Chapter

2
 Project Management

DISCUSSION QUESTIONS

1. Software is an essential element for successful management of complex projects. It can provide information on completion performance of critical activities, highlight activities that need additional resources, and suggest the project duration that will minimize costs. However, whether projects are large or small, the people who manage them or perform the activities will ultimately determine the outcome of the project. The project manager must have the ability to coalesce a diverse group of people into an effective team. The organization of the firm must also be conducive to cross-functional inputs.
2. This question is best used when it is given as an assignment prior to class. Responses will vary, but rely on the students with some business experience. The projects do not have to be large ones. Stories in the headlines include natural disasters (earthquakes, fires, tornadoes, and hurricanes), cleanup of oil spills, and delays in the introduction of new products.
3. This question is best used when it is given as an assignment before class so that the students will have a chance to think about it before discussion. Most everyone should be able to describe some project they have been a part of. Common ones include preparing a high-school yearbook, planning a major party, building a new home, and organizing a banquet for a club or student group. Take time to elicit examples of activities and their interrelatedness. Press the students for the reasons behind their rating of the project manager. If the student is the project manager, ask the student what s/he thinks are positive attributes for a project manager in such an example.

PROBLEMS

1.

a. AON network diagram

b. The critical path is $\mathrm{A}-\mathrm{C}-\mathrm{F}-\mathrm{H}-\mathrm{J}$ with a completion time of 27 days.
c.

		Earliest					
Activity	Duration	Start	Latest Start	Earliest Finish	Latest Finish	Slack	On Critical Path?
A	2	0	0	2	2	0	Yes
B	4	2	3	6	7	1	No
C	5	2	2	7	7	0	Yes
D	2	6	15	8	17	9	No
E	1	6	16	7	17	10	No
F	8	7	7	15	15	0	Yes
G	3	8	17	11	20	9	No
H	5	15	15	20	20	0	Yes
I	4	15	16	19	20	1	No
J	7	20	20	27	27	0	Yes

2.

a. AON diagram

b. The critical path is $\mathrm{A}-\mathrm{C}-\mathrm{D}-\mathrm{E}-\mathrm{G}$ with a completion time of 24 days.

Activity	Duration	Earliest Start	Latest Start	Earliest Finish	Latest Finish	Slack	On Critical Path?
A	7	0	0	7	7	0	Yes
B	2	7	9	9	11	2	No
C	4	7	7	11	11	0	Yes
D	4	11	11	15	15	0	Yes
E	4	15	15	19	19	0	Yes
F	3	19	21	22	24	2	No
G	5	19	19	24	24	0	Yes

c. Activities B and F are the only ones to have slack.
3.
a. AON diagram

b. The critical path is $\mathrm{B}-\mathrm{E}-\mathrm{G}-\mathrm{H}$ with a completion time of 37 weeks.

4.
a. AON diagram

b. The critical path is $\mathrm{A}-\mathrm{E}-\mathrm{G}-\mathrm{I}$ with a completion time of 18 days.

Activity	Duration	Earliest Start	Latest Start	Earliest Finish	Latest Finish	Slack	On Critical Path?
A	3	0	0	3	3	0	Yes
B	4	0	3	4	7	3	No
C	5	0	2	5	7	2	No
D	4	0	3	4	7	3	No
E	7	3	3	10	10	0	Yes
F	2	5	7	7	9	2	No
G	4	10	10	14	14	0	Yes
H	6	7	9	13	15	2	No
I	4	14	14	18	18	0	Yes
J	3	14	15	17	18	1	No
K	3	13	15	16	18	2	No

5.

a. The AON network is:

b. Activity slacks for the project:

	Start		Finish			Critical
Activity	Earliest	Latest	Earliest	Latest	Slack	Path?
A	0	0	4	4	0	Yes
B	4	4	11	11	0	Yes
C	11	11	20	20	0	Yes
D	11	13	14	16	2	No
E	14	16	28	30	2	No
F	20	20	30	30	0	Yes
G	30	30	41	41	0	Yes

Critical path is $\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{F}-\mathrm{G}$, and the project completion date is week 41.
6.
a. The AON diagram is:

b. The critical path is: $\mathrm{B}-\mathrm{E}-\mathrm{G}-\mathrm{H}$, which takes 29 weeks.
c. The slack for activity $\mathrm{A}=10-4=6$ weeks.

The slack for activity $D=13-7=6$ weeks.
d. If A takes 5 weeks, then D will have $10-5=5$ weeks' slack.
7. Web Ventures Inc.

