## Chapter 3: Resistive Network Analysis – Instructor Notes

Chapter 3 presents the principal topics in the analysis of resistive (DC) circuits. The presentation of node voltage and mesh current analysis is supported by several solved examples and drill exercises, with emphasis placed on developing consistent solution methods, and on reinforcing the use of a systematic approach. The aim of this style of presentation, which is perhaps more detailed than usual in a textbook written for a non-majors audience, is to develop good habits early on, with the hope that the orderly approach presented in Chapter 3 may facilitate the discussion of AC and transient analysis in Chapters 4 and 5. *Make The Connection* sidebars (pp. 83-85) introduce analogies between electrical and thermal circuit elements. These analogies are to be encountered again in Chapter 5. A brief discussion of the principle of superposition precedes the discussion of Thèvenin and Norton equivalent circuits will be heavily exploited in the analysis of AC and transient circuits in later chapters. The *Focus on Methodology* boxes (p. 84 – Node Analysis; p. 94 – Mesh Analysis; pp. 111, 115, 119 – Equivalent Circuits) provide the student with a systematic approach to the solution of all basic network analysis problems.

Following a brief discussion of maximum power transfer, the chapter closes with a section on nonlinear circuit elements and load-line analysis. This section can be easily skipped in a survey course, and may be picked up later, in conjunction with Chapter 9, if the instructor wishes to devote some attention to load-line analysis of diode circuits. Finally, those instructors who are used to introducing the op-amp as a circuit element, will find that sections 8.1 and 8.2 can be covered together with Chapter 3, and that a good complement of homework problems and exercises devoted to the analysis of the op-amp as a circuit element is provided in Chapter 8. Modularity is a recurrent feature of this book, and we shall draw attention to it throughout these *Instructor Notes*.

The homework problems present a graded variety of circuit problems. Since the aim of this chapter is to teach solution techniques, there are relatively few problems devoted to applications. We should call the instructor's attention to the following end-of-chapter problems: 3.30 on the Wheatstone bridge; 3.33 and 3.34 on fuses; 3.35-3.37 on electrical power distribution systems; 3.76-83 on various nonlinear resistance devices. The 5<sup>th</sup> Edition of this book includes 19 new problems; some of the 4<sup>th</sup> Edition problems were removed, increasing the end-of-chapter problem count from 66 to 83.

#### Learning Objectives for Chapter 3

- 1. Compute the solution of circuits containing linear resistors and independent and dependent sources using *node analysis*.
- 2. Compute the solution of circuits containing linear resistors and independent and dependent sources using *mesh analysis*.
- 3. Apply the *principle of superposition* to linear circuits containing independent sources.
- 4. Compute *Thévenin and Norton equivalent circuits* for networks containing linear resistors and independent and dependent sources.
- 5. Use equivalent circuits ideas to compute the maximum power transfer between a source and a load.
- 6. Use the concept of equivalent circuit to determine voltage, current and power for nonlinear loads using *load-line analysis* and analytical methods.

# Sections 3.1, 3.2, 3.3, 3.4: Nodal and Mesh Analysis

## Focus on Methodology: Node Voltage Analysis Method

- 1. Select a reference node(usually ground). This node usually has most elements tied to it. All other nodes will be referenced to this node.
- 2. Define the remaining n-1 node voltages as the independent or dependent variables. Each of the *m* voltage sources in the circuit will be associated with a dependent variable. If a node is not connected to a voltage source, then its voltage is treated as an independent variable.
- 3. Apply KCL at each node labeled as an independent variable, expressing each current in terms of the adjacent node voltages.
- 4. Solve the linear system of n-1-m unknowns.

## Focus on Methodology: Mesh Current Analysis Method

- 1. Define each mesh current consistently. Unknown mesh currents will be always defined in the clockwise direction; known mesh currents (i.e., when a current source is present) will always be defined in the direction of the current source.
- 2. In a circuit with *n* meshes and *m* current sources, n-m independent equations will result. The unknown mesh currents are the n-m independent variables.
- 3. Apply KVL to each mesh containing an unknown mesh current, expressing each voltage in terms of one or more mesh currents.
- 4. Solve the linear system of n-m unknowns.

# Problem 3.1

Use node voltage analysis to find the voltages V1 and V2 for the circuit of Figure P3.1.

## Solution:

### Known quantities:

Circuit shown in Figure P3.1

### Find:

Voltages  $v_1$  and  $v_2$ .

### Analysis:

Applying KCL at each of the two nodes, we obtain the

following equations:

$$\frac{V_1}{3} + \frac{V_1 - V_2}{1} - 4 = 0$$
$$\frac{V_2}{2} + \frac{V_2}{2} + \frac{V_2 - V_1}{1} = 0$$

Rearranging the equations,

$$\frac{4}{3}V_1 - V_2 = 4$$
$$-V_1 + 2V_2 = 0$$

Solving the equations,

 $V_1 = 4.8 V \text{ and } V_2 = 2.4 V$ 





# **Problem 3.2**

...

| Using node voltage analysis, find the voltages | V1 and V2 for the circuit of Figure P3.2.                                                                                     |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Solution:                                      | Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.<br>$30 \Omega V_1 10 \Omega V_2$ |
| Known quantities:                              |                                                                                                                               |
| Circuit shown in Figure P3.2                   | $20 V$ $\xi 20 \Omega \xi 30 \Omega \xi 30 \Omega$                                                                            |
| Find:                                          |                                                                                                                               |
| Voltages $v_1$ and $v_2$ .                     |                                                                                                                               |
| Analysis:                                      | Ļ                                                                                                                             |
| Applying KCL at each node, we obtain:          |                                                                                                                               |
|                                                | $\frac{v_1 - 20}{30} + \frac{v_1}{20} + \frac{v_1 - v_2}{10} = 0$                                                             |
|                                                | $\frac{v_2}{30} + \frac{v_2}{30} + \frac{v_2 - v_1}{10} = 0$                                                                  |
| Rearranging the equations,                     |                                                                                                                               |
|                                                | $5.5v_1 - 3v_2 = 20$                                                                                                          |
|                                                | $-3v_1 + 5v_2 = 0$                                                                                                            |
| Solving the two equations,                     |                                                                                                                               |
|                                                | $v_1 = 5.41 \text{ V} \text{ and } v_2 = 3.24 \text{ V}$                                                                      |
|                                                |                                                                                                                               |

# **Problem 3.3**

Using node voltage analysis in the circuit of Figure P3.3, find the voltage v across the 0.25-ohm resistance.

## Solution:

## **Known quantities:**

Circuit shown in Figure P3.3

### Find:

Voltages across the resistance, *v*.

## Analysis:

Label the nodes:  $v_1$ ,  $v_2$ , and  $v_3$  as shown.

At node 1:

 $\frac{v_1 - v_2}{1} + \frac{v_1 - v_3}{0.5} = -2$ 

 $v_1$ 

 $(1)_{2A}$ 

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

0.5 Ω

ww

 $v_2$ 

ş 0.25 Ω

+

v \_

 $1 \,\Omega$ 

ww

3 A

 $\rightarrow$ 

 $v_3$ 

0.33 Ω ≹

At node 2:

$$\frac{v_2 - v_1}{1} + \frac{v_2}{0.25} = 3$$

At node 3:

$$\frac{v_3 - v_1}{0.5} + \frac{v_3}{0.33} = -3$$

Solving for  $v_2$ , we find  $v_2 = 0.34V$  and, therefore, v = 0.34V.

3.3

## Problem 3.4

Using node voltage analysis in the circuit of Figure P3.4, find the current *i* through the voltage source.

## Solution:

## Known quantities:

Circuit shown in Figure P3.4

### Find:

Current through the voltage source.

### Analysis:

Label the nodes,  $v_1$ ,  $v_2$ , and  $v_3$  as shown.

At node 1:



At node 2:

$$\frac{v_2 - v_1}{0.5} + \frac{v_2}{0.25} + i = 0 \tag{2}$$

At node 3:

$$\frac{v_3 - v_1}{0.5} + \frac{v_3}{0.33} - i = 0 \tag{3}$$

Further, we know that  $v_3 = v_2 + 3$ . Now we can eliminate either  $v_2$  or  $v_3$  from the equations, and be left with three equations in three unknowns:

$$\frac{v_1 - v_2}{0.5} + \frac{v_1 - (v_2 + 3)}{0.5} = -2 \qquad (1)$$

$$\frac{v_2 - v_1}{0.5} + \frac{v_2}{0.25} + i = 0 \qquad (2)$$

$$\frac{(v_2 + 3) - v_1}{0.5} + \frac{(v_2 + 3)}{0.33} - i = 0 \qquad (3)$$

Solving the three equations we compute

*i* = 8.310A

# Problem 3.5

In the circuit shown in Figure P3.5, the mesh currents are  $I_1 = 5A I_2 = 3A I_3 = 7A$ Determine the branch currents through: a. R<sub>1</sub>. b. R<sub>2</sub>. c. R<sub>3</sub>.

