PROBLEM 2.1

A nylon thread is subjected to a $8.5-\mathrm{N}$ tension force. Knowing that $E=3.3 \mathrm{GPa}$ and that the length of the thread increases by 1.1%, determine (a) the diameter of the thread, (b) the stress in the thread.

SOLUTION

(a) Strain: $\quad \varepsilon=\frac{\delta}{L}=\frac{1.1}{100}=0.011$

Stress: $\quad \sigma=E \varepsilon=\left(3.3 \times 10^{9}\right)(0.011)=36.3 \times 10^{6} \mathrm{~Pa}$

$$
\sigma=\frac{P}{A}
$$

Area: $\quad A=\frac{P}{\sigma}=\frac{8.5}{36.3 \times 10^{6}}=234.16 \times 10^{-9} \mathrm{~m}^{2}$
Diameter: $\quad d=\sqrt{\frac{4 A}{\pi}}=\sqrt{\frac{(4)\left(234.16 \times 10^{-9}\right)}{\pi}}=546 \times 10^{-6} \mathrm{~m} \quad d=0.546 \mathrm{~mm}$
(b) Stress: $\sigma=36.3 \mathrm{MPa}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.2

A 4.8-ft-long steel wire of $\frac{1}{4}$-in.-diameter is subjected to a $750-\mathrm{lb}$ tensile load. Knowing that $E=29 \times 10^{6} \mathrm{psi}$, determine (a) the elongation of the wire, (b) the corresponding normal stress.

SOLUTION

(a) Deformation: $\quad \delta=\frac{P L}{A E} ; \quad \quad A=\frac{\pi d^{2}}{4}$

Area:

$$
A=\frac{\pi(0.25 \mathrm{in} .)^{2}}{4}=4.9087 \times 10^{-2} \mathrm{in}^{2}
$$

$$
\delta=\frac{(750 \mathrm{lb})(4.8 \mathrm{ft} \times 12 \mathrm{in} . / \mathrm{ft})}{\left(4.9087 \times 10^{-2} \mathrm{in}^{2}\right)\left(29 \times 10^{6} \mathrm{psi}\right)}
$$

$$
\delta=3.0347 \times 10^{-2} \mathrm{in} .
$$

$$
\delta=0.0303 \mathrm{in}
$$

(b) Stress:

$$
\sigma=\frac{P}{A}
$$

Area:

$$
\sigma=\frac{(750 \mathrm{lb})}{\left(4.9087 \times 10^{-2} \mathrm{in}^{2}\right)}
$$

$$
\sigma=1.52790 \times 10^{4} \mathrm{psi}
$$

$$
\sigma=15.28 \mathrm{ksi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.3

An 18-m-long steel wire of $5-\mathrm{mm}$ diameter is to be used in the manufacture of a prestressed concrete beam. It is observed that the wire stretches 45 mm when a tensile force \mathbf{P} is applied. Knowing that $E=200 \mathrm{GPa}$, determine (a) the magnitude of the force $\mathbf{P},(b)$ the corresponding normal stress in the wire.

SOLUTION

(a) $\delta=\frac{P L}{A E}, \quad$ or $\quad P=\frac{\delta A E}{L}$
with $A=\frac{1}{4} \pi d^{2}=\frac{1}{4} \pi(0.005)^{2}=19.6350 \times 10^{-6} \mathrm{~m}^{2}$

$$
P=\frac{(0.045 \mathrm{~m})\left(19.6350 \times 10^{-6} \mathrm{~m}^{2}\right)\left(200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)}{18 \mathrm{~m}}=9817.5 \mathrm{~N}
$$

(b) $\sigma=\frac{P}{A}=\frac{9817.5 \mathrm{~N}}{19.6350 \times 10^{-6} \mathrm{~m}^{2}}=500 \times 10^{6} \mathrm{~Pa} \quad \sigma=500 \mathrm{MPa}$

PROBLEM 2.4

Two gage marks are placed exactly 250 mm apart on a 12 -mm-diameter aluminum rod with $E=73 \mathrm{GPa}$ and an ultimate strength of 140 MPa . Knowing that the distance between the gage marks is 250.28 mm after a load is applied, determine (a) the stress in the rod, (b) the factor of safety.

SOLUTION

(a) $\delta=L-L_{0}$

$$
\begin{aligned}
& =250.28 \mathrm{~mm}-250 \mathrm{~mm} \\
& =0.28 \mathrm{~mm}
\end{aligned}
$$

$$
\varepsilon=\frac{\delta}{L_{0}}
$$

$$
=\frac{0.28 \mathrm{~mm}}{250 \mathrm{~mm}}
$$

$$
=1.11643 \times 10^{-4}
$$

$$
\sigma=E \varepsilon
$$

$$
=\left(73 \times 10^{9} \mathrm{~Pa}\right)\left(1.11643 \times 10^{-4}\right)
$$

$$
=8.1760 \times 10^{7} \mathrm{~Pa}
$$

$$
\sigma=81.8 \mathrm{MPa}
$$

(b) F.S. $=\frac{\sigma_{u}}{\sigma}$

$$
=\frac{140 \mathrm{MPa}}{81.760 \mathrm{MPa}}
$$

$$
=1.71233
$$

F.S. $=1.712$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.5

An aluminum pipe must not stretch more than 0.05 in . when it is subjected to a tensile load. Knowing that $E=10.1 \times 10^{6} \mathrm{psi}$ and that the maximum allowable normal stress is 14 ksi , determine (a) the maximum allowable length of the pipe, (b) the required area of the pipe if the tensile load is 127.5 kips.

SOLUTION

(a) $\delta=\frac{P L}{A E}$

Thus,

$$
L=\frac{E A \delta}{P}=\frac{E \delta}{\sigma}=\frac{\left(10.1 \times 10^{6}\right)(0.05)}{14 \times 10^{3}}
$$

$$
L=36.1 \mathrm{in} .
$$

(b) $\sigma=\frac{P}{A}$

Thus,

$$
A=\frac{P}{\sigma}=\frac{127.5 \times 10^{3}}{14 \times 10^{3}}
$$

$$
A=9.11 \mathrm{in}^{2}
$$

PROBLEM 2.6

A control rod made of yellow brass must not stretch more than 3 mm when the tension in the wire is 4 kN . Knowing that $E=105 \mathrm{GPa}$ and that the maximum allowable normal stress is 180 MPa , determine (a) the smallest diameter rod that should be used, (b) the corresponding maximum length of the rod.

