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Chapter 1 
Basic Concepts of Medical Instrumentation 
 
Walter H. Olson 
 

1.1 The following table shows % reading and % full scale for each data point. There 

is no need to do a least squares fit. 

 Inspection of these data reveals that all data points are within the "funnel" (Fig. 

1.4b) given by the following independent nonlinearity = ±2.4% reading or ±0.5% of full scale, 

whichever is greater. Signs are not important because a symmetrical result is required. Note that 

simple % reading = ±11.1% and simple % full scale = 2.5%. 

 

1.2 The following table shows calculations using equation (1.8). 

  r = 
121.795

(7.701)(15.82)
  = 0.9997 

 

1.3 The simple RC high-pass filter: 

C

R

+

Vout

-

+
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 The first order differential equation is: 

  
C 

d x(t) – y(t)

dt
  =  

y(t)

R  

  
CD + 

1

R
  y(t) = (CD) x(t)

 

  

y(D)

x(D)
 = 

D

D + 
1

RC

                 Operational transfer function

 

Inputs  0.50  1.50  2.00  5.00  10.00  

Outputs  0.90  3.05  4.00  9.90  20.50  

Ideal Output  1.00  3.00  4.00  10.00  20.00  

Difference  – 0.10  +0.05  0.0  – 0.10  +0.50  

% Reading  11.1  1.6 %  0%  – 1.0%  +2.4 % = Difference/Output × 100 

Full Scale  – 0.5%  0.25%  0%  – 0.50%  + 2.5% = Difference/20 × 100 

Inputs Xi  0.50  1.50  2.00  5.00  10.00 𝑋̅ = 3.8 

Outputs Yi  0.90  3.05  4.00  9.90  20.50 𝑌̅ = 7.6 

Xi – 𝑋̅  – 3.3  – 2.3  – 1.8  1.2  6.2  

Yi – 𝑌̅  – 6.7  – 4.55  – 3.6  2.3  12.9  

(Xi – 𝑋̅)(Yi – 𝑌̅) 22.11  10.465  6.48  2.76  79.98 

(Xi – 𝑋̅)2  10.89  5.29  3.24  1.44  38.44 

(Yi – 𝑌̅)2  44.89  20.7  12.96  5.29  166.41 





  

Y(j)

X(j)
  =  

jRC

jRC + 1
  =  

RC

(RC)2 + 1
     = Arctan 

1

RC  

 
;where 1/RC is the corner frequency in rad/s. 

 

1.4 For sinusoidal wing motion the low-pass sinusoidal transfer function is 

  

Y(j)

X(j)
  =  

K

(j + 1) 
 For 5% error the magnitude must not drop below 0.95 K or 

 

K

j + 1
  =  

K


2


2
 + 1

  = 0.95 K

 
 Solve for  with  = 2f = 2(100) 

 (
2


2
 + 1) (.95 )2  =  1  

 

 = 
1 – (0.95)2

(0.95)2(2100)2

1/2

  =  0.52 ms

 
 Phase angle  = tan–1 (–) at 50z 

 50  = tan–1 (–2  50  0.0005) = –9.3  
 at 100 Hz 

 100  = tan–1 (–2  100  0.0005) = –18.2  
 

 

 

 

 

 



1.5 The static sensitivity will be the increase in volume of the mercury per C 

divided by the cross-sectional area of the thin stem 

  
K = 


HgVb

Ac
  =  2mm/C

 
 where 

  


HgVb

= 1.82  10–4 cm
3

cm
3
C  

 Vb = unknown volume of the bulb 

 Ac = cross-sectional area of the column 

 Ac = π(0.1 mm)2 = π × 10–4 cm2 

 Thus 

     

Vb =
AcK


Hg

=
 10–4cm

2
0.2 cm/C

1.82  10–4 cm
3

cm
3
C

= 0.345 cm
3

 
 

1.6 Find the spring scale (Fig. 1.11a) transfer function when the mass is negligible. 

Equation 1.24 becomes 

 
B 

dy(t)

dt
  +  Ks y(t)  =  x(t)

 
 When M = 0. This is a first order system with 

 K = static sensitivity = 
1

Ks
  

  = time constant = 
B

Ks
  

 Thus the operational transfer function is 

 

y(D)

x(D)
  =  

1/Ks

1 + 
B

Ks
 D

  =  
1

Ks + BD

 
 and the sinusoidal transfer function becomes 
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x(j)
  =  

1/Ks

1 +j 
B

Ks
 D

  =  
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1 + 


2
B2
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2

     = tan–1 – 
B

Ks

 
1.7 

  
a 

dy

dt
  +  bx  +  c  +  dy  =  e 

dy

dt
  +  fx  +  g

 

 
(a – e) 

dy

dt
  +  dy  =  (b + f)x  +  (g – c)

 
 This has the same form as equation 1.15 if g = c. 