## Solution:

#### **Known quantities:**

Circuit shown in Figure P3.5 with mesh currents:  $I_1 = 5 \text{ A}$ ,  $I_2 = 3 \text{ A}$ ,  $I_3 = 7 \text{ A}$ .

#### Find:

The branch currents through:

- a)  $R_{1}$ ,
- b)  $R_{2}$ ,
- c)  $R_3$ .

3.4

**PROPRIETARY MATERIAL**. © The McGraw-Hill Companies, Ir educators for course preparation. If you are a student using this Manual



### Analysis:

a) Assume a direction for the current through  $R_1$  (e.g., from node A toward node B). Then summing currents at node A:

*KCL*:  $-I_1 + I_{R1} + I_3 = 0$ 

 $I_{R1} = I_1 - I_3 = -2$  A

This can also be done by inspection noting that the assumed direction of the current through  $R_1$  and the direction of  $I_1$  are the same.

b) Assume a direction for the current through  $R_2$  (e.g., from node B toward node A). Then summing currents at node B:

KCL:  $I_2 + I_{R2} - I_3 = 0$  $I_{R2} = I_3 - I_2 = 4$  A

This can also be done by inspection noting that the assumed direction of the current through  $R_2$  and the direction of  $I_3$  are the same.

c) Only one mesh current flows through  $R_3$ . If the current through  $R_3$  is assumed to flow in the same direction, then:

 $I_{R3} = I_3 = 7A.$ 

# Problem 3.6

In the circuit shown in Figure P3.5, the source and node voltages are VS1 = VS2 = 110 V VA = 103 V VB = -107 V

## Solution:

#### **Known quantities:**

Circuit shown in Figure P3.5 with source and node voltages:  $V_{S1} = V_{S2} = 110 V$ ,  $V_A = 103 V$ ,  $V_B = -107 V$ .

#### Find:

The voltage across each of the five resistors.

#### Analysis:

Assume a polarity for the voltages across  $R_1$  and  $R_2$  (e.g., from ground to node A, and from node B to ground).  $R_1$  is connected between node A and ground; therefore, the voltage across  $R_1$  is equal to this node voltage.  $R_2$  is connected between node B and ground; therefore, the voltage across  $R_2$  is equal to this voltage.

 $V_{R1} = V_A = 103 \text{ V}, V_{R2} = V_B = -107 \text{ V}$  (i.e. the voltage drop across  $R_2$  is from ground to node B.)

The two node voltages are with respect to the ground which is given.

Assume a polarity for the voltage across  $R_3$  (e.g., from node B to node A). Then:

$$KVL: -V_A - V_{R3} + V_B = 0$$

 $V_{R3} = V_B - V_A = -210$  V (i.e. the voltage drop across  $R_3$  is from node A to node B.)

Assume polarities for the voltages across  $R_4$  and  $R_5$  (e.g., from node A to ground , and from ground to node B):

KVL: $-V_{S1} + V_{R4} + V_A = 0$ KVL: $-V_{S2} - V_B - V_{R5} = 0$  $V_{R4} = V_{S1} - V_A = 7$  V $V_{R5} = -V_{S2} - V_B = -3$  V (i.e. the voltage drop is from node B toward ground

**PROPRIETARY MATERIAL.** © The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

# Problem 3.7

Use nodal analysis in the circuit of Figure P3.7 to find the Va. Let R1 =  $12\Omega$ , R2 =  $6\Omega$ , R3 =  $10\Omega$ , V1 = 4V, V2 = 1V.

## Solution:

#### Known quantities:

Circuit shown in Figure P3.7 with known source voltages and resistances,  $R_1 = 12\Omega$ ,  $R_2 = 6\Omega$ ,  $R_3 = 10\Omega$ .

### Find:

The voltage Va.

## Analysis:

Using the node voltage analysis:

$$\frac{V_1 - V_a}{R_1} - \frac{V_a}{R_2} + \frac{V_2 - V_a}{R_3} = 0 \Longrightarrow V_a = \frac{26}{21}V = 1.24V$$

## **Problem 3.8**

Use mesh analysis in the circuit of Figure P3.7 to find the Va. Let R1 =  $12\Omega$ , R2 =  $6\Omega$ , R3 =  $10\Omega$ , V1 = 4V, V2 = 1V.

### Solution:

 $I_1 \& I_2$  as shown in this diagram are branch currents, not mesh currents. Use  $i_A \& i_B$  (to avoid confusion with  $I_1 \& I_2$ ) as the mesh currents for the left hand pane and the right hand pane, respectively. Assume that both mesh currents are clockwise.

### Known quantities:

Circuit shown in Figure P3.7 with known source voltages and resistances,  $R_1 = 12\Omega$ ,  $R_2 = 6\Omega$ ,  $R_3 = 10\Omega$ .

## Find:

The voltage Va.

## Analysis:

Using the mesh current analysis:

$$-V_1 + R_1 i_A + R_2 (i_A - i_B) = 0$$
 Mesh 1  
 $R_2 (i_B - i_A) + V_2 + R_3 i_B = 0$  Mesh 2





3.7

**PROPRIETARY MATERIAL**. © The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.

Collect coefficients:

$$18 * i_A - 6 * i_B = 4$$
 Mesh 1  
 $6 * i_A - 16 * i_B = 1$  Mesh 2

Solve set of equations:

$$i_B = \frac{1}{42}A = 23.8 \text{mA}$$

 $i_A = \frac{29}{126} A = 230 \text{mA}$ 

Find Va:

$$V_a = (i_A - i_B) * R_2 = \frac{26}{21} = 1.24$$
V

## **Problem 3.9**

Use nodal analysis in the circuit of Figure P3.9 to find V1, V2, and V3. Let R1 =  $10\Omega$ , R2 =  $8\Omega$ , R3 =  $10\Omega$ , R4 = 5, is = 2A, Vs = 1V.

### Solution:

### **Known quantities:**

Circuit shown in Figure P3.9 with known source voltages and resistances. **Find:** 



#### Analysis:

Use KCL at all the nodes:

$$\frac{V_3 - V_1}{R_1} - \frac{V_1 - 0}{R_3} - \frac{V_1 - V_2}{R_2} = 0 \text{ Node } 1$$
$$\frac{V_1 - V_2}{R_2} - i_s - i = 0 \text{ Node } 2$$
$$i - \frac{V_3 - V_1}{R_1} - \frac{V_3}{R_4} = 0 \text{ Node } 3$$

 $V_3 - V_2 = 1$  Known Voltage

Enter coefficients into matrix:

Solve:

$$V_1 = -5.43V V_2 = -8.29V V_3 = -7.29V$$

3.8





Figure P3.9

## Problem 3.10

Use nodal analysis in the circuit of Figure P3.10 to find the voltages at nodes A, B, and C. Let  $V_1 = 12V$ ,

 $V2 = 10V, R1 = 2\Omega, R2 = 8\Omega, R3 = 12\Omega, R4 = 8\Omega.$ 

### Solution:

### **Known quantities:**

The current source value, the voltage source value and the resistance values for the circuit shown in Figure P3.10.

#### Find:

The three node voltages indicated in Figure P3.10 using node voltage analysis.

#### Analysis:

Using the node voltage analysis:

Designate the current through  $V_2$  as *i* 

$$v_{A} = V_{1}$$

$$\frac{v_{B} - v_{A}}{R_{1}} + \frac{v_{B}}{R_{3}} + i = 0$$

$$\frac{v_{C} - v_{A}}{R_{3}} - i + \frac{v_{C}}{R_{4}} = 0$$

 $v_C = v_B + V_2$ 

Substituting the know quantities:

$$v_{A} = 12$$

$$\frac{v_{B} - 12}{2} + \frac{v_{B}}{12} + i = 0$$

$$v_{A} = 12V$$

$$v_{B} = 6.2V$$

$$v_{C} - 12$$

$$i = 2.38A$$

$$v_{C} = v_{B} + 10$$

## Problem 3.11

Use nodal analysis in the circuit of Figure P3.9 to find Va and Vb. Let R1 =  $10\Omega$ , R2 =  $4\Omega$ , R3 =  $6\Omega$ , R4 =  $6\Omega$ , I1 = 2A, V1 = 2V, V2 = 4V.