SOLUTION

(a) $\quad \sigma=\frac{P}{A} ; \quad A=\frac{\pi d^{2}}{4}$

Substituting, we have

$$
\begin{aligned}
\sigma=\frac{P}{\left(\frac{\pi d^{2}}{4}\right)} \Rightarrow d & =\sqrt{\frac{4 P}{\sigma \pi}} \\
d & =\sqrt{\frac{4\left(4 \times 10^{3} \mathrm{~N}\right)}{\left(180 \times 10^{6} \mathrm{~Pa}\right) \pi}} \\
d & =5.3192 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
d=5.32 \mathrm{~mm}
$$

(b) $\sigma=E \varepsilon ; \quad \varepsilon=\frac{\delta}{L}$

Substituting, we have

$$
\begin{aligned}
\sigma=E \frac{\delta}{L} \Rightarrow L & =\frac{E \partial}{\sigma} & \\
L & =\frac{\left(105 \times 10^{9} \mathrm{~Pa}\right)\left(3 \times 10^{-3} \mathrm{~m}\right)}{\left(180 \times 10^{6} \mathrm{~Pa}\right)} & L=1.750 \mathrm{~m}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.7

A steel control rod is 5.5 ft long and must not stretch more than 0.04 in . when a 2-kip tensile load is applied to it. Knowing that $E=29 \times 10^{6} \mathrm{psi}$, determine (a) the smallest diameter rod that should be used, (b) the corresponding normal stress caused by the load.

SOLUTION

(a) $\delta=\frac{P L}{A E}: \quad 0.04$ in. $=\frac{(2000 \mathrm{lb})(5.5 \times 12 \mathrm{in} .)}{A\left(29 \times 10^{6} \mathrm{psi}\right)}$

$$
A=\frac{1}{4} \pi d^{2}=0.113793 \mathrm{in}^{2}
$$

$$
d=0.38063 \text { in. } \quad d=0.381 \mathrm{in}
$$

(b) $\sigma=\frac{P}{A}=\frac{2000 \mathrm{lb}}{0.113793 \mathrm{in}^{2}}=17575.8 \mathrm{psi}$ $\sigma=17.58 \mathrm{ksi}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.8

A cast-iron tube is used to support a compressive load. Knowing that $E=10 \times 10^{6} \mathrm{psi}$ and that the maximum allowable change in length is 0.025%, determine (a) the maximum normal stress in the tube, (b) the minimum wall thickness for a load of 1600 lb if the outside diameter of the tube is 2.0 in .

SOLUTION

(a) $\frac{\delta}{L}=\frac{\delta}{100}=0.00025$
$\sigma=E \varepsilon ; \quad \varepsilon=\frac{\delta}{L}$
$\therefore \quad \sigma=E \frac{\delta}{L}$
$\sigma=\left(10 \times 10^{6} \mathrm{psi}\right)(0.00025)$
$\sigma=2.50 \times 10^{3} \mathrm{psi}$

$$
\sigma=2.50 \mathrm{ksi}
$$

(b) $\quad \sigma=\frac{P}{A} ; \quad \therefore \quad A=\frac{P}{\sigma}=\frac{1600 \mathrm{lb}}{2.50 \times 10^{3} \mathrm{psi}}=0.64 \mathrm{in}^{2}$

$$
A=\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)
$$

$$
d_{i}^{2}=d_{o}^{2}-\frac{4 A}{\pi}
$$

$$
d_{i}^{2}=(2.0 \mathrm{in} .)^{2}-\frac{4\left(0.64 \mathrm{in}^{2}\right)}{\pi}=3.1851 \mathrm{in}^{2}
$$

$$
\therefore \quad d_{i}=1.78469 \mathrm{in} .
$$

$$
t=\frac{1}{2}\left(d_{o}-d_{i}\right)=\frac{1}{2}(2.0 \mathrm{in} .-1.78469 \mathrm{in} .)
$$

$t=0.107655$ in.

$$
t=0.1077
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.9

A 4-m-long steel rod must not stretch more than 3 mm and the normal stress must not exceed 150 MPa when the rod is subjected to a $10-\mathrm{kN}$ axial load. Knowing that $E=200 \mathrm{GPa}$, determine the required diameter of the rod.

SOLUTION

$L=4 \mathrm{~m}$
$\delta=3 \times 10^{-3} \mathrm{~m}, \quad \sigma=150 \times 10^{6} \mathrm{~Pa}$
$E=200 \times 10^{9} \mathrm{~Pa}, \quad P=10 \times 10^{3} \mathrm{~N}$
Stress: $\quad \sigma=\frac{P}{A}$

$$
A=\frac{P}{\sigma}=\frac{10 \times 10^{3} \mathrm{~N}}{150 \times 10^{6} \mathrm{~Pa}}=66.667 \times 10^{-6} \mathrm{~m}^{2}=66.667 \mathrm{~mm}^{2}
$$

Deformation: $\quad \delta=\frac{P L}{A E}$

$$
A=\frac{P L}{E \delta}=\frac{\left(10 \times 10^{3}\right)(4)}{\left(200 \times 10^{9}\right)\left(3 \times 10^{-3}\right)}=66.667 \times 10^{-6} \mathrm{~m}^{2}=66.667 \mathrm{~mm}^{2}
$$

The larger value of A governs: $\quad A=66.667 \mathrm{~mm}^{2}$

$$
A=\frac{\pi}{4} d^{2} \quad d=\sqrt{\frac{4 A}{\pi}}=\sqrt{\frac{4(66.667)}{\pi}} \quad d=9.21 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.10

A nylon thread is to be subjected to a $10-\mathrm{N}$ tension. Knowing that $E=3.2 \mathrm{GPa}$, that the maximum allowable normal stress is 40 MPa , and that the length of the thread must not increase by more than 1%, determine the required diameter of the thread.

