 1463K,

i.e., the measurement would be wrong by 37 K.




CHAPTER 1 17

1.15 Consider a pyrometer, which also has a detector area of Imm X 1mm, which is black in the wavelength range
1.0 um < A £ 1.2 um, and perfectly reflecting elsewhere. In front of the detector is a focussing lens (f = 10 cm)
of diameter D = 2cm, and transmissivity of 7; = 0.9 (around 1ym). In order to measure the temperature
inside a furnace, the pyrometer is focussed onto a hot black surface inside the furnace, a distance of 1 m away
from the lens.

(a) How large a spot on the furnace wall does the detector see? (Remember that geometric optics dictates

1

f

where u = 1m is the distance from lens to furnace wall, and v is the distance from lens to detector.)

N 1; M= h(detector.size) _v ,
v H (spot size) u

|-

(b) If the temperature of the furnace wall is 1200 K, how much energy is absorbed by the detector per unit
time?

(c) It turns out the furnace wall is not really black, but has an emittance of € = 0.7 (around 1ym). Assuming
there is no radiation reflected from the furnace surface reaching the detector, what is the true surface
temperature for the pyrometer reading of case (b)?

(d) Tomeasure higher temperatures pyrometers are outfitted with filters. If a 7, = 0.7 filter is placed in front
of the lens, what furnace temperature would provide the same pyrometer reading as case (b)?

Solution
(a) From geometric optics

1111 19
v f wu 10cm 100cm  100cm’

H= h% = 1lmm 9mm

1T
Thus, the spot seen by the pyrometer is 9mm X 9mm in size.

(b) Energy leaving spot, intercepted by detector (or, by conservation of energy, energy intercepted by detector,
coming from spot) is
Qi = In2(DAEQmT = L2 A,

where I;,15(T) = A/}Z Ipa(T)dA is emitted intensity from the spot on the furnace wall, I;1, is intensity absorbed

by the detector, and Qp; and Qy; are the solid angles with which the lens is seen from H and h, respectively.
Since H and / are small compared to f and D = 2R, we simply evaluate the solid angles from the center of
spot H and detector h:
nR? nR?
Opp = —=; O =—5-,
u v

and
h
v

2 2
9 _
) = A,Qp = mlem? (ﬁ) = 2.545 x 10~*cm?

2
AHth = 7'(R2 (Ig) = TCRZ(

Therefore, [;12(T)t; = Iuo, ie., intensity hitting detector is the same as emitted from furnace, except for the
attenuation through the lens: total energy is concentrated on a smaller spot by increasing the solid angle.

Finally,
oT* 5.67 x 107 x 1200* W
e = “—[f(1aT) = fOuT)] = . —[£(1440) — £(1200)]
—_—— —
0.00961  0.00213
= ZSOK2
m
1200° =W

> Ty (1.1um, 1200k)AA = (Epy /T)(T° /)AL = 1.7228 x 10712 x TO‘ZE

= 273ﬂ2
m
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and

W
Qu =280—2.545 x 10°m* x 0.9 = 6.41uW
m

(c) The energy hitting detector remains the same and, therefore, so does the intensity emitted from the spot:
€lp12(T,)(actual) = I12(T, = 1200K)(perceived)

or, if we assume the blackbody intensity over the detector range can be approximated by the value at 1.1um,

€ N 1

eCo/ATs — 1~ Ca/AT, _q’
leading to
T = 9/ln{l + e[Sy — 1]}
“ A
_ 14,388 umK /ln {1 + 0.7[e14388/11x1200 _ 9]y
1.1ym ’
or

T, =7367K]

At these wavelengths Wien’s law holds almost exactly, i.e., we may drop the two “1”s from the above equation,

and
C/A Ty

< R
AT, +1Ine 1+C—21n€

T, = %/ln(eeCZ/ATP) =

which again leads to 1241k.

(d) Similar to (c) we get T £ 1n12(Ty) = Ip12(Tp) and, since ¢ = €, the answer is the same, i.e,
T, = 1241K |,

Thus, a much stronger filter is needed to really extend the pyrometer’s range.
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2.1 Show that for an electromagnetic wave traveling through a dielectric (m; = 1), impinging on the interface
with another, optically less dense dielectric (1, < n1), light of any polarization is totally reflected for incidence
angles larger than 6, = sin~! (12 /my).

Hint: Use equations (2.105) with k, = 0.