## Solution:

#### Known quantities:

Circuit shown in Figure P3.11 with known source voltages and resistances. **Find:** 

The voltages Va, Vb







### Analysis:

Use KCL at all the nodes:

$$\frac{\frac{V_1 - V_a}{R_1} - I_1 - \frac{V_a - V_b}{R_2} = 0 \text{ Node } 1}{\frac{V_a - V_b}{R_2} + I_1 - \frac{V_b}{R_3} - \frac{V_b - -V_2}{R_4} = 0 \text{ Node } 2}$$

Substitute known values and collect coefficients:

$$-0.35 * V_a + 0.25 * V_b = 1.8$$
 Node 1  
 $0.25 * V_a - \frac{7}{12} * V_b = -1.33$  Node 2

Solve:

$$V_a = -5.06V V_b = 0.117V$$

## Problem 3.12

Find the power delivered to the load resistor R<sub>0</sub> for the circuit of Figure P3.12, using node voltage analysis, given that  $R_1 = 2\Omega$ ,  $R_V = R_2 = R_0 = 4\Omega$ ,  $V_S = 4V$ , and  $I_S = 0.5A$ .

### Solution:

### **Known quantities:**

Circuit shown in Figure P3.12.

#### Find:

Power delivered to the load resistance.

### Analysis:

Add node  $V_3$  between the voltage source and its resistance,  $R_V$ . Also, add the current *i* that flows through the voltage source. Choose the negative terminal of  $V_0$  as the ground (reference) node.

KCL at node 1:

$$-0.5 + \frac{V_1}{R_1} + \frac{V_1 - V_3}{R_V} = 0$$
 (Eq. 1)

KCL at node 2:

$$-i + \frac{V_2}{R_1} + \frac{V_2 - V_0}{R_2} = 0$$
 (Eq. 2)



KCL at node 3:

$$\frac{V_3 - V_1}{R_V} + i = 0$$
 (Eq. 3)

KCL at node 0:

3.10

$$\frac{V_0 - V_2}{R_2} + \frac{V_0}{R_0} = 0 \qquad (\text{ Eq. 4})$$

And finally:

 $V_2 = V_3 + 4$  (Eq. 5) Solving yields:  $V_0 = 526.32 \text{ mV}$  $P_L = \frac{V_0^2}{R_0} = 69.25 \text{ mW}$ 

## Problem 3.13

(a) For the circuit of Figure P3.13, write the node equations necessary to find voltages V<sub>1</sub>, V<sub>2</sub>, and V<sub>3</sub>. Note that G = 1/R = conductance. From the results, note the interesting form that the matrices [G] and [I] have taken in the equation [G] [V] = [I] where

 $[G] = \begin{bmatrix} g_{11} & g_{12} & g_{13} & \cdots & g_{1n} \\ g_{21} & g_{22} & \cdots & \cdots & g_{2n} \\ g_{31} & & \ddots & & \\ \vdots & & & \ddots & \\ g_{n1} & g_{n2} & \cdots & \cdots & g_{nn} \end{bmatrix} \text{ and } [I] = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ \vdots \\ I_n \end{bmatrix}$ 

(b) Write the matrix form of the node voltage equations again, using the following formulas:  $g_{ii} = \Sigma \text{ conductances connected to node i}$   $g_{ij} = -\Sigma \text{ conductances shared by nodes i and j}$   $I_i = \Sigma \text{ all source currents into node i}$ 

## Solution:

#### **Known quantities:**

Circuit shown in Figure P3.13.

### Find:

- a) Voltages
- b) Write down the equations in matrix form.

## Analysis:

a) Using conductances, apply KCL at node 1:

$$(G_1 + G_{12} + G_{13})V_1 - G_{12}V_2 - G_{13}V_3 = I_s$$

Then apply KCL at node 2:

$$-G_{12}V_1 + (G_2 + G_{12} + G_{23})V_2 - G_{23}V_3 = 0$$

and at node 3:

$$-G_{13}V_1 - G_{23}V_2 + (G_3 + G_{13} + G_{23})V_3 = 0$$

Rewriting in the form



[G][V]=[I]

3.11

we have  $\begin{bmatrix} G_1 + G_{12} + G_{13} & -G_{12} & -G_{13} \\ -G_{12} & G_2 + G_{12} + G_{23} & -G_{23} \\ -G_{13} & -G_{23} & G_3 + G_{13} + G_{23} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} I_s \\ 0 \\ 0 \end{bmatrix}$ 

b) The result is identical to that obtained in part a).

## Problem 3.14

Using mesh analysis, find the currents i1 and i2 for the circuit of Figure P3.14.

## Solution:

Circuit shown in Figure P3.14.

Find:

Current  $i_1$  and  $i_2$ .

### Analysis:

For mesh #1:

For mesh #2:

Solving,

 $3(i_2 - i_1) + 2i_2 + 2 = 0$  $i_1 = -0.091A$  $i_2 = -0.455A$ 

 $-1+1i_1+3(i_1-i_2)=0$ 

# Problem 3.15

Using mesh analysis, find the currents *i*<sub>1</sub> and *i*<sub>2</sub> and the voltage across the top 10-ohm resistor in the circuit of Figure P3.15.

## Solution:

Circuit shown in Figure P3.15.

### Find:

Current  $i_1$  and  $i_2$  and voltage across the resistance  $10\Omega$ .

## Analysis:

Mesh #1  $20i_1 + 15i_1 + 10(i_1 - i_2) = 0$ Mesh #2  $-50 + 10(i_2 - i_1) + 40i_2 + 10i_2 = 0$ 

Therefore,

 $I_1 = 0.1923 \text{ A and } I_2 = 0.865 \text{ A},$  $v_{10\Omega} = 10(i_2 - i_1) = 6.73 \text{ V}$ 







## Problem 3.16

Using mesh analysis, find the voltage, v, across the 3-ohm resistor in the circuit of Figure P3.16.

### Solution:

Circuit shown in Figure P3.16.

### Find:

Voltage across the  $3\Omega$  resistance.

### Analysis:

Meshes 1, 2 and 3 are clockwise from the left and are oriented clockwise.

For mesh #1:

$$-2+1i_1+2(i_1-i_2)+3(i_1-i_3)=0$$

For mesh #2:

 $2(i_2 - i_1) + 2i_2 + 1 + 1(i_2 - i_3) = 0$ 

For mesh #3:

$$3(i_3 - i_1) + 1(i_3 - i_2) + 1i_3 = 0$$

Solving,

 $i_1 = 0.5224 \text{ A}$  $i_2 = 0.0746 \text{ A}$  $i_3 = 0.3284 \text{ A}$ 

and  $v = 3(i_1 - i_3) = 3(0.194) = 0.582$  V

## Problem 3.17

Using mesh analysis, find the currents I1, I2, and I3 in the circuit of Figure P3.17 (assume polarity according to I2).

## Solution:

Mesh #1 (on the left-hand side)

$$2 - 2I_1 - 3(I_1 - I_2) = 0$$

If we treat mesh #2 (middle) and mesh #3 (on the right-hand

side) as a single loop containing the four resistors (but not the

current source), we can write

$$-1I_2 - 3I_3 - 2I_3 - 3(I_2 - I_1) = 0$$

From the current source:

$$I_3 - I_2 = 2$$

Solving the system of equations:

$$I_1 = -0.333 \text{ A}$$
  $I_2 = -1.222 \text{ A}$   $I_3 = 0.778 \text{ A}$ 





## Problem 3.18

Using mesh analysis, find the voltage, V, across the current source in Figure P3.18.

## Solution:

Circuit shown in Figure P3.18.

### Find:

Voltage across the current source.

## Analysis:

The analysis for the mesh currents is exactly the same as Problem 3.17.

Solving,

 $i_3 = 0.778A$ 

The voltage across the current source is exactly the same as the voltage across the series

combination of the  $3\Omega$  and  $2\Omega$  resistor

or  $v = i_3(3+2) = 3.89V$ 

# Problem 3.19



## Solution:

Circuit shown in Figure P3.19.