 (D + 1)y = Kx 



 

a –  e

d
 D  +  1  y  =  

b  +  f

d
 x

 

 Thus  = 
a – e

d
  

 

1.8 For a first order instrument 

 

Y(j)

X(j)
  =  

K

(j  +  1) 

 

 
K

(j  +  1)
   =  

K


2


2
 + 1

  =  0.93 K

 

 
2


2
 + 1  (0.93)2  =  1  

 

f  =  
1

2
   =  

1

2
  

1 – (0.93)2

(0.93)2 (.02)2
  =  3.15 Hz

 

   =  tan–1 (–)  =  –21.6 
 

1.9  

 

y(t)  = K  
Ke–nt

1 – 
2

  sin 1 – 
2

 nt +     where   = sin–1 1 – 
2

 
  = 0.4; fn = 85 Hz 

 

tn  = 

3

2
 – 

n 1 – 
2

  =  7.26 ms           tn+1   = 

7

2
 – 

n 1 – 
2

  =  20.1 ms     

  

  

y(tn)  = 10  +  
10

1 – 
2

  e–ntn           y(tn+1)  = 10  +  
10

1 – 
2

  e–ntn+1  

 
 = 12.31 = 10.15 

 

1.10. At the maxima yn, yn+2, yn+4:  sin (  ) = –1 at  
3

2
 ,  

7

2
 ,  

11

2
  

  

and  1 – 
2

  ntn +  = 
3

2
              tn = 

3

2
  –  

n 1 – 
2

 



 at the minima yn+1, yn+3 …:  sin ( ) = + 1 at  
5

2
 ,  

9

2
   … 

  

and  1 – 
2

  ntn+1  +  = 
5

2
              tn+1  = 

5

2
  –  

n 1 – 
2

 
 then form the ratio 
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yn+1
=

K
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2

e
–n tn

K

1 – 
2

e
–n tn+1
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–
3

2
–
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2
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= exp


1 – 
2

 

  

 = ln
yn

yn+1
=



1 – 
2

 
 Solve for 
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


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Chapter 2 
Basic Sensors and Principles 
 
Robert A. Peura and John G. Webster 
 

2.1 Let the wiper fraction F = xi/xt 

   

  

  

  

  

vo/vi  =  
Rm||F Rp

Rm||F RP + (1–F)RP

=  

Rm F Rp

Rm + F Rp

Rm F RP

Rm + F Rp
 + (1–F)RP

=  
1

1  +  
Rm F Rp

Rm + F Rp
  (1–F)RP

=  
1

RmF + Rm + F Rp – F Rm – FFRp

RmF

=  
1

1  +  F Rp/Rm –  FFRP/Rm

F



  
 Let  = Rp/Rm 

 error = F – vo/vi 

 = F – 
1

1/F + (1–F)
  

 = F – 
F

1 + F – F2  

 = F – (F) (1 + F – F2)–1 

 d/dF(error) = 0 = 1–(1) (1+F–F2)–1 – (F) (–1) (1+F–F2)–2(–2F)  

 multiply by (1+F–F2)2 

  0 = (1+F–F2)2 – (1+F–F2) + (F) ( – 2F) 

 expand, ignoring terms of 2, 3, ... 

 0 = 1 + 2F – 2F2 – 1 – F + eF2 + F – 2F2 

 0 = –3F2 + 2F = () (F) (2–3F) 

 F = 0, 2/3 

 error = 0.67 – 
1

1/0.67 + (1 – 0.67)
  

 = 0.67 – 
1

1.5 + 0.33
   

 = 
0.22

1.5 + 0.33
   ≈ 0.15= 0.15 Rp/Rm 

 
 

2.2 The resolution of the translational potentiometer is 0.05 to 0.025 mm. The angular 

resolution is a function of the diameter, D, of the wiper arm and would = (translational 

resolution/πD) × 360. In this case the resolution is 2.87/D to 5.73/D degrees where D is in mm. 

=  
1

1

F
 + 

Rp

Rm
  (1–F)



 A multiturn potentiometer may be used to increase the resolution of a rotational 

potentiometer. The increased resolution is achieved by the gearing between the shaft whose 

motion is measured and the potentiometer shaft. 