Solution
Equations (2.105) become for k, = 0,

no 11 sin 01 = wj sin O,,
Wi -y = i,
w, w;’ cos Py = 0.
The last of these relations dictates that either w;" = 0 or cos 6> = 0 (w; = 0 is not possible since—from the first
relation—this would imply g 111 sin 61 = 0 which is known not to be true).
w;’ = 0: Substituting this into the second relation leads to w; = 19 115, and the first leads to n; sin 0; = 1, sin 0,.
Since n; > 1, this is a legitimate solution only for sin 61 < (112/n1), or 61 < 6, = sin~! (12 /m1).
cos 6, = 0 (02 = 1/2): Substituting the first relation into the second gives

" o_ 2 2.2 2
w, =1 w’”l sin” 6y — n3,

i.e., alegitimate nonzero solution for n% sin? 0, —ng > 0or 0 > 0.. Inspection of the reflection coefficients,
equations (2.109), shows that

_indw] +njw, cos6r _  w)] cosO +iw)
r” =7 7 1= B
in§ w;’ —nyw, cos O w! cos Oy — iw}

Since, in both reflection coefficients, there are no sign changes within the real and imaginary parts, it
follows readily that

T F RSy J _1
pr=nr=pL=r0r, =1

19
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2.2 Derive equations (2.109) using the same approach as in the development of equations (2.89) through (2.92).

Hint: Remember that within the absorbing medium, w = w’ — iw” = w’§ — iw’'f; this implies that Ey is not a
vector normal to §. It is best to assume Ey = E| & + E &, + ES.

Solution
Inside the absorbing medium w; = w; —iw}’ = w;§; — iw;'fi, and the electric field vector does not lie in a plane
normal to §. Thus, we assume a general three-dimensional representation, or

Ey = E”é” +E,é, +ES.
Following the development for nonabsorbing media, equations (2.77) through (2.88), then leads to
V[JH() =wXxEjy = (w’é - iw”ﬁ) X (E”é” +E, & + Esé).

This formulation is valid for the transmitted wave, but also for the incident wave (wl’. ’ = 0) and reflected wave
(w; =0, wy = —w)). The contribution from E; vanishes for incident and reflected wave. Using the same
vector relations as given for the nonabsorbing media interface, one obtains

vuHo = w'(Ejé, — E, &) —iw” (Ejé. cos 0 — E, t + E;é, sin O).
For the interface condition (with vu the same everywhere)
vuHo x i = w'(Ejt + E &, cos 0) — iw” (Ecos Ot + E, &, + E; sin Ot).
Thus, from equation (2.78)

w/(Eyt + E;i @, cos 01) — w/(Eyt + E, &, cos 6)
= w](Eyt + E¢ &, cos 05) — iw] (Ey cos Ozt + E; &, + Ejs sin Ot)
or
w;(Ei” - Ey'”) = (w; - 1w;’ cos 92) Et” - zw;’ sin 92Ets (ZZ-A)
wi(Eir —E,;1)cos 01 = (wjcos O —iw;') Esy (2.2-B)
Similarly, from equation (2.77),
Eyxf = (EHé” +E, &, +E5§)Xﬁ= _EHéJ_COSG"'EJ_i_EséJ_SinG

and

(E,‘“ + Er”) CcOSs 91 = Et\l COSs 92 + Ets sin 92 (22-C)
Ei +E = Ey (2.2-D)

These four equations have 5 unknowns (E,, Es, Ey, E:1, and E), and an additional condition is needed,
e.g., equation (2.23) or equation (2.64). Choosing equation (2.23) we obtain, inside the absorbing medium,

W'EOZO

(w;é - 1w;’ﬁ) . (Et”ét” + EtJ_éJ_ + Etsé)
w;Egs + iw;’ (Ey sin O, — Eys cos 07). (2.2-E)

Eliminating E;, from equations (2.2-B) and (2.2-D), with 7, = E,, /E;,, gives
wi(1 =7.) cos 01 = (w} cos O — iy )(1 +7L),

or

w; cos b1 — (w; cos O, — iwy’)

1= :
w! cos 0 + (w} cos O, — iw;')’

which is identical to equation (2.109).
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Now, eliminating Ejs from equations (2.2-A) and (2.2-C) [multiplying equation (2.2-C) by iw;" and adding]:
w;(Ei” - Er”) + zw;’ cos Ql(Ei“ + Er”) = w;Et”. (2.2-F)
Eliminating E;; from equations (2.2-C) and (2.2-E) leads to