### Find:

Mesh equation in matrix form.

### Analysis:

a) 
$$\begin{bmatrix} R_{12} + R_{13} & -R_{12} & -R_{13} \\ -R_{12} & R_{12} + R_2 + R_{23} & -R_{23} \\ -R_{13} & -R_{23} & R_3 + R_{13} + R_{23} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} V_s \\ 0 \\ 0 \end{bmatrix}$$
  
b) same result as a).



3.14

# Problem 3.20

For the circuit of Figure P3.20, use mesh analysis to find 4 equations in the 4 mesh currents. Collect coefficients and solve for the mesh currents.

### Solution:



Circuit shown in Figure P3.20

### Find:

Foura mesh equations and solve for currents.

### Analysis:

| The mesh equations are:                              |       |
|------------------------------------------------------|-------|
| <i>i</i> <sub>1</sub> = 2                            | Eqn.1 |
| $6(i_2 - i_1) + 4(i_2 - i_4) + 4(i_2 - i_3) + 3 = 0$ | Eqn.2 |
| $-3 + 4(i_3 - i_2) + 4i_3 + 8i_3 = 0$                | Eqn.3 |
| $-5 + 2i_4 + 4(i_4 - i_2) = 0$                       | Eqn.4 |
| Solving the equations:                               |       |
| $i_1 = 2A$                                           |       |
| $i_2 = 1.2661 \mathrm{A}$                            |       |
| $i_3 = 0.5040 \text{ A}$                             |       |
| $i_4 = 1.6774$ A                                     |       |
|                                                      |       |

## Problem 3.21

In the circuit in Figure P3.21, assume the source voltage and source current and all resistances are known.

a. Write the node equations required to determine the node voltages.

b. Write the matrix solution for each node voltage in terms of the known parameters.

## Solution:

### Known quantities:

Circuit of Figure P3.21 with voltage source,  $V_s$ , current source,  $I_s$ , and all resistances.

#### Find:

- a. The node equations required to determine the node voltages.
- b. The matrix solution for each node voltage in terms of the known parameters.

### Analysis:

a) Specify the nodes (e.g., A on the upper left corner of the circuit in Figure P3.10, and B on the right corner). Choose one node as the reference or ground node. If possible, ground one of the sources in the circuit. Note that this is possible here. When using KCL, assume all unknown current flow out of the node. The direction of the current supplied by the current source is specified and must flow into node A.

3.15





$$-I_{s} + \frac{V_{a} - V_{s}}{R_{2}} + \frac{V_{a} - V_{b}}{R_{1}} = 0 \qquad \qquad \frac{V_{b} - V_{a}}{R_{1}} + \frac{V_{b} - V_{s}}{R_{3}} + \frac{V_{b} - 0}{R_{4}} = 0$$
  
KCL:  
$$V_{a} \left(\frac{1}{R_{2}} + \frac{1}{R_{1}}\right) + V_{b} \left(-\frac{1}{R_{1}}\right) = I_{s} + \frac{V_{s}}{R_{2}} \qquad \qquad V_{a} \left(-\frac{1}{R_{1}}\right) + V_{b} \left(\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}\right) = \frac{V_{s}}{R_{3}}$$

b) Matrix solution:

$$V_{a} = \frac{\begin{vmatrix} I_{S} + \frac{V_{S}}{R_{2}} & -\frac{1}{R_{1}} \\ \frac{V_{S}}{R_{3}} & \frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} \\ \frac{1}{R_{1}} + \frac{1}{R_{2}} & -\frac{1}{R_{1}} \\ -\frac{1}{R_{1}} & \frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} \end{vmatrix}}{\begin{vmatrix} \frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} \\ -\frac{1}{R_{1}} & \frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} \end{vmatrix}} = \frac{\begin{pmatrix} I_{S} + \frac{V_{S}}{R_{2}} \end{pmatrix} \left(\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} \right) - \left(-\frac{1}{R_{1}} \right) \left(-\frac{1}{R_{1}} \right) - \left(-\frac{1}{R_{1}} \right) \left(-\frac{1}{R_{1}} \right) - \left(-\frac{1}{R_{1}} \right) \left(-\frac{1}{R_{1}} \right) \right)}{\begin{pmatrix} \frac{1}{R_{1}} + \frac{1}{R_{2}} & I_{S} + \frac{V_{S}}{R_{2}} \\ -\frac{1}{R_{1}} & \frac{V_{S}}{R_{3}} \end{vmatrix}} = \frac{\begin{pmatrix} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right) \left(\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} \right) - \left(-\frac{1}{R_{1}} \right) \left(-\frac{1}{R$$

Notes:

- 1. The denominators are the same for both solutions.
- 2. The main diagonal of a matrix is the one that goes to the right and down.
- 3. The denominator matrix is the "conductance" matrix and has certain properties:
- a) The elements on the main diagonal [i(row) = j(column)] include all the conductance connected to node i=j.
- b) The off-diagonal elements are all negative.

c) The off-diagonal elements are all symmetric, i.e., the i j-th element = j i-th element. This is true only because there are no controlled (dependent) sources in this circuit.

d) The off-diagonal elements include all the conductance connected between node i [row] and node j [column].

# Problem 3.22

For the circuit of Figure P3.22 determine: a. The most efficient way to solve for the voltage across  $R_3$ . Prove your case. b. The voltage across  $R_3$ .  $V_{S1} = V_{S2} = 110 \text{ V}$  $R_1 = 500 \text{mohm } R_2 = 167 \text{mohm}$  $R_3 = 700 \text{mohm}$  $R_4 = 200 \text{mohm } R_5 = 333 \text{mohm}$ 

## Solution:

## Known quantities:

Circuit shown in Figure P3.22



3.16 **PROPRIETARY MATERIAL**. © The McGraw-Hill Companies, Ir educators for course preparation. If you are a student using this Manual  $V_{S1} = V_{S2} = 110 \text{ V}$   $R_1 = 500 \text{ m}\Omega \quad R_2 = 167 \text{ m}\Omega$   $R_3 = 700 \text{ m}\Omega$  $R_4 = 200 \text{ m}\Omega \quad R_5 = 333 \text{ m}\Omega$ 

#### Find:

a. The most efficient way to solve for the voltage across  $R_3$ . Prove your case.

b. The voltage across  $R_3$ .

### Analysis:

a) There are 3 meshes and 3 mesh currents requiring the solution of 3 simultaneous equations. Only one of these mesh currents is required to determine, using Ohm's Law, the voltage across  $R_3$ .

If the terminal (or node) between the two voltage sources is made the ground (or reference) node, then three node voltages are known (the ground or reference voltage and the two source voltages). This leaves only two unknown node voltages (the voltages across  $R_1$ ,  $V_{R1}$ , and across  $R_2$ ,  $V_{R2}$ ). Both these voltages are required to determine, using KVL, the voltage across  $R_3$ ,  $V_{R3}$ .

A difficult choice. Choose node analysis due to the smaller number of unknowns. Specify the nodes. Choose one node as the ground node. In KCL, assume unknown currents flow out. b)

$$\begin{aligned} & \text{KCL:} \quad \frac{V_{R1} - V_{S1}}{R_4} + \frac{V_{R1} - 0}{R_1} + \frac{V_{R1} - V_{R2}}{R_3} = 0 \qquad \text{KCL:} \quad \frac{V_{R2} - (-V_{S2})}{R_5} + \frac{V_{R2} - 0}{R_2} + \frac{V_{R2} - V_{R1}}{R_3} = 0 \\ & V_{R1} \left(\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4}\right) + V_{R2} \left(-\frac{1}{R_3}\right) = \frac{V_{S1}}{R_4} \qquad V_{R1} \left(-\frac{1}{R_3}\right) + V_{R2} \left(\frac{1}{R_5} + \frac{1}{R_2} + \frac{1}{R_3}\right) = -\frac{V_{S2}}{R_5} \\ & \frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{500 \cdot 10^{-3}} + \frac{1}{700 \cdot 10^{-3}} + \frac{1}{200 \cdot 10^{-3}} = 8.43 \ \Omega^{-1} \\ & \frac{1}{R_5} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{333 \cdot 10^{-3}} + \frac{1}{167 \cdot 10^{-3}} + \frac{1}{700 \cdot 10^{-3}} = 10.42 \ \Omega^{-1} \\ & \frac{1}{R_3} = \frac{1}{700 \cdot 10^{-3}} = 550 \ \text{A} \qquad \frac{V_{S2}}{R_5} = \frac{110}{333 \cdot 10^{-3}} = 330 \ \text{A} \\ & V_{R1} = \frac{\left| \frac{550}{-300} - 1.43 \right|}{\left| \frac{-1.43}{-300} - 1.43 \right|} = \frac{(5731) - (472)}{(87.84) - (2.04)} = 61.29 V \\ & V_{R1} = \frac{\left| \frac{8.43}{-1.43} - \frac{550}{-1.43} \right|}{85.80} = \frac{(-2782) - (-786)}{85.80} = -23.26 V \\ & \text{KVL:} \qquad -V_{R1} + V_{R3} + V_{R2} = 0 \\ & W_{R3} = V_{R1} - V_{R2} = 84.55 V \end{aligned}$$

## Problem 3.23

Figure P3.23 represents a temperature measurement system, where temperature T is linearly related to the voltage source  $V_{s2}$  by a transduction constant k. Use nodal analysis to determine the

3.17

temperature.