SOLUTION

Stress criterion:

$$
\begin{aligned}
& \sigma=40 \mathrm{MPa}=40 \times 10^{6} \mathrm{~Pa} \quad P=10 \mathrm{~N} \\
& \sigma=\frac{P}{A}: \quad A=\frac{P}{\sigma}=\frac{10 \mathrm{~N}}{40 \times 10^{6} \mathrm{~Pa}}=250 \times 10^{-9} \mathrm{~m}^{2} \\
& A=\frac{\pi}{4} d^{2}: \quad d=2 \sqrt{\frac{A}{\pi}}=2 \sqrt{\frac{250 \times 10^{-9}}{\pi}}=564.19 \times 10^{-6} \mathrm{~m} \\
& d=0.564 \mathrm{~mm}
\end{aligned}
$$

Elongation criterion:

$$
\begin{aligned}
& \frac{\delta}{L}=1 \%=0.01 \\
& \delta=\frac{P L}{A E}: \\
& A=\frac{P / E}{\delta / L}=\frac{10 \mathrm{~N} / 3.2 \times 10^{9} \mathrm{~Pa}}{0.01}=312.5 \times 10^{-9} \mathrm{~m}^{2} \\
& d=2 \sqrt{\frac{A}{\pi}}=2 \sqrt{\frac{312.5 \times 10^{-9}}{\pi}}= 630.78 \times 10^{-6} \mathrm{~m}^{2} \\
& \quad d= 0.631 \mathrm{~mm}
\end{aligned}
$$

The required diameter is the larger value:
$d=0.631 \mathrm{~mm}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.11

A block of $10-\mathrm{in}$. length and $1.8 \times 1.6-\mathrm{in}$. cross section is to support a centric compressive load \mathbf{P}. The material to be used is a bronze for which $E=14 \times 10^{6} \mathrm{psi}$. Determine the largest load that can be applied, knowing that the normal stress must not exceed 18 ksi and that the decrease in length of the block should be at most 0.12% of its original length.

SOLUTION

Considering allowable stress, $\quad \sigma=18 \mathrm{ksi}$ or $18 \times 10^{3} \mathrm{psi}$
Cross-sectional area: $\quad A=(1.8 \mathrm{in}).(1.6 \mathrm{in})=.2.880 \mathrm{in}^{2}$

$$
\begin{aligned}
\sigma=\frac{P}{A} \quad \Rightarrow \quad P & =\sigma A \\
& =\left(18 \times 10^{3} \mathrm{psi}\right)\left(2.880 \mathrm{in}^{2}\right) \\
& =5.1840 \times 10^{4} \mathrm{lb} \\
& \text { or } 51.840 \mathrm{kips}
\end{aligned}
$$

Considering allowable deformation, $\frac{\delta}{L}=0.12 \% \quad$ or $\quad 0.0012 \mathrm{in}$.

$$
\begin{aligned}
\delta=\frac{P L}{A E} \Rightarrow P & =A E\left(\frac{\delta}{L}\right) \\
P & =\left(2.880 \mathrm{in}^{2}\right)\left(14 \times 10^{6} \mathrm{psi}\right)(0.0012 \mathrm{in} .) \\
& =4.8384 \times 10^{4} \mathrm{lb} \\
& \text { or } 48.384 \mathrm{kips}
\end{aligned}
$$

The smaller value for \mathbf{P} resulting from the required deformation criteria governs.

PROBLEM 2.12

A square yellow-brass bar must not stretch more than 2.5 mm when it is subjected to a tensile load. Knowing that $E=105 \mathrm{GPa}$ and that the allowable tensile strength is 180 MPa , determine (a) the maximum allowable length of the bar, (b) the required dimensions of the cross section if the tensile load is 40 kN .

SOLUTION

$\sigma=180 \times 10^{6} \mathrm{~Pa} \quad P=40 \times 10^{3} \mathrm{~N}$
$E=105 \times 10^{9} \mathrm{~Pa} \quad \delta=2.5 \times 10^{-3} \mathrm{~m}$
(a) $\delta=\frac{P L}{A E}=\frac{\sigma L}{E}$
$L=\frac{E \delta}{\sigma}=\frac{\left(105 \times 10^{9}\right)\left(2.5 \times 10^{-3}\right)}{180 \times 10^{6}}=1.45833 \mathrm{~m}$
(b) $\sigma=\frac{P}{A}$
$A=\frac{P}{\sigma}=\frac{40 \times 10^{3}}{180 \times 10^{6}}=222.22 \times 10^{-6} \mathrm{~m}^{2}=222.22 \mathrm{~mm}^{2}$ $A=a^{2} \quad a=\sqrt{A}=\sqrt{222.22} \quad a=14.91 \mathrm{~mm}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.13

Rod $B D$ is made of steel $\left(E=29 \times 10^{6} \mathrm{psi}\right)$ and is used to brace the axially compressed member $A B C$. The maximum force that can be developed in member $B D$ is $0.02 P$. If the stress must not exceed 18 ksi and the maximum change in length of $B D$ must not exceed 0.001 times the length of $A B C$, determine the smallest-diameter rod that can be used for member $B D$.