Activity	Optimistic	Most Likely	Pessimistic	Activity Statistics	
	(\mathbf{a})	(\mathbf{m})	(\mathbf{b})	$\left(t_{e}\right)$	Expected Time
A	3	8	19	$\mathbf{9}$	$\mathbf{7 . 1 1}$
B	12	15	18	$\mathbf{1 5}$	$\mathbf{1 . 0 0}$
C	2	6	16	7	$\mathbf{5 . 4 4}$
D	4	9	20	$\mathbf{1 0}$	$\mathbf{7 . 1 1}$
E	1	4	7	$\mathbf{4}$	$\mathbf{1 . 0 0}$

a.

$$
\begin{aligned}
& t_{e} A=(3+4(8)+19) / 6=54 / 6=9 \text { days } \\
& t_{e} B=(12+4(15)+18) / 6=90 / 6=15 \text { days } \\
& t_{e} C=(2+4(6)+16) / 6=42 / 6=7 \text { days } \\
& t_{e} D=(4+4(9)+20) / 6=60 / 6=10 \text { days } \\
& t_{e} E=(1+4(4)+7) / 6=24 / 6=4 \text { days }
\end{aligned}
$$

b.

$$
\begin{aligned}
\sigma^{2} A & =((19-3) / 6)^{2}=7.11 \\
\sigma^{2} B & =((18-12) / 6)^{2}=1.00 \\
\sigma^{2} C & =((16-2) / 6)^{2}=5.44 \\
\sigma^{2} D & =((20-4) / 6)^{2}=7.11 \\
\sigma^{2} E & =((7-1) / 6)^{2}=1.00
\end{aligned}
$$

8.

a. The expected activity times (in days) are:

Activity	Optimistic	Most Likely	Pessimistic	t_{e}	σ^{2}
A	5	8	11	8.00	1.00
B	4	8	11	7.83	1.36
C	5	6	7	6.00	0.11
D	2	4	6	4.00	0.44
E	4	7	10	7.00	1.00

Path	Total Expected Time
A-C	$8+6=14.00$
A-D-E	$8+4+7=19.00$
B-E	$7.83+7=14.83$

The critical path is A-D-E because it has the longest time duration. The expected completion time is 19 days.
b. $z=\frac{T-T_{E}}{\sqrt{\sigma^{2}}}$

Where $T=21$ days, $T_{E}=19$ days, and the sum of the variances for critical path $\mathrm{A}-\mathrm{D}-\mathrm{E}$ is $(1.00+0.44+1.00)=2.44$.
$z=\frac{21-19}{\sqrt{2.44}}=\frac{2}{1.562}=1.28$
Assuming the normal distribution applies (which is questionable for a sample of three activities), we use the table for the normal probability distribution. Given
$z=1.28$, the probability that the project can be completed in 21 days is 0.8997 , or about 90%.
c. Because the normal distribution is symmetrical, the probability the project can be completed in 17 days is $(1-0.8997)=0.1003$, or about 10%.
9. $z=\frac{T-T_{E}}{\sqrt{\sigma^{2}}}$

Where $T=20$ weeks, $T_{E}=(5.5+9.0+4.5)=19$ weeks, and the sum of the variances for critical path $\mathrm{B}-\mathrm{F}-\mathrm{G}$ is $(0.69+2.78+0.69)=4.16$.
$z=\frac{20-19}{\sqrt{4.16}}=\frac{1}{2.0396}=0.4903$
Assuming the normal distribution applies, we use the table for the normal probability distribution. Given $z=0.49$, the probability for activities $\mathrm{B}-\mathrm{F}-\mathrm{G}$ taking longer than 20 weeks is ($1-0.6879$), or 31.21%.
10.
a. The AON diagram is:

b. Critical path is B-D-F. Expected duration of the project is 15 weeks.
c. Activity slacks for the project are:

	Start		Finish			Critical
Activity	Earliest	Latest	Earliest	Latest	Slack	Path?
A	0	4	5	9	4	No
B	0	0	3	3	0	Yes
C	5	9	7	11	4	No
D	3	3	8	8	0	Yes
E	8	11	12	15	3	No
F	8	8	15	15	0	Yes