 $V_{S2}$  = kT k = 10 V/-C  $V_{S1}$  = 24V  $R_S$  =  $R_I$  = 12 kohm  $R_2$  = 3 kohm  $R_3$  = 10 kohm  $R_4$  = 24 kohm  $V_{ab}$  = -2.524 V In practice,  $V_{ab}$  is used as the measure of temperature, which is introduced to the circuit through a temperature sensor modeled by the voltage source  $V_{S2}$ in series with  $R_S$ .

## Solution:

#### **Known quantities:**

Circuit shown in Figure P3.23  $V_{s2} = kTk = 10V/°C$   $V_{s1} = 24VR_s = R_1 = 12k\Omega$   $R_2 = 3k\Omega R_3 = 10k\Omega$  $R_4 = 24k\Omega V_{ab} = -2.524V$ 



Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

The voltage across  $R_3$ , which is given, indicates the temperature.

### Find:

The temperature, T.

#### Analysis:

Specify nodes (a between  $R_1$  and  $R_3$ , b between  $R_3$  and  $R_2$ ) and polarities of voltages ( $V_a$  from ground to a,  $V_b$  from ground to b, and  $V_{ab}$  from b to a). When using KCL, assume unknown currents flow out.

KVL:  $\begin{aligned} -V_a + V_{ab} + V_b &= 0\\ V_b &= V_a - V_{ab} \end{aligned}$ 

Now write KCL at node b, substitute for  $V_b$ , solve for  $V_a$ :

$$KCL: \quad \frac{V_b - V_{s1}}{R_2} + \frac{V_b - V_a}{R_3} + \frac{V_b}{R_4} = 0$$
  
$$-\frac{V_a}{R_3} - \frac{V_{s1}}{R_2} + \left(V_a - V_{ab}\right) \left(\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right) = 0$$
  
$$V_a = \frac{\frac{V_{s1}}{R_2} + V_{ab} \left(\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right)}{\frac{1}{R_2} + \frac{1}{R_4}} = \frac{\frac{24}{3 \cdot 10^3} + \left(-2.524\right) \left(\frac{1}{3 \cdot 10^3} + \frac{1}{10 \cdot 10^3} + \frac{1}{24 \cdot 10^3}\right)}{\frac{1}{3 \cdot 10^3} + \frac{1}{24 \cdot 10^3}} = 18.14 \text{ V}$$

Now write KCL at node a and solve for  $V_{S2}$  then T:

KCL: 
$$\frac{V_a - V_{S1}}{R_1} + \frac{V_a - V_{S2}}{R_S} + \frac{V_{ab}}{R_3} = 0$$

$$V_{S2} = V_a + \frac{R_s}{R_1} (V_a - V_{S1}) + \frac{R_s}{R_3} V_{ab} =$$
  
= 18.14 +  $\frac{12 \cdot 10^3}{12 \cdot 10^3} (18.14 - 24) + \frac{12 \cdot 10^3}{10 \cdot 10^3} (-2.524) = 9.25 \text{V}$   
T =  $\frac{V_{S2}}{k} = \frac{9.25}{10} = 0.925^{\circ}\text{C}$ 

## Problem 3.24

Use nodal analysis on the circuit in Figure P3.24 to determine the voltage across  $R_4$ . Note that one source is a dependent (controlled) voltage source! Let  $V_S = 5V$ ;  $A_V = 70$ ;  $R_1 = 2.2$  kohm;  $R_2 = 1.8$  kohm;  $R_3 = 6.8$  kohm;  $R_4 = 220$ ohm.

## Solution:

#### Known quantities:

Circuit shown in Figure P3.24  $V_S = 5 \text{ V}$   $A_V = 70 \quad R_1 = 2.2 \text{ k}\Omega$ 

 $R_2 = 1.8 \text{ k}\Omega \qquad R_3 = 6.8 \text{ k}\Omega \qquad R_4 = 220 \Omega$ 

### Find:

The voltage across  $R_4$  using node voltage analysis.

#### Analysis:



Node analysis is not a method of choice because the dependent source is [1] a voltage source and [2] a floating source. Both factors cause difficulties in a node analysis. A ground is specified. There are three unknown node voltages (labeled A, B, & C in the figure above), one of which is the voltage across  $R_4$ . The dependent source will introduce two additional unknowns, the current through the dependent source,  $I_{DS}$  and the controlling voltage (across  $R_1$ ) that is not a node voltage. Therefore 5 equations are required:

$$[1] \text{KCL:} \frac{V_A - V_S}{R_1} + \frac{V_A - V_C}{R_3} + \frac{V_A - V_B}{R_2} = 0$$

$$[2] \text{KCL:} \frac{V_B - V_A}{R_2} - I_{DS} = 0$$

$$[3] \text{KCL:} \frac{V_C - V_A}{R_3} + I_{DS} + \frac{V_C}{R_4} = 0$$

$$[4] \text{KVL:} -V_S + V_1 + V_A = 0$$

$$[5] \text{KVL:} -V_C - A_V V_1 + V_B = 0$$

Solving these five equations simultaneously we find::  $V_C = V_4 = 8.8 \text{mV}$ We also find:  $V_A = 4.91 \text{V}$   $V_B = 6.14 \text{V}$   $V_1 = 87.6 \text{mV}$ , and  $I_{DS} = 681 \mu \text{A}$ Notes:

1. This solution was not difficult in terms of theory. It would be terribly long and arithmetically cumbersome to solve by hand. However, with modern calculators and the use of computer tools such as MatLab, the solution is straight forward.

3.20

## Problem 3.25

Use mesh analysis to find the mesh currents in Figure P3.25. Let  $R_1 = 10$  ohm,  $R_2 = 5$  ohm,  $V_1 = 2$  V,  $V_2 = 1$ V,  $I_S = 2$ A.

## Solution:

### Known quantities:

The values of the resistors and of the voltage and current sources (see Figure P3.25).



Figure P3.25

### Find:

Find the mesh currents in the circuit of Figure P3.25 using mesh current analysis.

### Analysis:

Let  $I_1$  be the left hand mesh and  $I_2$  be the right hand mesh. Both mesh currents are clockwise in direction. Using the mesh current analysis:

$$\begin{cases} V_1 - R_1 I_1 - V_2 - R_2 (I_1 - I_2) = 0 \\ I_2 = -I_s \end{cases} \Longrightarrow \begin{cases} I_1 = -0.6A \\ I_2 = 2A \end{cases}$$

## Problem 3.26

Use mesh analysis to find the mesh currents in Figure P3.26. Let  $R_1$  = 60hm,  $R_2$  = 30hm,  $R_3$  = 30hm  $V_1$  = 4V,  $V_2$  = 1V,  $V_3$  = 2V.

## Solution:

### **Known quantities:**

The values of the resistors, of the voltage source in the circuit of Figure P3.26.



#### Figure P3.26

#### Find:

Find the mesh currents in the circuit of Figure P3.26 using mesh current analysis.