SOLUTION

$$
F_{B D}=0.02 P=(0.02)(130)=2.6 \mathrm{kips}=2.6 \times 10^{3} \mathrm{lb}
$$

Considering stress, $\sigma=18 \mathrm{ksi}=18 \times 10^{3} \mathrm{psi}$

$$
\sigma=\frac{F_{B D}}{A} \quad \therefore \quad A=\frac{F_{B D}}{\sigma}=\frac{2.6}{18}=0.14444 \mathrm{in}^{2}
$$

Considering deformation, $\delta=(0.001)(144)=0.144 \mathrm{in}$.

$$
\delta=\frac{F_{B D} L_{B D}}{A E} \quad \therefore \quad A=\frac{F_{B D} L_{B D}}{E \delta}=\frac{\left(2.6 \times 10^{3}\right)(54)}{\left(29 \times 10^{6}\right)(0.144)}=0.03362 \mathrm{in}^{2}
$$

Larger area governs. $A=0.14444 \mathrm{in}^{2}$

$$
A=\frac{\pi}{4} d^{2} \quad \therefore \quad d=\sqrt{\frac{4 A}{\pi}}=\sqrt{\frac{(4)(0.14444)}{\pi}} \quad d=0.429 \mathrm{in}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

$$
L_{B C}=\sqrt{6^{2}+4^{2}}=7.2111 \mathrm{~m}
$$

Use bar $A B$ as a free body.

$$
\begin{aligned}
+\Sigma \Sigma M_{A} & =0: \quad 3.5 P-(6)\left(\frac{4}{7.2111} F_{B C}\right)=0 \\
P & =0.9509 F_{B C}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.004)^{2}=12.566 \times 10^{-6} \mathrm{~m}^{2} \\
& \sigma=\frac{F_{B C}}{A} \quad \therefore \quad F_{B C}=\sigma A=\left(190 \times 10^{6}\right)\left(12.566 \times 10^{-6}\right)=2.388 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Considering allowable elongation, $\delta=6 \times 10^{-3} \mathrm{~m}$

$$
\delta=\frac{F_{B C} L_{B C}}{A E} \quad \therefore \quad F_{B C}=\frac{A E \delta}{L_{B C}}=\frac{\left(12.566 \times 10^{-6}\right)\left(200 \times 10^{9}\right)\left(6 \times 10^{-3}\right)}{7.2111}=2.091 \times 10^{3} \mathrm{~N}
$$

Smaller value governs. $F_{B C}=2.091 \times 10^{3} \mathrm{~N}$

$$
P=0.9509 F_{B C}=(0.9509)\left(2.091 \times 10^{3}\right)=1.988 \times 10^{3} \mathrm{~N} \quad P=1.988 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.15

A single axial load of magnitude $P=15 \mathrm{kips}$ is applied at end C of the steel $\operatorname{rod} A B C$. Knowing that $E=30 \times 10^{6} \mathrm{psi}$, determine the diameter d of portion $B C$ for which the deflection of point C will be 0.05 in .

SOLUTION

$$
\begin{aligned}
\delta_{C} & =\sum \frac{P L_{i}}{A_{i} E_{i}}=\left(\frac{P L}{A E}\right)_{A B}+\left(\frac{P L}{A E}\right)_{B C} \\
L_{A B} & =4 \mathrm{ft}=48 \mathrm{in} . ; \quad L_{B C}=3 \mathrm{ft}=36 \mathrm{in} . \\
A_{A B} & =\frac{\pi d^{2}}{4}=\frac{\pi(1.25 \mathrm{in} .)^{2}}{4}=1.22718 \mathrm{in}^{2}
\end{aligned}
$$

Substituting, we have

$$
\begin{aligned}
0.05 \mathrm{in} . & =\left(\frac{15 \times 10^{3} \mathrm{lb}}{30 \times 10^{6} \mathrm{psi}}\right)\left(\frac{48 \mathrm{in} .}{1.22718 \mathrm{in}^{2}}+\frac{36 \mathrm{in} .}{A_{B C}}\right) \\
A_{B C} & =0.59127 \mathrm{in}^{2} \\
A_{B C} & =\frac{\pi d^{2}}{4} \\
\text { or } \quad d & =\sqrt{\frac{4 A_{B C}}{\pi}} \\
d & =\sqrt{\frac{4\left(0.59127 \mathrm{in}^{2}\right)}{\pi}} \\
d & =0.86766 \mathrm{in} .
\end{aligned}
$$

$$
d=0.868 \mathrm{in} .
$$

PROBLEM 2.16

A $250-\mathrm{mm}$-long aluminum tube $(E=70 \mathrm{GPa})$ of $36-\mathrm{mm}$ outer diameter and $28-\mathrm{mm}$ inner diameter can be closed at both ends by means of single-threaded screw-on covers of $1.5-\mathrm{mm}$ pitch. With one cover screwed on tight, a solid brass rod $(E=105 \mathrm{GPa})$ of $25-\mathrm{mm}$ diameter is placed inside the tube and the second cover is screwed on. Since the rod is slightly longer than the tube, it is observed that the cover must be forced against the rod by rotating it one-quarter of a turn before it can be tightly closed. Determine (a) the average normal stress in the tube and in the rod, (b) the deformations of the tube and of the rod.

SOLUTION

$$
\begin{aligned}
& A_{\text {tube }}=\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)=\frac{\pi}{4}\left(36^{2}-28^{2}\right)=402.12 \mathrm{~mm}^{2}=402.12 \times 10^{-6} \mathrm{~m}^{2} \\
& A_{\text {rod }}=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(25)^{2}=490.87 \mathrm{~mm}^{2}=490.87 \times 10^{-6} \mathrm{~m}^{2} \\
& \delta_{\text {tube }}=\frac{P L}{E_{\text {tube }} A_{\text {tube }}}=\frac{P(0.250)}{\left(70 \times 10^{9}\right)\left(402.12 \times 10^{-6}\right)}=8.8815 \times 10^{-9} P \\
& \delta_{\text {rod }}=-\frac{P L}{E_{\text {rod }} A_{\text {rod }}}=\frac{P(0.250)}{\left(105 \times 10^{6}\right)\left(490.87 \times 10^{-6}\right)}=-4.8505 \times 10^{-9} P \\
& \delta^{*}=\left(\frac{1}{4} \text { turn }\right) \times 1.5 \mathrm{~mm}=0.375 \mathrm{~mm}=375 \times 10^{-6} \mathrm{~m} \\
& \delta_{\text {tube }}=\delta^{*}+\delta_{\text {rod }} \quad \text { or } \quad \delta_{\text {tube }}-\delta_{\text {rod }}=\delta^{*} \\
& 8.8815 \times 10^{-9} P+4.8505 \times 10^{-9} P=375 \times 10^{-6} \\
& P=\frac{0.375 \times 10^{-3}}{(8.8815+4.8505)\left(10^{-9}\right)}=27.308 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