. .
_ —lwt Et” sim 92
ts — =, - 7 A
* T w) —iw]’ cos 0>
iw! sin” 0, w; cos O — iwy’
(EiH + Er”) Ccos 61 = EtH Ccos 62 - — = Et”
w; — iw;’ cos 6,

w), — iw}’ cos O

Using this to eliminate E; from equation (2.2-F), with 7| = E,/E;, gives

{1 =T + iw cos 011 +T) = ) cos 011 ~)w; — iw}’ cos 0
wi(1 —7) + iw}’ cos +7)) = w; cos +N)
i I t 1 I t 1 I w; oS 62 _ 1w;'
w!(w] cos 0 — iw;")(1 —7y)

= [wi(w] — iw] cos B7) — iw}’ (w] cos O, — iw;]")] cos O1(1 + 7))

= r]g m% cos 01(1 + 7)),

’ ’ Y 2 .2
7o wi(wt cos 0 —iw;") — 175 M3 cos 0y
(! ) 2 .2 4
wi(wy cos Oy — iw}’) + g m5 cos 61

which is the same as equation (2.109).

It is a simple matter to show that other conditions give the same result. For example, from equation (2.64)

20 A . f A LAY — 2 A a 2. A
ny(Eq@ - i+ Eqéy - i) = m5(Eyéy - fi + Exs8 - i)

or
n%(EiH —E,) sinf; = m%(EtH sin 0, — Eys cos 6,), etc.
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2.3 Find the normal spectral reflectivity at the interface between two absorbing media. [Hint: Use an approach

similar to the one thatled to equations (2.89) and (2.90), keeping in mind that all wave vectors will be complex,
but that the wave will be homogeneous in both media, i.e., all components of the wave vectors are colinear
with the surface normal].

Solution

Equations (2.19) and (2.20) remain valid for incident, reflected and transmitted waves, with w = w’ —iw” =
(w’—iw”) fi for all three cases. From equation (2.31) w-w = (w’—iw”)*A-A = njm? it follows thatw’ —iw"” = o m.
Thus

’

w, —iw; = nomy,

w;, —iw, = —nom; (reflected wave is moving in a direction of — i),

w; - zw;’ = 1o ma.
From equations (2.23) and (2.24), it follows that the electric and magnetic field vectors are normal to 4, i.e.,
tangential to the surface, say Ey = Eot. Then, from equation (2.77)

(Ei+E)txA=Etxn,
or
Ei+E, =E;
From equation (2.25) vuHy = w X By = (v’ — iw”’) Efi X t, and from equation (2.78)
m(E; — E;) = my E;.

Substituting for E; and dividing by E;, with7 = E,/E;:

mi(1=7) = my(1+7)

or
my —my

mq + mp

and

o (my — mp)(my — my)* _ (11 — np) +i(ky — ka) |*
P (i + ma)(my +ma)” | (1 + 1) + ik + kz)

_(m - )% + (ky — ko)?
(1 +n2)? + (ky + kp)?

n
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2.4 A circularly polarized wave in air is incident upon a smooth dielectric surface (n = 1.5) with a direction of
45° off normal. What are the normalized Stokes” parameters before and after the reflection, and what are the
degrees of polarization?

Solution
From the definition of Stokes’ parameters the incident wave has degrees of polarization

%:E:O, E=il,
L I I;

the sign giving the handedness of the circular polarization. With E, = Eyr and E,, = E;,r,, from equa-
tions (2.50) through (2.53):

. . . 1
I, = EyEjri + Ei Ej 72 = EyEj(py + pu) = So1+pu) i

Since Ei“E;‘H = E; E;, [from equation (2.51)] and p = .
Similarly,
Q: = EqEjrj — EiEj, 1l = EgE;(p) = p1)
U, = EjE; nyro + EuE:HT'LrII =Umnre =0
= i(EgEj, —EiEp)ryre = Viryry
Q _pi—pr Ve 2y Vi

I pi+p. L opi+pL L

, sin 6 sin? 6 / 0.5 7
sin 0, = n21;c0562= 1- nzlz 1_ﬁ:\/;’
\/ 2 )

and from equations (2.89) and (2.90)

=
|

From Snell’s law

1108 0y —npcos 67 V7/9 -1.5v1/2 _

o= = = —-0.0920, p; = 0.0085
17 J1cos 6, +nycos 6, V7/9 +1.5+/1/2 P
rL o= ncosO; —npcos6,  V1/2-15v7/9 0.3033, p, = 0.0920

n1cos01 +ncos02  T/2+15v7/9

Q, _ 0.0085—0.0920 _ u,
I, ~ 00085+ 00920 8 =0

Ve _ [ 2x00920x0.0085

7, = 70.0085 + 0.0920

Since the perpendicular polarization is much more strongly reflected, the resulting wave is no longer circularly
polarized, but to a large degree linearly polarized (in the perpendicular direction).
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2.5 A circularly polarized wave in air traveling along the z-axis is incident upon a dielectric surface (n = 1.5).
How must the dielectric-air interface be oriented so that the reflected wave is a linearly polarized wave in the

y-z-plane?