11. Bluebird University. Calculation of activity statistics (in days):

Project time	43.166667		Project standard deviation Project variance			$\begin{aligned} & 2.939 \\ & 8.639 \end{aligned}$		Total Activity
	Expected	Standard		Early	Early	Late	Late	
Activity	Time	deviation	Variance	Start	Finish	Start	Finish	Slack
A	6.83	0.50	0.25	0.00	6.83	0.00	6.83	0.00
B	8.33	1.00	1.00	0.00	8.33	2.33	10.67	2.33
C	4.00	0.33	0.11	0.00	4.00	16.67	20.67	16.67
D	17.33	2.33	5.44	6.83	24.17	6.83	24.17	0.00
E	10.00	0.67	0.44	8.33	18.33	10.67	20.67	2.33
F	4.00	0.33	0.11	18.33	22.33	20.67	24.67	2.33
G	7.50	0.83	0.69	24.17	31.67	24.17	31.67	0.00
H	7.00	0.67	0.44	22.33	29.33	24.67	31.67	2.33
1	11.50	1.50	2.25	31.67	43.17	31.67	43.17	0.00
J	4.00	0.00	0.00	31.67	35.67	39.17	43.17	7.50

The AON diagram is:

The critical path is A-D-G-I, and the expected completion time is 43.17 days. $T=47$ days, $T_{E}=43.17$ days, and the sum of the variances for the critical activities is: $(0.25+5.44+0.69+2.25)=8.63$.
$z=\frac{T-T_{E}}{\sqrt{\sigma^{2}}}=\frac{47-43.17}{\sqrt{8.63}}=\frac{3.83}{2.94}=1.30$
Assuming the normal distribution applies, we use the table for the normal probability distribution. Given $z=1.30$, the probability that activities A-D-G-I can be completed in 47 days or less is 0.9032 .
12. AON Diagram for the environmental project:

Trial	Crash Activity	Resulting Critical Path	Time Reduction (weeks)	Project Duration (weeks)	Crash Cost
0	-	A-C-F-H A-D-G-I	-	18	0
1	A, G	B-E-G-I B-C-F-H	1	17	$\$ 400$
2	C, G	A-E-G-I B-C-F-H	1	16	$\$ 450$
3	B, H	A-D-F-H B-E-G-I A-C-F-H A-D-F-H	1	15	$\$ 600$
		A-D-G-I B-E-G-I			

Total crash costs $=\$ 1450$

To use OM Explorer for this problem, you need to modify the input data a little. The problem already gives the cost to crash per week for each activity. Since OM Explorer assumes it must calculate these values, multiply the number of weeks the activity can be crashed by the cost per week given in the problem
statement, e.g., for activity B, $\$ 250(3)=\$ 750$. The input sheet and the resulting crash schedule should look like the exhibits below.

13.

a. The AON diagram for the product design project is:

The critical path is $\mathrm{B}-\mathrm{D}-\mathrm{E}-\mathrm{G}-\mathrm{H}$, and the project duration is 21 days.
b. Direct cost and time data for the activities:

Activity	Crash Cost/Day	Maximum Crash Time (days)
A	200	1
B	600	2
C	300	1
D	500	1
E	150	2
F	100	1
G	0	0
H	200	2

A summary of the cost analysis follows. The recommended completion date is day 17 by crashing activity E by 2 days and activity H by 2 days.

	Crash	Resulting Critical	Reduc- tion (days)	Project Duration (days)	Costs Last Trial	Crash Cost Added	Total Indirect Costs	Total Penalty Costs	Total Project Costs
0	-	B-D-E-G-H	-	21	$\$ 7,500$	-	$\$ 5,250$	$\$ 700$	$\$ 13,450$
1	E	B-D-E-G-H	2	19	$\$ 7,500$	$\$ 300$	$\$ 4,750$	$\$ 500$	$\$ 13,050$
2	H	B-D-E-G-H	2	17	$\$ 7,800$	$\$ 400$	$\$ 4,250$	$\$ 300$	$\$ 12,750$