(a) $\quad \sigma_{\text {tube }}=\frac{P}{A_{\text {tube }}}=\frac{27.308 \times 10^{3}}{402.12 \times 10^{-6}}=67.9 \times 10^{6} \mathrm{~Pa}$ $\sigma_{\text {tube }}=67.9 \mathrm{MPa}$ $\sigma_{\text {rod }}=-\frac{P}{A_{\text {rod }}}=-\frac{27.308 \times 10^{3}}{490.87 \times 10^{-6}}=-55.6 \times 10^{6} \mathrm{~Pa} \quad \sigma_{\text {rod }}=-55.6 \mathrm{MPa}$
(b) $\quad \delta_{\text {tube }}=\left(8.8815 \times 10^{-9}\right)\left(27.308 \times 10^{3}\right)=242.5 \times 10^{-6} \mathrm{~m}$ $\delta_{\text {tube }}=0.243 \mathrm{~mm}$ $\delta_{\text {rod }}=-\left(4.8505 \times 10^{-9}\right)\left(27.308 \times 10^{3}\right)=-132.5 \times 10^{-6} \mathrm{~m}$ $\delta_{\text {rod }}=-0.1325 \mathrm{~mm}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.17

The specimen shown has been cut from a $\frac{1}{4}$-in.-thick sheet of vinyl ($E=0.45 \times 10^{6} \mathrm{psi}$) and is subjected to a $350-\mathrm{lb}$ tensile load. Determine (a) the total deformation of the specimen, (b) the deformation of its central portion $B C$.

SOLUTION

$$
\begin{aligned}
& \delta_{A B}=\frac{P L_{A B}}{E A_{A B}}=\frac{(350 \mathrm{lb})(1.6 \mathrm{in} .)}{\left(0.45 \times 10^{6} \mathrm{psi}\right)(1 \mathrm{in} .)(0.25 \mathrm{in} .)}=4.9778 \times 10^{-3} \mathrm{in} . \\
& \delta_{B C}=\frac{P L_{B C}}{E A_{B C}}=\frac{(350 \mathrm{lb})(2 \mathrm{in} .)}{\left(0.45 \times 10^{6} \mathrm{psi}\right)(0.4 \mathrm{in} .)(0.25 \mathrm{in} .)}=15.5556 \times 10^{-3} \mathrm{in} . \\
& \delta_{C D}=\delta_{A B}=4.9778 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

(a) Total deformation:

$$
\begin{aligned}
& \delta=\delta_{A B}+\delta_{B C}+\delta_{C D} \\
& \delta=25.511 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

$$
\delta=25.5 \times 10^{-3} \mathrm{in} .
$$

(b) Deformation of portion $B C$:

$$
\delta_{B C}=15.56 \times 10^{-3} \mathrm{in} .
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.18
The brass tube $A B(E=105 \mathrm{GPa})$ has a cross-sectional area of $140 \mathrm{~mm}^{2}$ and is fitted with a plug at A. The tube is attached at B to a rigid plate that is itself attached at C to the bottom of an aluminum cylinder ($E=72 \mathrm{GPa}$) with a cross-sectional area of $250 \mathrm{~mm}^{2}$. The cylinder is then hung from a support at D. In order to close the cylinder, the plug must move down through 1 mm . Determine the force \mathbf{P} that must be applied to the cylinder.

SOLUTION

Shortening of brass tube $A B$:

$$
\begin{aligned}
& L_{A B}=375+1=376 \mathrm{~mm}=0.376 \mathrm{~m} \quad A_{A B}=140 \mathrm{~mm}^{2}=140 \times 10^{-6} \mathrm{~m}^{2} \\
& E_{A B}=105 \times 10^{9} \mathrm{~Pa} \\
& \delta_{A B}=\frac{P L_{A B}}{E_{A B} A_{A B}}=\frac{P(0.376)}{\left(105 \times 10^{9}\right)\left(140 \times 10^{-6}\right)}=25.578 \times 10^{-9} P
\end{aligned}
$$

Lengthening of aluminum cylinder $C D$:

$$
\begin{aligned}
& L_{C D}=0.375 \mathrm{~m} \quad A_{C D}=250 \mathrm{~mm}^{2}=250 \times 10^{-6} \mathrm{~m}^{2} \quad E_{C D}=72 \times 10^{9} \mathrm{~Pa} \\
& \delta_{C D}=\frac{P L_{C D}}{E_{C D} A_{C D}}=\frac{P(0.375)}{\left(72 \times 10^{9}\right)\left(250 \times 10^{-6}\right)}=20.833 \times 10^{-9} \mathrm{P}
\end{aligned}
$$

Total deflection: $\quad \delta_{A}=\delta_{A B}+\delta_{C D}$ where $\delta_{A}=0.001 \mathrm{~m}$

$$
\begin{array}{rlr}
0.001 & =\left(25.578 \times 10^{-9}+20.833 \times 10^{-9}\right) P & \\
P & =21.547 \times 10^{3} \mathrm{~N} & P=21.5 \mathrm{kN}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.19

Both portions of the $\operatorname{rod} A B C$ are made of an aluminum for which $E=70 \mathrm{GPa}$. Knowing that the magnitude of \mathbf{P} is 4 kN , determine (a) the value of \mathbf{Q} so that the deflection at A is zero, (b) the corresponding deflection of B.