 

2.3. The elastic-resistance strain gage is nonlinear for large extensions (30%), has a dead 

band linearity due to slackness and is subject to long-term creep. Continuity in the mercury 

column and between the column and electrodes may be a problem. The gage has a high 

temperature drift coefficient. The dynamic response and finite mechanical resistance may cause 

distortion. These problems may be minimized by carefully selecting the proper size gage for the 

extremity. The gage should be slightly extended at minimum displacement when applied to 

eliminate the slackness problem. Mercury continuity checks may be made using an ohmmeter. 

The temperature drift problems may be minimized with continual calibration or by making 

measurements in a controlled temperature environment.  

 

2.4 From (2.21) 

   E = 38.7T + (0.082/2)T2 = 38.7T + 0.041T2 

 T 

C 

38.7T 

µV 
0.41T2 

µV 

E 

µV 

    

 0  0  0  0 

 10  387  4  391 

 20  774  16  790 

 30  1161  37  1196 

 40  1548  66  1614 

 50  1935  102  2037 

 The second term is small. The curve is almost linear but slightly concave upward. 

 

2.5 From (2.22) 

 α = dE/dT = a + bt = 38.7 + 0.082T µV/˚C  

   = 38.7 + 0.082(37) = 41.7 µV/˚C 

 

2.6 From (2.24) 

   = – /T2 = 
–4000

(300)2   = –4.4%/K 

2.7 There is always a voltage induced in each secondary, because it acts as the 

secondary of an air-core transformer. This voltage increases when the core is inside it. 



 
2.8 In Example 2.3 C = 500 pF for the piezoelectric transducer. The amplifier input 

impedance = 5 MΩ. 

  F = 0.05 Hz  =  
1

2RCequivalent
  

Thus  Cequivalent = 0.637 × 10–6 = Cpiezoelectric + Cshunt 

  Cshunt = 0.636 µF = 636 nF 

 Q = CV, where charge Q is fixed, capacitance C increases by 636 nF/0.5 nF = 

1272 times. Voltage V (sensitivity) decreases by 1/1272. 

 The sensitivity will be decreased by a factor of 1272 due to increase in the 

equivalent capacitance. 

 

2.9 Select a feedback Cf = 100 nF (much larger than 500 pF). To achieve low corner 

frequency, add Rf = 1/(2πfcCf) = 1/(2π·0.05·100 nF) = 32 MΩ. To achieve high corner frequency 

add separate passive filter or active filter with Ro = 10 kΩ and Co = 1/(2πfcRo) = 1/(2π·100·10 

kΩ) = 160 nF. 

 
2.10 Typical thermistor V–i characteristics with and without a heat sink are shown 

below. 



 
 For low currents Ohm's law applies and the current is directly proportional to the 

applied voltage in both cases. The thermistor temperature is that of its surroundings. The system 

with a heat sink can reach higher current levels and still remain in a linear portion of the v–i 

curve since the heat sink keeps the thermistor at approximately the ambient temperature. 

Eventually the thermistor–heat sink combination will self heat and a negative-resistance 

relationship will result.  

 

2.11 Assume  = 1.0 and use (2.25). 

 

 W = 37400/[5(exp(14400/300) – 1)] 

  W = 37400/[5(exp(48/) – 1)] 

 W2 = 37400/[(32)(225 × 106)] = 0.000005 

 W5 = 37400/[3125)(15000] = 0.0008 

 W10 = 37400/[100000)(120)] = 0.003 

 W20 = 37400/[3.2 × 106)(11 – 1)] = 0.001 

 
2.12 Infrared and ultraviolet are passed better by mirrors because the absorption in the 

glass lenses is eliminated. 



 
 

2.13 See section 2.16, photojunction devices. For small currents, beta, the current gain, 

increases with collector current. This produces the concave nonlinearity shown. Both 

nonlinearity and response time increase in the photo-Darlington because two transistors are 

involved. 

 
 

2.14 Try several load resistors as shown by the dashed load lines following. The maximum 

power is 2.5 µW. The load resistor, R = V/I = (0.5 V)/(5 µA) = 100 kΩ. 



 
2.15 (a) shows the problem—the RC product is too high. (b) shows the simplest solution—

the transistor input resistance is much lower than R. (c) shows that an op amp provides a virtual 

ground that provides a low input resistance. (d) shows that if R is divided by 10, the gain may be 

achieved by a noninverting amplifier. Active components must have adequate speed. 
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