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iii

This Student Solutions Manual contains detailed solutions to selected exercises in the text
Multivariable Calculus, Seventh Edition (Chapters 10–17 of Calculus, Seventh Edition, and
Calculus: Early Transcendentals, Seventh Edition) by James Stewart. Specifically, it includes solu-
tions to the odd-numbered exercises in each chapter section, review section, True-False Quiz, and
Problems Plus section. Also included are all solutions to the Concept Check questions.

Because of differences between the regular version and the Early Transcendentals version of the
text, some references are given in a dual format. In these cases, readers of the Early Transcendentals
text should use the references denoted by “ET.” 

Each solution is presented in the context of the corresponding section of the text. In general,
solutions to the initial exercises involving a new concept illustrate that concept in more detail; this
knowledge is then utilized in subsequent solutions. Thus, while the intermediate steps of a solution
are given, you may need to refer back to earlier exercises in the section or prior sections for addition-
al explanation of the concepts involved. Note that, in many cases, different routes to an answer may
exist which are equally valid; also, answers can be expressed in different but equivalent forms. Thus,
the goal of this manual is not to give the definitive solution to each exercise, but rather to assist you
as a student in understanding the concepts of the text and learning how to apply them to the chal-
lenge of solving a problem.

We would like to thank James Stewart for entrusting us with the writing of this manual and offer-
ing suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as
creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of
Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.

DAN CLEGG

Palomar College

BARBARA FRANK

Cape Fear Community College
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CD concave downward

CU concave upward

D the domain of f

FDT First Derivative Test

HA horizontal asymptote(s)

I interval of convergence

IP inflection point(s)

R radius of convergence

VA vertical asymptote(s)
CAS
= indicates the use of a computer algebra system.
H
= indicates the use of l’Hospital’s Rule.
j
= indicates the use of Formula j in the Table of Integrals in the back endpapers.
s
= indicates the use of the substitution {u = sinx, du = cosxdx}.
c
= indicates the use of the substitution {u = cosx, du = − sinxdx}.

I/D Increasing/Decreasing Test
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10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1.  = 2 + ,  = 2 − , −2 ≤  ≤ 2

 −2 −1 0 1 2

 2 0 0 2 6

 6 2 0 0 2

3.  = cos2 ,  = 1− sin , 0 ≤  ≤ 2

 0 6 3 2

 1 34 14 0

 1 12 1−
√
3
2
≈ 013 0

5.  = 3− 4,  = 2− 3

(a)
 −1 0 1 2

 7 3 −1 −5
 5 2 −1 −4

(b)  = 3− 4 ⇒ 4 = −+ 3 ⇒  = −1
4
+ 3

4
, so

 = 2− 3 = 2− 3− 1
4
+ 3

4


= 2 + 3

4
− 9

4
⇒  = 3

4
− 1

4

7.  = 1− 2,  = − 2, −2 ≤  ≤ 2

(a)
 −2 −1 0 1 2

 −3 0 1 0 −3
 −4 −3 −2 −1 0

(b)  = − 2 ⇒  =  + 2, so  = 1− 2 = 1− ( + 2)2 ⇒
 = −( + 2)2 + 1, or  = −2 − 4 − 3, with −4 ≤  ≤ 0

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 1
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2 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

9.  =
√
,  = 1− 

(a)
 0 1 2 3 4

 0 1 1414 1732 2

 1 0 −1 −2 −3

(b)  =
√
 ⇒  = 2 ⇒  = 1−  = 1− 2. Since  ≥ 0,  ≥ 0.

So the curve is the right half of the parabola  = 1− 2.

11. (a)  = sin 1
2
,  = cos 1

2
, − ≤  ≤ .

2 + 2 = sin2 1
2
 + cos2 1

2
 = 1. For − ≤  ≤ 0, we have

−1 ≤  ≤ 0 and 0 ≤  ≤ 1. For 0   ≤ , we have 0   ≤ 1
and 1   ≥ 0. The graph is a semicircle.

(b)

13. (a)  = sin   = csc , 0    
2
.  = csc  =

1

sin 
=
1


.

For 0    
2
, we have 0    1 and   1. Thus, the curve is the

portion of the hyperbola  = 1 with   1.