Further reductions will cost more than the savings in indirect costs and penalties.
c. The critical path is $\mathrm{B}-\mathrm{D}-\mathrm{E}-\mathrm{G}-\mathrm{H}$ for minimum cost schedule.
14.
a. The critical path at the start is B-D-F at a duration of 18 weeks. We proceed as follows: (1) Crash Activity B to its maximum reduction because it is the cheapest activity on the critical path to crash per week and costs less than $\$ 2,800$, the sum of the indirect and penalty costs. The savings is $\$ 3,600$. The critical path is still B-D-F at a length of 16 weeks. (2) Reduce Activity D by 3 weeks for an additional savings of $\$ 2,400$. The critical path is still B-D-F at a duration of 13 weeks. No further reductions will lower total costs because the cost to crash the other activities (that is, Activity F) exceeds the potential reduction in indirect costs. Therefore, the minimum-cost schedule is 13 weeks.
b. The "normal" direct cost is $\$ 31,000$, the "normal" indirect costs are $\$ 28,800$, the penalty costs are $\$ 7,200$, and the total for the normal schedule is $\$ 67,000$. The cost for the schedule in part a is $\$ 31,000+\$ 8,000$ (crash costs) $+\$ 20,800$ (indirect costs) $+\$ 1200$ (penalty) $=\$ 61,000$. The total savings is $\$ 6,000$.
15.
a. The shortest project duration time would be 7 weeks, using the crash times.
b. Since the "normal" project time is 12 weeks, the total normal "direct" cost is $\$ 56,000$. There would also be indirect costs of $\$ 120,000$ over the 12 -week period. The penalty cost would be $\$ 30,000$ for the three weeks past week 9 . The grand total is $\$ 206,000$.
c. The minimum-cost schedule would take 9 weeks. This can be found in the following way: (1) the starting critical path is A-C-E-F at 12 weeks. Since Activity A is the cheapest to crash per week, crash it one week for an additional cost of $\$ 3000$. The savings is $\$ 10,000$ (indirect costs) $+\$ 10,000$ (penalty costs) $\$ 3,000=\$ 17,000$. The project duration is now 11 weeks. (2) Since Activity A cannot be crashed further, the next cheapest activity to crash that is on the critical path is Activity F. Crash F for its maximum of two weeks at an additional cost of $\$ 10,000$. The savings would be $\$ 20,000$ (indirect costs) + $\$ 20,000$ (penalty costs) - $\$ 10,000=\$ 30,000$.
The critical path is now 9 weeks in duration. Since the penalty costs are zero for further reductions, there are no other options to reduce the project time that are less costly than the indirect costs per week. Therefore, we stop.
16. Gumfull Foods
a. Calculation of the activity statistics:

Activity	Expected Time	Variance
A	4	0.44
B	8	1.00
C	$\mathbf{1 0}$	$\mathbf{2 . 7 7}$
D	2	0.11
E	5	2.77
F	$\mathbf{4}$	$\mathbf{0 . 0 0}$
G	1	0.00
H	$\mathbf{2}$	$\mathbf{0 . 0 0}$

The AON diagram for the hiring project is:

The critical path is $\mathrm{C}-\mathrm{F}-\mathrm{H}$ and the project is expected to take 16 weeks.
b. $\quad z=\frac{T-T_{E}}{\sqrt{\sigma^{2}}}=\frac{14-16}{\sqrt{2.77}}=-\frac{2}{1.66}=-1.20$

Using the normal distribution table, the probability that the project can be completed in only 14 weeks is $(1-0.8849)$ or 0.1151 .
c. No additional expenditures are recommended. Reducing activity A would not help because it is not on the critical path. Reducing activity B would not shorten the project by two weeks because it is also not on the critical path, and even if it were, it would cost more than the lease costs for two weeks.
17. An AON diagram using the Alternative 1 (or "normal") times follows.

The critical path is A-D-G, and the project duration is 29 days. Direct cost and time data:

Activity	Crash Cost/Day	Maximum Crash Time (days)
A	$\$ 600.00$	$\mathbf{1}$
B	112.50	4
C	750.00	2
D	$\mathbf{2 5 0 . 0 0}$	$\mathbf{4}$
E	225.00	2
F	350.00	1
G	$\mathbf{2 0 0 . 0 0}$	$\mathbf{2}$
H	200.00	1
I	900.00	2

Cost analysis for the project:

Trial	Crash Activity	Resulting Critical Path	Time Reduction (weeks)	Project Duration (weeks)	Crash Cost
0	-	A-D-G	-	29	-
1	G	A-D-G	2	27	400
2	D	A-D-G A-E-H	1	26	250
3	D, H	A-D-G A-E-H	1	25	450

The total cost for this project is:
$\$ 13,050+\$ 400+\$ 250+\$ 450=\$ 14,150.00$
The activity times with crashing are:
A: 12
B: 13
C: 18
D: 7
E: 12
F: 8
G: 6
H: 1
I: 4
18. Sculptures International
a. The AON diagram for this project is:

b. The critical path is $\mathrm{A}-\mathrm{C}-\mathrm{E}$, and the project duration is 10 days.