Analysis: 
$$\begin{cases} V_1 - R_1 i_1 - R_3 (i_1 - i_2) - V_2 = 0 \\ V_2 - R_3 (i_2 - i_1) - R_2 I_2 + V_3 = 0 \end{cases} \Rightarrow \begin{cases} I_1 = 467 \text{mA} \\ I_2 = 733 \text{mA} \end{cases}$$

3.21 **PROPRIETARY MATERIAL**. © The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission. 1

## Problem 3.27

Use mesh analysis to find the current *i* in Figure P3.27. Let  $V_S = 5.6 \text{ V}$ ;  $R_I = 50 \text{ ohm}$ ;  $R_2 = 1.2 \text{ kohm}$ ;  $R_3 = 330 \text{ ohm}$ ;  $g_m = 0.2 \text{ S}$ ;  $R_4 = 440 \text{ ohm}$ .

## Solution:

### Known quantities:

The values of the resistors and of the voltage source in the circuit of Figure P3.27.

### Find:

The current *i* through the resistance  $R_4$  mesh current analysis.

### Analysis:

For mesh (a):

 $50i_a + 1200(i_a - i_b) = 5.6$ 

Combining meshes (b) and (c) around the current source:

 $1200(i_{b}-i_{a})+330i_{b}+440i_{c}=0$ 

For the current source:

 $i_c - i_b = 0.2v_x$  and  $v_x = 1200(i_a - i_b)$ 

Solving,

 $i_a = 136 \text{ mA}$ ,  $i_b = 137 \text{ mA}$ ,  $i_c = -106 \text{ mA}$ , and  $v_x = -1.2 \text{V}$ .

Therefore,  $i = i_c = -106 \text{ mA}$ .

## Problem 3.28

Use mesh analysis to find the  $V_4$  in Figure P3.28. Let  $R_2 = 6$  ohm,  $R_3 = 3$  ohm,  $R_4 = 3$  ohm,  $R_5 = 3$  ohm,  $V_S = 4$ V,  $I_S = 2$  A.

## Solution:

### **Known quantities:**

The values of the resistors, of the voltage source and of the current source in the circuit of Figure P3.28.



#### Figure P3.28

### Find:

The voltage  $V_4$  using mesh current analysis.

### Analysis:

Let  $I_1$  be the left hand mesh,  $I_2$  be the middle mesh, and  $I_3$  be the right hand mesh. All mesh currents are clockwise in direction.

3.22



Using the mesh current analysis:

$$\begin{cases} v_{s} - R_{2}(I_{1} - I_{2}) = 0\\ R_{2}(I_{2} - I_{1}) + R_{3}I_{2} + R_{4}(I_{2} - I_{3}) + R_{5}I_{2} = 0\\ I_{3} = -i_{s} \end{cases}$$

$$\begin{cases} 4 - 6(I_{1} - I_{2}) = 0\\ 6(I_{2} - I_{1}) + 3I_{2} + 3(I_{2} - I_{3}) + 3I_{2} = 0 \Rightarrow \begin{cases} I_{1} = 444\text{mA}\\ I_{2} = -222\text{mA}\\ I_{3} = -2 \end{cases}$$

$$V_{4} = 3(I_{2} - I_{3}) = 5.334\text{V} \end{cases}$$

## Problem 3.29

Use mesh analysis in the circuit of Figure P3.29 to find the mesh currents. Let  $R1 = 8\Omega$ ,  $R2 = 3\Omega$ ,  $R3 = 5\Omega$ ,  $R4=2 \Omega$ ,  $R5=4 \Omega$ ,  $R6=3 \Omega$ V1 = 4V, V2 = 2V, V3=1V, V4=2V, V5=3V, V6=6V.



Figure P3.29



### **Known quantities:**

Circuit shown in Figure P3.29 with known source voltages and resistances.



Figure P3.29

### Find:

The mesh currents.

### Analysis:

Using the mesh current analysis:

$$-V_1 - i_1 * R_1 - (i_1 - i_2) * R_5 - V_5 - (i_1 - i_3) * R_6 + V_6 = 0 \text{ Mesh 1}$$
  
$$-(i_2 - i_3) * R_4 + V_4 + V_5 - (i_2 - i_1) * R_5 + V_2 - i_2 * R_2 = 0 \text{ Mesh 2}$$
  
$$V_3 - V_6 - (i_3 - i_1) * R_6 - V_4 - (i_3 - i_2) * R_4 - i_3 * R_3 = 0 \text{ Mesh 3}$$

Collect coefficients:

 $\begin{array}{l} -15*i_1+4*i_2+3*i_3=5 \text{ Mesh 1} \\ 4*i_1-9*i_2+2*i_3=-7 \text{ Mesh 2} \\ 3*i_1+2*i_2-10*i_3=\mp 3 \text{ Mesh 3} \end{array}$ 

Solve set of equations:

3.23

 $i_1 = -213$ mA  $i_2 = 630$ mA  $i_3 = -238$ mA

## Problem 3.30

Use mesh analysis to find the current *i* in Figure P3.30.

## Solution:

### **Known quantities:**

The values of the resistors in the circuit of Figure P3.30.

### Find:

The current in the circuit of Figure P3.30 using mesh current analysis.

### Analysis:

For mesh #1, it is obvious that:  $i_1 = i_s = 2$ 

### For mesh #2:

 $1(i_{2} - i_{1}) + \frac{1}{2}i_{2} + \frac{1}{5}(i_{2} - i_{3}) = 0$ For mesh #3:  $\frac{1}{4}(i_{3} - i_{1}) + \frac{1}{5}(i_{3} - i_{2}) + \frac{1}{3}i_{3} = 0$ Solving,  $i_{2} = 1.304A$  $i_{3} = 1.087A$ 

Then,  $i = i_3 - i_2$  or  $i = -217 \,\mathrm{mA}$ 



## Problem 3.31

Use mesh analysis to find the voltage gain  $G_v = v_2/v_s$  in Figure P3.31.

## Solution:

### **Known quantities:**

The values of the resistors of the circuit in Figure P3.31.

### Find:

The voltage gain, in the circuit of Figure P3.31 using mesh current analysis.



#### 3.24

### Analysis:

Let  $I_1$  be the left hand mesh,  $I_2$  be the middle mesh, and  $I_3$  be the right hand mesh. All mesh currents are clockwise in direction.

Note that

For mesh #1:

$$v_{s} - 1I_{1} - 2(I_{1} - I_{2}) = 0$$

 $-2(I_2 - I_1) - 4I_2 - 4(I_2 - I_3) + 2v_1 = 0$ 

 $v_1 = 2(I_1 - I_2)$ 

 $I_1 = 0.455v_s$  $I_2 = 0.182v_s$  $I_3 = -0.045v_s$ 

For mesh #2:

For mesh #3:

$$-2v_1 - 4(I_3 - I_2) - 4I_3 = 0$$

and finally,

Solving,

but

or

$$G_V = \frac{v_2}{v_S} = -0.18$$

 $v_2 = 4I_3 = 4(-0.045v_s)$ 

# Problem 3.32

Use nodal analysis to find node voltages V1, V2 and V3 in Figure P3.32. Let R1 = 10 ohm, R2 = 6 ohm,

R3 = 70hm, R4 = 40hm, I1 = 2 V, I2 = 1V.

### Solution:V

### Known quantities:

Circuit in Figure P3.32 and the values of the current sources and the values of the four resistors:

#### Find:

The voltages from  $V_1, V_2, V_3$  to ground using nodal analysis.





## Analysis:

Using the nodal analysis and assuming all unknown currents are exiting the node as positive currents:

$$\begin{cases} -I_1 + \frac{V_1}{R_3} + \frac{V_1 - V_2}{R_1} = 0\\ \frac{V_2 - V_1}{R_1} + \frac{V_2 - V_3}{R_2} - I_2 = 0\\ \frac{V_3 - V_2}{R_2} + \frac{V_3}{R_4} + I_1 = 0\\ \frac{V_3 - V_2}{R_2} + \frac{V_3}{R_4} + I_1 = 0\\ \end{cases}$$
  
Solving:  
 $V_1 = 10.89 V$   
 $V_2 = 6.44 V$ 

$$V_3 = -2.22$$
V

## Problem 3.33

Use mesh analysis to find the currents through every branch in Figure P3.33. Let  $R_1 = 10$  ohm,  $R_2 = 5$  ohm,  $R_3 = 4$  ohm,  $R_4 = 1$  ohm,  $V_1 = 5$ V,  $V_2 = 2$ V.

0

#### Solution:

#### Known quantities:

Circuit in Figure P3.33 with the values of the voltage sources and the values of the four resistors.

## Find:

The currents through every branch in the circuit.