Solution

From equations (2.50) through (2.53) it follows that
Q,/I, =1, U, = V, = 0 (i.e, linear polarization), if
either E, or E,; vanish. From Fig. 2-9 it follows that
r. # 0 and, therefore E,; # 0 for all incidence di-
rections, while 7y = 0 for 6 = 0, (Brewster’s angle),
or

0, = tan”! % =tan"! 1.5 = 56.31°.
1

The resulting wave is purely perpendicular-
polarized, i.e.,, &, must lie in the y—2z plane, or
&) must be in the x—z plane. Therefore, the surface
may be expressed in terms of its surface normal as

fi = isin 0, - kcos 0, = (1 - 1.5k)/ V3.25.
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2.6 A polished platinum surface is coated with a 1 um thick layer of MgO.

(a) Determine the material’s reflectivity in the vicinity of A = 2 ym (for platinum at 2 ym mp; = 5.29 — 6.711,
for MgO myg0 = 1.65 — 0.0001 7).

(b) Estimate the thickness of MgO required to reduce the average reflectivity in the vicinity of 2 um to 0.4.
What happens to the interference effects for this case?

Solution
(a) The desired overall reflectivity must be calculated from equation (2.124) after determining the relevant
reflection coefficient. From equation (2.122)

— 1—m2~1—n2_1—1.65_

~ = =-0.24
1+my, 14+n, 1+4+1.65 0.2453

since k; < 1, and rqp = 0.2453. 7p3 may also be calculated from equation (2.122) or, more conveniently, from
equation (2.126):

,  (1.65-529 + 6712
_ — 0.6253 or 123 = 0.7908.
"3 (165 + 5,297 + 6.712 orr

Since the real part of 71, < 0 it follows that 612 = 7, while

2(1.65%6.71 — 5.29x107%)

= —0.3150.
1.652 + 108 — (5.292+6.712)

tan 623 =

Since the J(r23) > 0 (numerator) and R(rx3) < 0 (denominator) d,3 lies in the second quadrant, 71/2 < 63 < 7,
or Oy3 = 2.8364. Also (1 = 41t X 1.65 X 1 ym/2 ym = 10.3673, and

cos [012 + (023 — C12)] = cos [t + (2.8364 — 10.3673)] = —0.3175.
Also xod = 4t x 107* X 1 um/2 um = 2t X 107* and 7 = ¢7% = 0.9994 =~ 1. Thus

_ 0.2453% + 2x0.2453%0.7908 X (—0.3175) + 0.79082
1+ 2x0.2453%0.7908 % (—0.3175) + 0.24532x0.79082

(b) The cos in the numerator fluctuates between —1 < cos < +1. The average value for R is obtained by
dropping the cos-term. Then

R = 1 15T
U1+ 7%21%3’[2’
or ,
R v — T 4 — U 2
2 = ' a 122 _ 0 42 0.2453 = 0.5782,
2(—1)  0.7908(1 - 0.2453?)

d=-Lingoo Lo 05782
K T 2 47 x 1074 um-!

=43.6 ym.

More accurate is the averaged expression, equation (2.129)

(1-pro)?
Rav =pi2t Pi3 P12 >
— P12P237T

or

’ Rav = p12 _ Rav — p12
P23 [(Ray — p12)p12 + (1 — p12)?]  p2s [l — (2 — Ray)p12]
0.4 — 0.2453?2

= = 0.6013
0.79082[1 — 1.6 x 0.24537]
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and

—In0.6013

= Ix 10 pmt A

For such a large d, it follows that {; =~ 40x10.3673 = 450. A full interference period is traversed if , =~ 450 + 7.
Around A = 2 um this implies a full period is traversed between 2 um + 0.014 um. Such interference effects
will rarely be observed because (i) the detector will not respond to such small wavelength changes, and (ii)
the slightest inaccuracies in layer thickness will eliminate the interference effects.

Note: since incoming radiation at g = 2 ym has a wavelength of A = Ag/n; = 2/1.65 = 1.2. um, mp; should
really be evaluated at 1.21 ym.
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