Activity	Activity Slack
A	0
B	$5-1=4$
C	0
D	$7-3=4$
E	0

19. Reliable Garage
a. The AON diagram is:

b. Critical Path is $\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{F}-\mathrm{G}-\mathrm{H}$, and the duration is 25 days.

| c.Activity Activity Slack
 0
 B 0
 C 0
 D $22-17=5$
 E $22-19=3$
 F 0
 G 0
 H 0 20 |
| :---: | :---: |

20.

a. The AON diagram for the hiring project is shown below.

b. The critical path is $\mathrm{B}-\mathrm{C}-\mathrm{G}-\mathrm{H}-\mathrm{J}-\mathrm{K}$, and the expected project duration is 55 days.
21.
a. Calculation of the activity statistics:

Project time	36.333333		Proje	standa Proj	deviation variance	1.56		
	Expected	Standard		Early	Early	Late	Late	Total Activity
Activity	Time	deviation	Variance	Start	Finish	Start	Finish	Slack
A	10.00	0.67	0.44	0.00	10.00	0.00	10.00	0.00
B	9.00	2.00	4.00	0.00	9.00	9.00	18.00	9.00
C	8.00	0.33	0.11	0.00	8.00	2.00	10.00	2.00
D	2.00	0.33	0.11	9.00	11.00	18.00	20.00	9.00
E	10.00	0.67	0.44	10.00	20.00	10.00	20.00	0.00
F	6.00	0.33	0.11	20.00	26.00	20.00	26.00	0.00
G	3.00	0.67	0.44	20.00	23.00	23.00	26.00	3.00
H	5.00	1.00	1.00	26.00	31.00	26.00	31.00	0.00
,	4.00	0.67	0.44	23.00	27.00	32.33	36.33	9.33
J	5.33	0.67	0.44	31.00	36.33	31.00	36.33	0.00
K	2.00	0.00	0.00	31.00	33.00	34.33	36.33	3.33

The AON diagram for the advertising campaign is shown below.

The critical path is A-E-F-H-J, the expected project duration is 36.33 days, and the sum of the variances of the critical path activities is

$$
(0.44+0.44+0.11+1.00+0.44)=2.43
$$

b. $\quad z=\frac{T-T_{E}}{\sqrt{\sigma^{2}}}=\frac{38-36.33}{\sqrt{2.43}}=\frac{1.67}{1.56}=1.07$

The probability that the project will take more than 38 days is

$$
1-0.8577 \text { or } 0.1423
$$

c. The path A-E-G-H-J has a duration of 33.33 weeks with variance of 2.76 .

Therefore, $z=\frac{T-T_{E}}{\sqrt{\sigma^{2}}}=\frac{36.33-33.33}{\sqrt{2.76}}=1.81$
The probability that the path $\mathrm{A}-\mathrm{E}-\mathrm{G}-\mathrm{H}-\mathrm{J}$ exceeds 36.33 weeks is $1-0.9649$, or 0.0351 .
22. The AON diagram for the office renovation project is below.

The calculations of the time statistics are contained in the following table.

Activity	Optimistic	Most Likely	Pessimistic	Expected Time	Variance
START	0	0	0	------	-----
A	6	10	14	10	1.78
B	0	1	2	1	0.11
C	16	20	30	21	5.44
D	3	5	7	5	0.44
E	2	3	4	3	0.11
F	7	10	13	10	1.00
G	1	2	3	2	0.11
H	0	2	4	2	0.44
I	2	2	2	2	0.00
J	2	3	4	3	0.11
K	0	1	2	1	0.11
L	1	2	3	2	0.11
FINISH	0	0	0	--------	

a. The critical path is $\mathrm{A}-\mathrm{C}-\mathrm{F}$ at 41 days.

Standard Deviation $=\operatorname{SQRT}(1.78+5.44+1.00)=2.867$.
$z=(41-39) / 2.867=0.698$, which can be rounded to 0.70 . From the normal tables, $\mathrm{P}(z)=0.758$. Therefore, $\mathrm{P}(\mathrm{T}<39$ days $)=1.000-0.758=24$ percent.
b. We want to find the project completion time so that the probability of completion is 90 percent. The z value for 90 percent is 1.28 . Consequently,
$(T-41) / 2.867=1.28$
$T=1.28$ (2.867) +41
$T=44.7$, or about 45 days.
23. The AON diagram for the community center project is below.

The crashing data are given in the following table.

	Normal		Crash		Maximum Reduction	
Activity	Time (days)	Cost (\$)	Time (days)	Cost (\$)		\$ per Day
START	0	0	0	0	------	-------
A	10	50	8	150	2	50
B	4	40	2	200	2	80
C	7	70	6	160	1	90
D	2	20	1	50	1	30
E	3	30	NONE	NONE	NONE	NONE
F	8	80	5	290	3	70
G	5	50	4	180	1	130
H	6	60	3	180	3	40
FINISH	0	0	0	0	------	------

a. The critical path is $\mathrm{B}-\mathrm{C}-\mathrm{E}-\mathrm{H}$ at 20 days.
b. STAGE 1