### Analysis:

Assign the mesh currents  $I_1$  to the upper left mesh,  $I_2$  to the upper right mesh, and  $I_3$  to the lower mesh. All mesh currents are assumed to be clockwise.

Using mesh current analysis:

$$\begin{cases} V_1 - R_1 I_1 - R_3 (I_1 - I_2) = 0 \\ -V_2 - R_3 (I_2 - I_1) - R_2 I_2 = 0 \Longrightarrow \begin{cases} I_1 = 0.336A \\ I_2 = -0.073A \\ I_3 = -3A \end{cases}$$
$$\begin{cases} i_{R1} = I_1 = 0.336A \\ i_{R2} = -I_2 = 0.073A \\ i_{R3} = I_1 - I_2 = 0.409A \end{cases}$$
$$i_{R4} = -I_3 = 3A \\ i_{V1} = I_1 - I_3 = 3.336A \\ i_{V2} = I_3 - I_2 = -2.927A \end{cases}$$



3.26

## Problem 3.34

Use nodal analysis to find the current through  $R_4$  in Figure P3.34. Let  $R_1 = 10$  ohm,  $R_2 = 6$  ohm,  $R_3 = 4$  ohm,  $R_4 = 3$  ohm,  $R_5 = 2$  ohm,  $R_6 = 2$  ohm,  $I_1 = 2$  A,  $I_2 = 3$ A,  $I_3 = 5$ A.

## Solution: Known quantities:

а

с

b

Circuit in Figure P3.34 with the values of the current sources and the values of the 6 resistors.

### Find:

Find the current through R4.

### Analysis:

a, b, c are the nodes in figure, as shown.

Using the voltage node method:

$$\begin{cases} \frac{V_a}{R_1} + \frac{V_a}{R_2} + \frac{V_a - V_b}{R_3} + \frac{V_a - V_c}{R_4} = I_1 + I_2 \\ \frac{V_b - V_a}{R_3} + \frac{V_b}{R_5} = I_3 \\ \frac{V_c - V_a}{R_4} + \frac{V_c}{R_6} + I_3 = 0 \end{cases}$$



$$\begin{cases} V_b = 9.12 \text{ V} \\ V_c = -3.05 \text{ V} \end{cases}$$

Then

$$i_{R4} = \frac{V_a - V_c}{R_4} = 3.47 \text{A}$$





## Problem 3.35

The circuit shown in Figure P3.35 is a simplified DC version of an AC three-phase wye-wye (Y-Y) electrical distribution system commonly used to supply industrial loads, particularly rotating machines.

 $V_{S1} = V_{S2} = V_{S3} = 170 \text{ V}$ 

 $R_{w1} = R_{w2} = R_{w3} = 0.7$ ohm

 $R_1 = 1.9$  ohm  $R_2 = 2.3$  ohm

 $R_3 = 110$ hm

a. Determine the number of non-reference nodes.

b. Determine the number of unknown node voltages.

c. Compute  $v_1$ ,  $v_2$ ,  $v_3$ , and v'n.

Notice that once  $v_n$  is known the other unknown node voltages can be computed directly by voltage division.

## Solution:

### Known quantities:

The values of the voltage sources,  $V_{S1} = V_{S2} = V_{S3} = 170$  V, and the values of the 6 resistors in the circuit of Figure P3.35:

$$R_{W1}=R_{W2}=R_{W3}=0.7~\Omega$$

$$R_1 = 1.9 \Omega$$
  $R_2 = 2.3 \Omega$   $R_3 = 11 \Omega$ 

#### Find:

a. The number of non-reference nodes.

- b. Number of unknown node voltages.
- c. Compute  $v'_1$ ,  $v'_2$ ,  $v'_3$ , and  $v_n'$ .

### Analysis:

a) The reference node is the node common to the three sources. There are seven (7) non-reference nodes:  $v_1$ ,  $v_1$ ',  $v_2$ ,  $v_2$ ',  $v_3$ ,  $v_3$ ', and  $v_n$ '.

b) The only unknown node voltages are  $v_1$ ',  $v_2$ ',  $v_3$ ', &  $v_n$ '.  $v_1=V_{S1}=170$ V,  $v_2=-V_{S2}=-170$ V,  $v_3=-V_{S3}=-170$ V. A node analysis is the method of choice! Specify polarity of voltages and direction of currents.

$$\frac{v_1' - 170}{0.7} + \frac{v_1' - v_n}{1.9} = 0 \qquad v_1' = \frac{170(1.9) + v_n(0.7)}{1.9 + 0.7}$$

$$\frac{v_2' + 170}{0.7} + \frac{v_2' - v_n}{2.3} = 0 \text{ Notice that this reduces to } v_2' = \frac{-170(2.3) + v_n(0.7)}{2.3 + 0.7}$$

$$\frac{v_3' + 170}{0.7} + \frac{v_3' - v_n}{11} = 0 \qquad v_3' = \frac{-170(11) + v_n(0.7)}{11 + 0.7}$$

The fourth nodal equation is:

$$\frac{v_n - v_1}{1.9} + \frac{v_n - v_2}{2.3} + \frac{v_n - v_3}{11} = 0$$
  
Solving yields:  
 $v_1 = 122.28V$   
 $v_2 = -132.02V$   
 $v_3 = -160.26V$  and  
 $v_n = -7.234V$ 

3.28



Notice that  

$$v'_{1} = \frac{170(1.9) + v'_{n}(0.7)}{1.9 + 0.7} = 122.28V$$
  
 $v'_{2} = \frac{-170(2.3) + v'_{n}(0.7)}{2.3 + 0.7} = -132.02V$   
 $v'_{3} = \frac{-170(11) + v'_{n}(0.7)}{11 + 0.7} = -160.26V$ 

**Problem 3.36** The circuit shown in Figure P3.35 is a simplified DC version of an AC three-phase wye-wye (Y-Y) electrical distribution system commonly used to supply industrial loads, particularly rotating machines.  $V_{S1} = V_{S2} = V_{S3} = 170 \text{ V}$  $R_{w1} = R_{w2} = R_{w3} = 0.7 \text{ ohm}$  $R_1 = 1.9 \text{ ohm } R_2 = 2.3 \text{ ohm}$  $R_3 = 11 \text{ ohm}$ a. Determine the number of meshes. b. Compute the mesh currents. c. Use the mesh currents to determine  $v_n$ .

### Solution:

#### Known quantities:

The values of the voltage sources,  $V_{S1} = V_{S2} = V_{S3} = 170$  V and the values of the 6 resistors in the circuit of Figure P3.35:

 $R_{W1} = R_{W2} = R_{W3} = 0.7 \ \Omega$  $R_1 = 1.9 \ \Omega$  $R_2 = 2.3 \ \Omega$  $R_3 = 11 \ \Omega$ 

### Find:

The number of meshes, the mesh currents, and V'n.

#### Analysis:

There are two meshes. Call the upper mesh  $I_1$  and the lower mesh  $I_2$ . Both meshes are clockwise.

KVL:

$$V_{S1} - R_{w1}I_1 - R_1I_1 - R_2(I_1 - I_2) - R_{w2}(I_1 - I_2) + V_{S2} = 0$$
  
$$V_{S3} - V_{S2} - R_{w2}(I_2 - I_1) - R_2(I_2 - I_1) - R_3I_2 - R_{w3}I_2 = 0$$

Solving:

$$V_{S1} - R_{w1}I_1 - R_1I_1 - R_2(I_1 - I_2) - R_{w2}(I_1 - I_2) + V_{S2} = 0$$
  
$$V_{S3} - V_{S2} - R_{w2}(I_2 - I_1) - R_2(I_2 - I_1) - R_3I_2 - R_{w3}I_2 = 0$$



**PROPRIETARY MATERIAL.** © The McGraw-Hill Companies, Inc. Limited distribution permitted only to teachers and educators for course preparation. If you are a student using this Manual, you are using it without permission.