SOLUTION

(a) $A_{A B}=\frac{\pi}{4} d_{A B}^{2}=\frac{\pi}{4}(0.020)^{2}=314.16 \times 10^{-6} \mathrm{~m}^{2}$
$A_{B C}=\frac{\pi}{4} d_{B C}^{2}=\frac{\pi}{4}(0.060)^{2}=2.8274 \times 10^{-3} \mathrm{~m}^{2}$
Force in member $A B$ is P tension.
Elongation:

$$
\delta_{A B}=\frac{P L_{A B}}{E A_{A B}}=\frac{\left(4 \times 10^{3}\right)(0.4)}{\left(70 \times 10^{9}\right)\left(314.16 \times 10^{-6}\right)}=72.756 \times 10^{-6} \mathrm{~m}
$$

Force in member $B C$ is $Q-P$ compression.
Shortening:

$$
\delta_{B C}=\frac{(Q-P) L_{B C}}{E A_{B C}}=\frac{(Q-P)(0.5)}{\left(70 \times 10^{9}\right)\left(2.8274 \times 10^{-3}\right)}=2.5263 \times 10^{-9}(Q-P)
$$

For zero deflection at $A, \delta_{B C}=\delta_{A B}$

$$
\begin{aligned}
2.5263 \times 10^{-9}(Q-P) & =72.756 \times 10^{-6} \quad \therefore \quad Q-P=28.8 \times 10^{3} \mathrm{~N} \\
Q & =28.3 \times 10^{3}+4 \times 10^{3}=32.8 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

$$
Q=32.8 \mathrm{kN}
$$

(b) $\delta_{A B}=\delta_{B C}=\delta_{B}=72.756 \times 10^{-6} \mathrm{~m}$

$$
\delta_{A B}=0.0728 \mathrm{~mm} \downarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

$$
\begin{aligned}
& A_{A B}=\frac{\pi}{4} d_{A B}^{2}=\frac{\pi}{4}(0.020)^{2}=314.16 \times 10^{-6} \mathrm{~m}^{2} \\
& A_{B C}=\frac{\pi}{4} d_{B C}^{2}=\frac{\pi}{4}(0.060)^{2}=2.8274 \times 10^{-3} \mathrm{~m}^{2} \\
& P_{A B}=P=6 \times 10^{3} \mathrm{~N} \\
& P_{B C}=P-Q=6 \times 10^{3}-42 \times 10^{3}=-36 \times 10^{3} \mathrm{~N} \\
& L_{A B}=0.4 \mathrm{~m} \quad L_{B C}=0.5 \mathrm{~m} \\
& \delta_{A B}=\frac{P_{A B} L_{A B}}{A_{A B} E_{A}}=\frac{\left(6 \times 10^{3}\right)(0.4)}{\left(314.16 \times 10^{-6}\right)\left(70 \times 10^{9}\right)}=109.135 \times 10^{-6} \mathrm{~m} \\
& \delta_{B C}=\frac{P_{B C} L_{B C}}{A_{B C} E}=\frac{\left(-36 \times 10^{3}\right)(0.5)}{\left(2.8274 \times 10^{-3}\right)\left(70 \times 10^{9}\right)}=-90.947 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

(a) $\delta_{A}=\delta_{A B}+\delta_{B C}=109.135 \times 10^{-6}-90.947 \times 10^{-6} \mathrm{~m}=18.19 \times 10^{-6} \mathrm{~m}$
$\delta_{A}=0.01819 \mathrm{~mm} \uparrow$
(b) $\delta_{B}=\delta_{B C}=-90.9 \times 10^{-6} \mathrm{~m}=-0.0909 \mathrm{~mm}$
or $\delta_{B}=0.0909 \mathrm{~mm} \downarrow$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.21

For the steel truss ($E=200 \mathrm{GPa}$) and loading shown, determine the deformations of the members $A B$ and $A D$, knowing that their cross-sectional areas are $2400 \mathrm{~mm}^{2}$ and $1800 \mathrm{~mm}^{2}$, respectively.

SOLUTION

Statics: Reactions are 114 kN upward at A and C.
Member $B D$ is a zero force member.

$$
L_{A B}=\sqrt{4.0^{2}+2.5^{2}}=4.717 \mathrm{~m}
$$

Use joint A as a free body.

$$
\begin{aligned}
+\uparrow_{\Sigma F_{y}} & =0: 114+\frac{2.5}{4.717} F_{A B}=0 \\
F_{A B} & =-215.10 \mathrm{kN} \\
+\Sigma F_{x} & =0: F_{A D}+\frac{4}{4.717} F_{A B}=0 \\
F_{A D} & =-\frac{(4)(-215.10)}{4.717}=182.4 \mathrm{kN}
\end{aligned}
$$

114 kN

Member $A B$:

$$
\begin{aligned}
\delta_{A B} & =\frac{F_{A B} L_{A B}}{E A_{A B}}=\frac{\left(-215.10 \times 10^{3}\right)(4.717)}{\left(200 \times 10^{9}\right)\left(2400 \times 10^{-6}\right)} \\
& =-2.11 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
\delta_{A B}=-2.11 \mathrm{~mm}
$$

Member $A D$:

$$
\begin{aligned}
\delta_{A D}=\frac{F_{A D} L_{A D}}{E A_{A D}} & =\frac{\left(182.4 \times 10^{3}\right)(4.0)}{\left(200 \times 10^{9}\right)\left(1800 \times 10^{-6}\right)} \\
& =2.03 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
\delta_{A D}=2.03 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.22

For the steel truss $\left(E=29 \times 10^{6} \mathrm{psi}\right)$ and loading shown, determine the deformations of the members $B D$ and $D E$, knowing that their crosssectional areas are $2 \mathrm{in}^{2}$ and $3 \mathrm{in}^{2}$, respectively.

SOLUTION

Free body: Portion $A B C$ of truss

$$
\begin{aligned}
+\Sigma \Sigma M_{E} & =0: F_{B D}(15 \mathrm{ft})-(30 \mathrm{kips})(8 \mathrm{ft})-(30 \mathrm{kips})(16 \mathrm{ft})=0 \\
F_{B D} & =+48.0 \mathrm{kips}
\end{aligned}
$$

Free body: Portion $A B E C$ of truss

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.23

Members $A B$ and $B C$ are made of steel $\left(E=29 \times 10^{6} \mathrm{psi}\right)$ with crosssectional areas of $0.80 \mathrm{in}^{2}$ and $0.64 \mathrm{in}^{2}$, respectively. For the loading shown, determine the elongation of (a) member $A B,(b)$ member $B C$.

SOLUTION

(a) $L_{A B}=\sqrt{6^{2}+5^{2}}=7.810 \mathrm{ft}=93.72 \mathrm{in}$.