Critical path is $\mathrm{B}-\mathrm{C}-\mathrm{E}-\mathrm{H}$ at 20 days. Crash H for 2 days. You are stopped by path $\mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{G}$.
Savings: $2(50+40)-2(40)=\$ 100$.
STAGE 2
There are two critical paths: $\mathrm{B}-\mathrm{C}-\mathrm{E}-\mathrm{H}$ and $\mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{G}$ at 18 days. Crash
H and D each for 1 day. Savings: $1(50+40)-1(40+30)=\$ 20$.
STAGE 3
There are two critical paths: $\mathrm{B}-\mathrm{C}-\mathrm{E}-\mathrm{H}$ and $\mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{G}$ at 17 days. Crash B 1 day. You are constrained by a new path, $\mathrm{A}-\mathrm{E}-\mathrm{H}$ and $\mathrm{A}-\mathrm{D}-\mathrm{G}$. Savings: $1(50+40)-1(80)=\$ 10$.

STAGE 4
There are now four critical paths: $\mathrm{B}-\mathrm{C}-\mathrm{E}-\mathrm{H}, \mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{G}, \mathrm{A}-\mathrm{E}-\mathrm{H}$ and $\mathrm{A}-\mathrm{D}-\mathrm{G}$ each at 16 days. The only option is to crash both A and B ; however the total cost of $\$ 130$ per day exceeds the potential savings. Therefore, stop.

Total Cost $=16(50)+2(40)+400+80+70+80=\$ 1,510$.
24.
a. AON diagram for the fund-raising project

Activity slacks for the project:

		Results			
Solver - Project Budgeting					
Project time		25	Proj	Budget	\$2,125
					Total
	Early	Early	Late	Late	Activity
Activity	Start	Finish	Start	Finish	Slack
A	0	3	2	5	2
B	0	4	0	4	0
C	3	5	5	7	2
D	4	9	4	9	0
E	4	7	7	10	3
F	9	13	9	13	0
G	5	11	7	13	2
H	9	11	15	17	6
I	7	8	13	14	6
J	9	13	10	14	1
K	13	16	13	16	0
L	11	14	17	20	6
M	13	15	14	16	1
N	16	20	16	20	0
O	15	16	19	20	4
P	20	25	20	25	0

The critical path is $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{K}-\mathrm{N}-\mathrm{P}$, and the expected completion time is 25 days.
b. Project cost with the earliest start time for each activity:

	ject tim	e	25	Project Budget		\$ 2,125											
Period	Total	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
1	70.83	33.33	37.50														
2	70.83	33.33	37.50														
3	70.83	33.33	37.50														
4	100.00		37.50	62.50													
5	147.50			62.50	35.00	50.00											
6	97.50				35.00	50.00		12.50									
7	97.50				35.00	50.00		12.50									
8	147.50				35.00			12.50		100.00							
9	47.50				35.00			12.50									
10	106.25						50.00	12.50	25.00		18.75						
11	106.25						50.00	12.50	25.00		18.75						
12	118.75						50.00				18.75		50.00				
13	118.75						50.00				18.75		50.00				
14	150.00											50.00	50.00	50.00			
15	100.00											50.00		50.00			
16	250.00											50.00				200.00	
17	43.75														43.75		
18	43.75														43.75		
19	43.75														43.75		
20	43.75														43.75		
21	30.00																30.00
22	30.00																30.00
23	30.00																30.00
24	30.00																30.00
25	30.00																30.00

Project cost with the latest start times for each activity:

	ject time		25	Project Budget		\$ 2,125										
Period	Total	A	B	C	D	E	F	G	H	I	J	K	L	M	N 0	P
1	37.50		37.50													
2	37.50		37.50													
3	70.83	33.33	37.50													
4	70.83	33.33	37.50													
5	68.33	33.33			35.00											
6	97.50			62.50	35.00											
7	97.50			62.50	35.00											
8	97.50				35.00	50.00		12.50								
9	97.50				35.00	50.00		12.50								
10	112.50					50.00	50.00	12.50								
11	81.25						50.00	12.50			18.75					
12	81.25						50.00	12.50			18.75					
13	81.25						50.00	12.50			18.75					
14	168.75									100.00	18.75	50.00				
15	100.00											50.00		50.00		
16	125.00								25.00			50.00		50.00		
17	68.75								25.00						43.75	
18	93.75												50.00		43.75	
19	93.75												50.00		43.75	
20	293.75												50.00		43.75200 .00	
21	30.00															30.00
22	30.00															30.00
23	30.00															30.00
24	30.00															30.00
25	30.00															30.00

Cost by day is plotted for Early Start and Late Start Schedules.
OM Explorer
Solver - Project Budgeting

These two plots indicate the patterns of cash flow associated with the two different project schedules. Management can select the schedule that fits better with its financial status. Notice that the latest start dates delay cash flow requirements to the later time periods of the project.
25. The AON diagram for the software installation project is below.