 $R_{w_3}$ 

v

Solve system of two equations:

But, looking at the lower branch

or

$$\frac{v_n' + 170}{11 + 0.7} = I_2$$

 $I_1 = 68.17A$   $I_2 = 13.91A$ 

$$v'_n = -170 + 11.7(13.91) = -7.25$$
V

## Problem 3.37

The circuit shown in Figure P3.35 is a simplified DC version of a typical three-wire, three-phase AC wye-wye (Y-Y) distribution system. Use the Principle of Superposition to determinev<sub>n</sub>. Assume:  $V_{S1} = V_{S2} = V_{S3} = 170 \text{ V}$  $R_{w1} = R_{w2} = R_{w3} = 0.70 \text{ hm}$  $R_1 = 1.90 \text{ hm} R_2 = 2.30 \text{ hm}$  $R_3 = 110 \text{ hm}$ 

## Solution:

### **Known quantities:**

The values of the voltage sources,  $V_{S1} = V_{S2} = V_{S3} = 170$  V, and the values of the 6 resistors in the circuit of Figure P3.35:

 $R_{W1} = R_{W2} = R_{W3} = 0.7 \ \Omega$  $R_1 = 1.9 \ \Omega$   $R_2 = 2.3 \ \Omega$   $R_3 = 11 \ \Omega$ 

### Find:

The voltage at  $v_n$ '.

### Analysis:

If we know the current through *R1* then we can calculate the voltage drop from  $v_1$  to  $v_n$ ':

Use superposition on VS1(VS2 and VS3 become a short circuit):

Find *Req*:  $R_{eq} = (R_1 + R_{w1}) + ((R_2 + R_{w2})) | (R_3 + R_{w3}) = 4.99 \,\Omega$ Current through *R1* because of *VS1* = total current:  $i_{1(VS1)} = \frac{170V}{4.000} = 34.07 \,\text{A}$ 

Use superposition on VS2(VS1 and VS3 become a short circuit):

Find  $Req: R_{eq} = (R_2 + R_{w2}) + ((R_1 + R_{w1})||(R_3 + R_{w3})) = 5.13 \Omega$ Total current:  $i_T = \frac{170V}{5.13 \Omega} = 33.14$ A Current through *R1* because of *VS2*: use current division:  $i_{1(VS2)} = \frac{R_3 + R_{w3}}{R_1 + R_{w1} + R_3 + R_{w3}} * I_T = 27.12$ A

Use superposition on VS3(VS1 and VS2 become a short circuit):

Find  $Req: R_{eq} = (R_3 + R_{w3}) + ((R_1 + R_{w1})||(R_2 + R_{w2})) = 13.09 \,\Omega$ Total current:  $i_T = \frac{170V}{13.09 \,\Omega} = 12.99 \text{A}$ Current through *R1* because of *VS3*: use current division:  $i_{1(VS3)} = \frac{R_2 + R_{w2}}{R_1 + R_{w1} + R_2 + R_{w2}} * I_T = 6.96 \text{A}$ 

Add up i<sub>1</sub>'s to get total current:



 $i_1 = 68.15A$ 

Find V'n using Ohm's Law:

$$V_{s1} - V'_n = i_1 * (R_1 + R_{1w})$$
  
 $V'_n = \sim -7.19V$ 

## Problem 3.38

The circuit shown in Figure P3.35 is a simplified DC version of a typical three-wire, three-phase AC wye-wye (Y-Y) distribution system. Use the Principle of source transformations to determine  $v_n$ '. Assume:  $V_{S1} = V_{S2} = V_{S3} = 170 \text{ V}$  $R_{w1} = R_{w2} = R_{w3} = 0.70 \text{ hm}$  $R_1 = 1.90 \text{ hm} R_2 = 2.30 \text{ hm}$  $R_3 = 110 \text{ hm}$ 

### Solution:

#### Known quantities:

The values of the voltage sources,  $V_{S1} = V_{S2} = V_{S3} = 170$  V, and the values of the 6 resistors in the circuit of Figure P3.35:

35.39 Adc

 $R_{W1} = R_{W2} = R_{W3} = 0.7 \ \Omega$  $R_1 = 1.9 \ \Omega$   $R_2 = 2.3 \ \Omega$   $R_3 = 11 \ \Omega$ 

#### Find:

v'n using source transformations.

#### Analysis:

Combine resistors in series i.e  $R_{w1}$  and  $R_1.VS1$  is a thevenin source with  $R_{1eq}$ . The same goes for Vs2 and  $R_{2eq}$  and Vs3 and  $R_{3eq}$ . Convert all Thévenin sources to Norton sources and the two nodes of the new circuit are  $v_n$ ' and ground. Combine parallel resistors and current sources to find  $R_{eq}$  and  $I_s$ .

First find currents:

 $i_{S1} = \frac{V_{S1}}{2.6\Omega} = 65.39 \text{A from ground toward } v_n'.$   $i_{S2} = \frac{V_{S2}}{3\Omega} = 56.67 \text{A from } v_n' \text{ toward ground.}$   $i_{S3} = \frac{V_{S3}}{11.7\Omega} = 14.53 \text{A from } v_n' \text{ toward ground.}$ 

Find Total current:  $I_S = i_{S1} - i_{S2} - i_{S3} = -5.81$ A

Find Equivalent Resistance:  $R_{eq} = (R_{1eq} || R_{2eq} || R_{3eq}) = 1.24\Omega$ 

Solve for  $v_n$ ':

$$v'_n = I_s * R_{eq} = -7.20V$$



## Problem 3.39

Use nodal analysis in the circuit of Figure P3.39 to find the three indicated node voltages and the current *i*.

3.31



Assume: *R*<sub>1</sub> = 10ohm, *R*<sub>2</sub> = 20ohm, *R*<sub>3</sub> = 20ohm,*R*<sub>4</sub> = 10ohm, *R*<sub>5</sub> = 10ohm, *R*<sub>6</sub> = 10ohm,*R*<sub>7</sub> = 50hm,*V*<sub>1</sub> = 20 V, *V*<sub>2</sub> = 20 V.

## Solution:

### **Known quantities:**

The circuit of Figure P3.39. The value of  $V_1, V_2, R_1, R_2, R_3, R_4, R_5, R_6, R_7$ .

### Find:

 $V_a, V_b, V_c$  using the node voltage method, and the current *i*.

### Analysis:

First of all, we transform voltage sources in current sources:  $i_1 = \frac{V_1}{R_1} = 2A$ 

$$i_2 = \frac{V_2}{R_2} = 1A$$

Using the node voltage method:

$$\begin{cases} \frac{V_A}{R_1} + \frac{V_A - V_B}{R_4} + \frac{V_A - V_C}{R_3} + \frac{V_A - V_C}{R_2} = I_1 + I_2 \\ \frac{V_B - V_A}{R_4} + \frac{V_B}{R_5} + \frac{V_B - V_C}{R_6} = 0 \\ \frac{V_C}{R_7} + \frac{V_C - V_B}{R_6} + \frac{V_C - V_A}{R_3} + \frac{V_C - V_A}{R_2} + I_2 = 0 \end{cases}$$



 $\Rightarrow$ 

$$\begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} V_A \\ V_B \\ V_C \end{pmatrix} = \begin{pmatrix} 30 \\ 0 \\ -10 \end{pmatrix}$$

Solving the linear system:

$$\begin{cases} V_A = \frac{145}{12} V \\ V_B = \frac{55}{12} V \\ V_C = \frac{5}{3} V \end{cases}$$

Using KVL:  $V_A + iR_2 - V_2 = V_C$  $i = \frac{V_C - V_A + 20}{20} = \frac{23}{48} A$ 

# Section 3.5: Superposition

## Problem 3.40

With reference to Figure P3.40, determine the current *i* through  $R_1$  due only to the source  $V_{S2}$ .  $V_{S1} = 110 \text{ V} V_{S2} = 90 \text{ V} R_1 = 560 \text{ ohm } R_2 = 3.5 \text{ kohm } R_3 = 810 \text{ ohm}$ 

### Solution:

### Known quantities:

The values of the voltage sources,  $V_{S1} = 110$  V,  $V_{S2} = 90$  V and the values of the 3 resistors in the circuit of Figure  $R_3 = 810 \ \Omega$ P3.40:  $R_1 = 560 \ \Omega$  $R_2 = 3.5 \ k\Omega$ 

#### Find:

The current through  $R_1$  due only to the source  $V_{S2}$ .

### Analysis:

Replace  $V_{S1}$  with a short circuit. Use mesh current analysis.

Assign  $I_1$  as the mesh current for the upper mesh and  $I_2$  as the mesh current

lower mesh. Both mesh currents are in a clockwise direction.

$$R_1 I_1 + R_2 (I_1 - I_2) = 0$$
  

$$R_2 (I_2 - I_1) + R_3 I_2 = V_{S2}$$

Solving:

 $I_1 = i = 60.02$ mA  $I_2 = 69.62$ mA