Use joint A as a free body.

$$
\begin{aligned}
+\uparrow \Sigma F_{y} & =0: \frac{5}{7.810} F_{A B}-28=0 \\
F_{A B} & =43.74 \mathrm{kip}=43.74 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

$$
\delta_{A B}=\frac{F_{A B} L_{A B}}{E A_{A B}}=\frac{\left(43.74 \times 10^{3}\right)(93.72)}{\left(29 \times 10^{6}\right)(0.80)}
$$

$$
\delta_{A B}=0.1767 \mathrm{in}
$$

(b) Use joint B as a free body.

$$
\begin{aligned}
\xrightarrow{+} \Sigma F_{x} & =0: \quad F_{B C}-\frac{6}{7.810} F_{A B}=0 \\
F_{B C} & =\frac{(6)(43.74)}{7.810}=33.60 \mathrm{kip}=33.60 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

$$
\delta_{B C}=\frac{F_{B C} L_{B C}}{E A_{B C}}=\frac{\left(33.60 \times 10^{3}\right)(72)}{\left(29 \times 10^{6}\right)(0.64)} \quad \delta_{B C}=0.1304 \mathrm{in}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.24

The steel frame ($E=200 \mathrm{GPa}$) shown has a diagonal brace $B D$ with an area of $1920 \mathrm{~mm}^{2}$. Determine the largest allowable load \mathbf{P} if the change in length of member $B D$ is not to exceed 1.6 mm .

SOLUTION

$$
\begin{aligned}
\delta_{B D} & =1.6 \times 10^{-3} \mathrm{~m}, \quad A_{B D}=1920 \mathrm{~mm}^{2}=1920 \times 10^{-6} \mathrm{~m}^{2} \\
L_{B D} & =\sqrt{5^{2}+6^{2}}=7.810 \mathrm{~m}, \quad E_{B D}=200 \times 10^{9} \mathrm{~Pa} \\
\delta_{B D} & =\frac{F_{B D} L_{B D}}{E_{B D} A_{B D}} \\
F_{B D} & =\frac{E_{B D} A_{B D} \delta_{B D}}{L_{B D}}=\frac{\left(200 \times 10^{9}\right)\left(1920 \times 10^{-6}\right)\left(1.6 \times 10^{-3}\right)}{7.81} \\
& =78.67 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Use joint B as a free body. $\xrightarrow{+} \Sigma F_{x}=0$:
$F_{A B}^{B}+F_{B D}$

$$
\frac{5}{7.810} F_{B D}-P=0
$$

$$
P=\frac{5}{7.810} F_{B D}=\frac{(5)\left(78.67 \times 10^{3}\right)}{7.810}
$$

$$
=50.4 \times 10^{3} \mathrm{~N} \quad P=50.4 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.25

Link $B D$ is made of brass $(E=105 \mathrm{GPa})$ and has a cross-sectional area of $240 \mathrm{~mm}^{2}$. Link $C E$ is made of aluminum ($E=72 \mathrm{GPa}$) and has a crosssectional area of $300 \mathrm{~mm}^{2}$. Knowing that they support rigid member $A B C$, determine the maximum force \mathbf{P} that can be applied vertically at point A if the deflection of A is not to exceed 0.35 mm .

SOLUTION

Free body member $A C$:

$$
\begin{aligned}
+\Sigma \Sigma M_{C}=0: 0.350 P-0.225 F_{B D} & =0 \\
F_{B D} & =1.55556 P \\
+\Sigma \Sigma M_{B}=0: 0.125 P-0.225 F_{C E} & =0 \\
F_{C E} & =0.55556 P
\end{aligned}
$$

$\delta_{B}=\delta_{B D}=\frac{F_{B D} L_{B D}}{E_{B D} A_{B D}}=\frac{(1.55556 P)(0.225)}{\left(105 \times 10^{9}\right)\left(240 \times 10^{-6}\right)}=13.8889 \times 10^{-9} P$
$\delta_{C}=\delta_{C E}=\frac{F_{C E} L_{C E}}{E_{C E} A_{C E}}=\frac{(0.55556 P)(0.150)}{\left(72 \times 10^{9}\right)\left(300 \times 10^{-6}\right)}=3.8581 \times 10^{-9} \mathrm{P}$

Deformation Diagram:

From the deformation diagram,

Slope: $\quad \theta=\frac{\delta_{B}+\delta_{C}}{L_{B C}}=\frac{17.7470 \times 10^{-9} \mathrm{P}}{0.225}=78.876 \times 10^{-9} \mathrm{P}$

$$
\begin{aligned}
\delta_{A} & =\delta_{B}+L_{A B} \theta \\
& =13.8889 \times 10^{-9} P+(0.125)\left(78.876 \times 10^{-9} P\right) \\
& =23.748 \times 10^{-9} P
\end{aligned}
$$

Apply displacement limit. $\delta_{A}=0.35 \times 10^{-3} \mathrm{~m}=23.748 \times 10^{-9} \mathrm{P}$

$$
P=14.7381 \times 10^{3} \mathrm{~N}
$$

$$
P=14.74 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.26

Members $A B C$ and $D E F$ are joined with steel links ($E=200 \mathrm{GPa}$). Each of the links is made of a pair of $25 \times 35-\mathrm{mm}$ plates. Determine the change in length of (a) member $B E$, (b) member $C F$.