The crashing data are given in the following table.

Activity	Normal Time	Normal Cost	Crash Time	Crash Cost	Max reduction	\$ per Week
A	5	$\$ 2,000$	3	$\$ 4,000$	2	1,000
B	8	$\$ 5,000$	7	$\$ 8,000$	1	3,000
C	10	$\$ 10,000$	8	$\$ 12,000$	2	1,000
D	4	$\$ 3,000$	3	$\$ 7,000$	1	4,000
E	3	$\$ 4,000$	2	$\$ 5,000$	1	1,000
F	9	$\$ 8,000$	6	$\$ 14,000$	3	2,000
G	2	$\$ 2,000$	2	$\$ 2,000$	NONE	NONE
H	8	$\$ 6,000$	5	$\$ 9,000$	3	1,000
I	9	$\$ 7,000$	7	$\$ 15,000$	2	4,000

a. STAGE 1

The critical path is $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{G}-\mathrm{H}$ at 31 weeks. Crash H by 1 week because you are constrained by path B - D - F - I. Savings: $1(3,500)-1(1,000)=\$ 2,500$.

STAGE 2
There are two critical paths: $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{G}-\mathrm{H}$ and $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{I}$ at 30 weeks. Crash F for 3 weeks. Savings: $3(3,500)-3(2,000)=\$ 4,500$.

STAGE 3
There are still two critical paths: $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{G}-\mathrm{H}$ and $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{I}$ at 27 weeks. Crash B for 1 week. Savings: $1(3,500)-1(3,000)=\$ 500$.

STAGE 4
There are still two critical paths: $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{G}-\mathrm{H}$ and $\mathrm{B}-\mathrm{D}-\mathrm{F}-\mathrm{I}$ at 26 weeks. All options cost more than the potential savings. Therefore, stop. Your target completion week is week 26.
b. Total Savings $=\$ 2,500+\$ 4,500+\$ 500=\$ 7,500$.
26. The AON diagram for the project is below.

Additional data for the project are contained in the following table.

Activity	Time (weeks)	Early Start	Late Start	Slack
START	0	0	0	0
A	3	0	1	1
B	4	0	0	0
C	4	4	9	5
D	4	3	5	2
E	5	4	4	0
F	6	9	9	0
G	2	9	13	4
FINISH	0	15	15	0

a. The critical path is $\mathrm{B}-\mathrm{E}-\mathrm{F}$. The project will be finished in week 15 .
b. Activity G is on a path with 4 weeks of slack; however each week Employee A spends at Activity F, F's time goes down a week while G's goes up a week. Consequently, assigning Employee A to Activity F for 2 weeks will result in two critical paths: $\mathrm{B}-\mathrm{E}-\mathrm{F}$ at 13 weeks and $\mathrm{B}-\mathrm{E}-\mathrm{G}$ at 13 weeks. Assigning Employee A to Activity F for any more time than that will actually increase the project's time from the low of 13 weeks.

CASE: THE PERT MUSTANG

A. Synopsis

The owner of the Roberts' Auto Sales and Service Company is interested in restoring a 1965 Shelby Mustang GT 350 for advertising a new restoration business she wants to start. The restoration project involves 22 activities and needs to be completed in 45 days so that the car can be displayed in an auto show. The owner wants an assessment of how the restoration business fits with the other businesses the company engages in, a report on the activities that need to be completed and their interrelationships, an assessment of whether the project can be completed on time, and a budget.

B. Purpose

This case provides enough data for the student to develop a PERT/CPM network for a project involving 22 activities. With this case, the class can:

- Discuss how well a new market segment can be satisfied with an existing operation.
- Gain experience in identifying the relationships between activities in a large project.
- Relate cost to the development of a project.

C. Analysis

1. The restoration business, although entailing much of the skills and resources needed for the other market segments the company serves, needs to be evaluated carefully before making a commitment. Currently, the company has three car dealerships, two auto parts stores, one body/paint shop, and one auto storage yard. These operations would be useful for the restoration business. However, the nature of the markets served by these operations is not made explicit in the case. Some questions come to mind:
a. Are the auto parts stores equipped to provide customers with "one-of-a-kind" parts? Restoration parts are hard to find and require access and familiarity with different information systems.
b. Does the body/paint shop have the ability to do custom, high-quality work, with restoration of rusty parts, or is it a high-volume operation with minimal capability to restore any car to its original condition?
c. Does the machine shop have the capability to machine one part at a time to unique specifications if the restoration part cannot be purchased from a supplier?