(b)

15. (a)  = 2 ⇒ 2 = ln ⇒  = 1
2
ln.

 = + 1 = 1
2
ln+ 1.

(b)

17. (a)  = sinh ,  = cosh  ⇒ 2 − 2 = cosh2 − sinh2  = 1. Since
 = cosh  ≥ 1, we have the upper branch of the hyperbola 2 − 2 = 1.

(b)

19.  = 3 + 2 cos ,  = 1 + 2 sin , 2 ≤  ≤ 32. By Example 4 with  = 2,  = 3, and  = 1, the motion of the particle

takes place on a circle centered at (3 1) with a radius of 2. As  goes from 
2
to 3

2
, the particle starts at the point (3 3) and

moves counterclockwise along the circle (− 3)2 + ( − 1)2 = 4 to (3−1) [one-half of a circle].

21.  = 5 sin ,  = 2cos  ⇒ sin  =


5
, cos  =



2
. sin2 + cos2  = 1 ⇒


5

2
+

2

2
= 1. The motion of the

particle takes place on an ellipse centered at (0 0). As  goes from− to 5, the particle starts at the point (0−2) and moves
clockwise around the ellipse 3 times.

23. We must have 1 ≤  ≤ 4 and 2 ≤  ≤ 3. So the graph of the curve must be contained in the rectangle [1 4] by [2 3].
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 3

25. When  = −1, ( ) = (0−1). As  increases to 0,  decreases to −1 and 
increases to 0. As  increases from 0 to 1,  increases to 0 and  increases to 1.

As  increases beyond 1, both  and  increase. For   −1,  is positive and
decreasing and  is negative and increasing. We could achieve greater accuracy

by estimating - and -values for selected values of  from the given graphs and

plotting the corresponding points.

27. When  = 0 we see that  = 0 and  = 0, so the curve starts at the origin. As 

increases from 0 to 1
2
, the graphs show that  increases from 0 to 1 while 

increases from 0 to 1, decreases to 0 and to −1, then increases back to 0, so we
arrive at the point (0 1). Similarly, as  increases from 1

2
to 1,  decreases from 1

to 0 while  repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating - and

-values for selected values of  from the given graphs and plotting the corresponding points.

29. Use  =  and  = − 2 sin with a -interval of [− ].

31. (a)  = 1 + (2 − 1),  = 1 + (2 − 1), 0 ≤  ≤ 1. Clearly the curve passes through 1(1 1) when  = 0 and
through 2(2 2) when  = 1. For 0    1,  is strictly between 1 and 2 and  is strictly between 1 and 2. For

every value of ,  and  satisfy the relation  − 1 =
2 − 1

2 − 1
(− 1), which is the equation of the line through

1(1 1) and 2(2 2).

Finally, any point ( ) on that line satisfies
 − 1

2 − 1
=

− 1

2 − 1
; if we call that common value , then the given

parametric equations yield the point ( ); and any ( ) on the line between 1(1 1) and 2(2 2) yields a value of

 in [0 1]. So the given parametric equations exactly specify the line segment from 1(1 1) to 2(2 2).

(b)  = −2 + [3− (−2)] = −2 + 5 and  = 7 + (−1− 7) = 7− 8 for 0 ≤  ≤ 1.

33. The circle 2 + ( − 1)2 = 4 has center (0 1) and radius 2, so by Example 4 it can be represented by  = 2cos ,
 = 1 + 2 sin , 0 ≤  ≤ 2. This representation gives us the circle with a counterclockwise orientation starting at (2 1).

(a) To get a clockwise orientation, we could change the equations to  = 2cos ,  = 1− 2 sin , 0 ≤  ≤ 2.
(b) To get three times around in the counterclockwise direction, we use the original equations  = 2 cos ,  = 1+ 2 sin  with

the domain expanded to 0 ≤  ≤ 6.
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4 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(c) To start at (0 3) using the original equations, we must have 1 = 0; that is, 2 cos  = 0. Hence,  = 
2
. So we use

 = 2cos ,  = 1 + 2 sin , 
2
≤  ≤ 3

2
.

Alternatively, if we want  to start at 0, we could change the equations of the curve. For example, we could use

 = −2 sin ,  = 1 + 2 cos , 0 ≤  ≤ .