[^0]d. How useful will the salvage yard be for the restoration business? There must be a broad mix of vintage age autos in the yard in order to support the new business.
The competitive priorities for the restoration business most likely will be top quality and customization in a low-volume environment. It would seem that these competitive priorities could conflict with other market segments the company serves.
2. The project activities and the precedence relationships are given in Exhibit TN.1.
3. A PERT/CPM diagram is shown in Exhibit TN.2. The latest finish data are set for 45 days from present, which would be the day before the car must be in the show. The critical path is $\mathrm{A}-\mathrm{B}-\mathrm{T}-\mathrm{V}$, and the expected project duration is 41 days. The slack of each event along the critical path is 4 days, suggesting no problem in completing the project on time.
4. A project budget is shown in Exhibit TN.3. The project will meet the goal of staying below $\$ 70,000$.
A cash-flow report is shown in Exhibit TN.4. It is aggregated by weekly time periods. Activities B, C, and D are assumed to be paid when the item is received (on its early finish time). We assume that if an activity is scheduled to start during a week, the total cost is prorated for that week and following weeks. If MS Project is used for this analysis, the calendar date the students use for the start of the project may affect the weeks in which certain costs may accrue. Also, MS Project assumes a five-day workweek as a default. From Exhibit TN. 4 it appears that there is a cash flow problem in week 2 because the cash required exceeds $\$ 3,600$. To resolve the problem, use the activity slack that is available and schedule one or more activities to start later than their earliest start times. For example, Activity D, receive carburetor and oil pump, has slack of 16 days (see Exhibit TN.2). Activity D could be scheduled to start in Week 3 so that it is completed in Week 4, thereby pushing the payment to Week 4. Note that Week 4 would now have $\$ 3,550$ in cash requirements, just below the constraint of $\$ 3,600$.

D. Recommendations

The owner should:

1. Carefully evaluate the potential conflicts of competitive priorities for the new restoration business.
2. Monitor the critical path of $\mathrm{A}-\mathrm{B}-\mathrm{T}-\mathrm{V}$, although there is slack.
3. Monitor the budget even though there should be ample room for unexpected contingencies.

E. Teaching Suggestions

This case should be an overnight assignment so that the students have the opportunity to think through the construction of the PERT/CPM diagram. This is not a difficult assignment, even though there are 22 activities. If used for discussion in class, it should be discussed after the PERT/CPM approach has been addressed in a previous class. Alternatively, the case could be used as a written assignment with no debriefing during class.
The discussion should begin with the potential conflicts with competitive priorities so that the class understands the strategic implications of the new restoration business. There is not enough information in the case to make a definitive conclusion, so the emphasis should be on the potential for conflicts and the need to do some serious exploration.
The discussion can then turn to the network diagram and the conclusions. See Exhibits TN. 2 and TN. 3 for suggestions.

F. Board Plan

EXHIBIT TN. 4 Cash Flow Report for The Pert Mustang
Based on 5-day weeks

		1	2	3	4	5	6	7	8	9	Total
Start											
A	Order needed material and parts	\$100									\$100
B	Receive upholstery material for seat covers							\$2,100			\$2,100
C	Receive windshield			\$800							\$800
D	Receive carburetor and oil pump		\$1,750								\$1,750
E	Remove chrome from body	\$200									\$200
F	Remove body from frame	\$300									\$300
G	Fenders repaired by body shop	\$750	\$250								\$1,000
H	Repair doors, trunk, hood	\$750	\$750								\$1,500
I	Pull engine from chassis	\$200									\$200
J	Remove rust from frame	\$600	\$300								\$900
K	Regrind engine valves	\$400	\$600								\$1,000
L	Replace carburetor and oil pump		\$200								\$200
M	Rechrome the chrome parts	\$210									\$210
N	Reinstall engine			\$200							\$200
O	Put doors, hood, and trunk on frame		\$240								\$240
P	Rebuild transmission and replace brakes			\$2,000							\$2,000
Q	Replace windshield			\$100							\$100
R	Put fenders back on				\$100						\$100
S	Paint car				\$1,700						\$1,700
T	Reupholster interior							\$1,029	\$1,371		\$2,400
U	Put chrome back on					\$100					\$100
V	Pull car to Studebaker show								\$500	\$500	\$1,000
Finish											
To		\$3,510	\$4,090	\$3,100	\$1,800	\$100	\$0	\$3,129	\$1,871	\$500	\$18,100

[^0]: * This case was prepared by Dr. Sue Perrott Siferd, Arizona State University, as a basis for classroom discussion (Updated September, 2007).