35. Big circle: It’s centered at (2 2) with a radius of 2, so by Example 4, parametric equations are

 = 2 + 2 cos   = 2 + 2 sin  0 ≤  ≤ 2

Small circles: They are centered at (1 3) and (3 3) with a radius of 01. By Example 4, parametric equations are

(left)  = 1+ 01 cos   = 3+ 01 sin  0 ≤  ≤ 2
and (right)  = 3+ 01 cos   = 3+ 01 sin  0 ≤  ≤ 2

Semicircle: It’s the lower half of a circle centered at (2 2) with radius 1. By Example 4, parametric equations are

 = 2 + 1 cos   = 2 + 1 sin   ≤  ≤ 2
To get all four graphs on the same screen with a typical graphing calculator, we need to change the last -interval to[0 2] in

order to match the others. We can do this by changing  to 05. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “−” in the -assignment, giving us
 = 2 + 1 cos(05)  = 2− 1 sin(05) 0 ≤  ≤ 2

37. (a)  = 3 ⇒  = 13, so  = 2 = 23.

We get the entire curve  = 23 traversed in a left to

right direction.

(b)  = 6 ⇒  = 16, so  = 4 = 46 = 23.

Since  = 6 ≥ 0, we only get the right half of the

curve  = 23.

(c)  = −3 = (−)3 [so − = 13],

 = −2 = (−)2 = (13)2 = 23.

If   0, then  and  are both larger than 1. If   0, then  and 

are between 0 and 1. Since   0 and   0, the curve never quite

reaches the origin.

39. The case 
2
    is illustrated.  has coordinates ( ) as in Example 7,

and has coordinates (  +  cos( − )) = ( (1− cos ))
[since cos( − ) = cos cos+ sin sin = − cos], so  has
coordinates ( −  sin( − ) (1− cos )) = (( − sin ) (1− cos ))
[since sin( − ) = sin cos− cos sin = sin]. Again we have the
parametric equations  = ( − sin ),  = (1− cos ).
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 5

41. It is apparent that  = || and  = | | = | |. From the diagram,
 = || =  cos  and  = | | =  sin . Thus, the parametric equations are

 =  cos  and  =  sin . To eliminate  we rearrange: sin  =  ⇒

sin2  = ()
2 and cos  =  ⇒ cos2  = ()

2. Adding the two

equations: sin2  + cos2  = 1 = 22 + 22. Thus, we have an ellipse.

43.  = (2 cot  2), so the -coordinate of  is  = 2 cot . Let  = (0 2).

Then ∠ is a right angle and ∠ = , so || = 2 sin  and
 = ((2 sin ) cos  (2 sin ) sin ). Thus, the -coordinate of 

is  = 2 sin2 .

45. (a) There are 2 points of intersection:

(−3 0) and approximately (−21 14).

(b) A collision point occurs when 1 = 2 and 1 = 2 for the same . So solve the equations:

3 sin  = −3 + cos  (1)

2 cos  = 1 + sin  (2)

From (2), sin  = 2cos − 1. Substituting into (1), we get 3(2 cos − 1) = −3 + cos  ⇒ 5 cos  = 0 () ⇒
cos  = 0 ⇒  = 

2
or 3

2
. We check that  = 3

2
satisfies (1) and (2) but  = 

2
does not. So the only collision point

occurs when  = 3
2
, and this gives the point (−3 0). [We could check our work by graphing 1 and 2 together as

functions of  and, on another plot, 1 and 2 as functions of . If we do so, we see that the only value of  for which both

pairs of graphs intersect is  = 3
2
.]

(c) The circle is centered at (3 1) instead of (−3 1). There are still 2 intersection points: (3 0) and (21 14), but there are
no collision points, since () in part (b) becomes 5 cos  = 6 ⇒ cos  = 6

5
 1.

47.  = 2  = 3 − . We use a graphing device to produce the graphs for various values of  with − ≤  ≤ . Note that all

the members of the family are symmetric about the -axis. For   0, the graph does not cross itself, but for  = 0 it has a

cusp at (0 0) and for   0 the graph crosses itself at  = , so the loop grows larger as  increases.
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