SOLUTION

Free body diagram of Member $A B C$:

$$
\begin{aligned}
& +\Sigma M_{B}=0: \\
& \quad(0.26 \mathrm{~m})(18 \mathrm{kN})-(0.18 \mathrm{~m}) F_{C F}=0 \\
& \quad F_{C F}=26.0 \mathrm{kN} \\
& +\longrightarrow \Sigma F_{x}=0 \\
& \quad 18 \mathrm{kN}+F_{B E}+26.0 \mathrm{kN}=0 \\
& \quad F_{B E}=-44.0 \mathrm{kN}
\end{aligned}
$$

Area for link made of two plates:

$$
A=2(0.025 \mathrm{~m})(0.035 \mathrm{~m})=1.750 \times 10^{-3} \mathrm{~m}^{2}
$$

(a) $\delta_{B E}=\frac{F_{B E} L}{E A}=\frac{\left(-44.0 \times 10^{3} \mathrm{~N}\right)(0.240 \mathrm{~m})}{\left(200 \times 10^{9} \mathrm{~Pa}\right)\left(1.75 \times 10^{-3} \mathrm{~m}^{2}\right)}$

$$
=-30.171 \times 10^{-6} \mathrm{~m}
$$

$$
\delta_{B E}=-0.0302 \mathrm{~mm}
$$

(b) $\delta_{C F}=\frac{F_{B F} L}{E A}=\frac{\left(26.0 \times 10^{3} \mathrm{~N}\right)(0.240 \mathrm{~m})}{\left(200 \times 10^{9} \mathrm{~Pa}\right)\left(1.75 \times 10^{-3} \mathrm{~m}^{2}\right)}$

$$
=17.8286 \times 10^{-6} \mathrm{~m}
$$

$$
\delta_{C F}=0.01783 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.27

Each of the links $A B$ and $C D$ is made of aluminum $\left(E=10.9 \times 10^{6} \mathrm{psi}\right)$ and has a cross-sectional area of $0.2 \mathrm{in}^{2}$. Knowing that they support the rigid member $B C$, determine the deflection of point E.

SOLUTION

Free body $B C$:

$$
\begin{gathered}
+\sum \Sigma M_{C}=0:-(32) F_{A B}+(22)\left(1 \times 10^{3}\right)=0 \\
F_{A B}=687.5 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0: 687.5-1 \times 10^{3}+F_{C D}=0 \\
F_{C D}=312.5 \mathrm{lb}
\end{gathered}
$$

$\delta_{A B}=\frac{F_{A B} L_{A B}}{E A}=\frac{(687.5)(18)}{\left(10.9 \times 10^{6}\right)(0.2)}=5.6766 \times 10^{-3} \mathrm{in} .=\delta_{B}$
$\delta_{C D}=\frac{F_{C D} L_{C D}}{E A}=\frac{(312.5)(18)}{\left(10.9 \times 10^{6}\right)(0.2)}=2.5803 \times 10^{-3} \mathrm{in} .=\delta_{C}$

Deformation diagram:

$$
\text { Slope } \begin{aligned}
\theta & =\frac{\delta_{B}-\delta_{C}}{L_{B C}}=\frac{3.0963 \times 10^{-3}}{32} \\
& =96.759 \times 10^{-6} \mathrm{rad} \\
\delta_{E} & =\delta_{C}+L_{E C} \theta \\
& =2.5803 \times 10^{-3}+(22)\left(96.759 \times 10^{-6}\right) \\
& =4.7090 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

$$
\delta_{E}=4.71 \times 10^{-3} \text { in. } \downarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.28

The length of the $\frac{3}{32}$-in.-diameter steel wire $C D$ has been adjusted so that with no load applied, a gap of $\frac{1}{16} \mathrm{in}$. exists between the end B of the rigid beam $A C B$ and a contact point E. Knowing that $E=29 \times 10^{6}$ psi, determine where a $50-\mathrm{lb}$ block should be placed on the beam in order to cause contact between B and E.

SOLUTION

Rigid beam $A C B$ rotates through angle θ to close gap.

$$
\theta=\frac{1 / 16}{20}=3.125 \times 10^{-3} \mathrm{rad}
$$

Point C moves downward.

$$
\begin{aligned}
\delta_{C} & =4 \theta=4\left(3.125 \times 10^{-3}\right)=12.5 \times 10^{-3} \mathrm{in} . \\
\delta_{C D} & =\delta_{C}=12.5 \times 10^{-3} \mathrm{in.} \\
A_{C D} & =\frac{\pi}{d} d^{2}=\frac{\pi}{4}\left(\frac{3}{32}\right)^{2}=6.9029 \times 10^{-3} \mathrm{in}^{2} \\
\delta_{C D} & =\frac{F_{C D} L_{C D}}{E A_{C D}} \\
F_{C D} & =\frac{E A_{C D} \delta_{C D}}{L_{C D}}=\frac{\left(29 \times 10^{6}\right)\left(6.9029 \times 10^{-3}\right)\left(12.5 \times 10^{-3}\right)}{12.5} \\
& =200.18 \mathrm{lb}
\end{aligned}
$$

Free body $A C B$:

$$
\begin{aligned}
+\Sigma M_{A} & =0: \quad 4 F_{C D}-(50)(20-x)=0 \\
20-x & =\frac{(4)(200.18)}{50}=16.0144 \\
x & =3.9856 \mathrm{in} .
\end{aligned}
$$

For contact,

$$
x<3.99 \mathrm{in} .
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.29

A homogeneous cable of length L and uniform cross section is suspended from one end. (a) Denoting by ρ the density (mass per unit volume) of the cable and by E its modulus of elasticity, determine the elongation of the cable due to its own weight. (b) Show that the same elongation would be obtained if the cable were horizontal and if a force equal to half of its weight were applied at each end.

SOLUTION

(a) For element at point identified by coordinate y,

$$
\begin{array}{rlrl}
P & =\text { weight of portion below the point } \\
& =\rho g A(L-y) \\
d \delta & =\frac{P d y}{E A}=\frac{\rho g A(L-y) d y}{E A}=\frac{\rho g(L-y)}{E} d y \\
\delta & =\int_{0}^{L} \frac{\rho g(L-y)}{E} d y=\left.\frac{\rho g}{E}\left(L y-\frac{1}{2} y^{2}\right)\right|_{0} ^{L} & \\
& =\frac{\rho g}{E}\left(L^{2}-\frac{L^{2}}{2}\right) & \delta=\frac{1}{2} \frac{\rho g L^{2}}{E}
\end{array}
$$

(b) Total weight: $\quad W=\rho g A L$

$$
F=\frac{E A \delta}{L}=\frac{E A}{L} \cdot \frac{1}{2} \frac{\rho g L^{2}}{E}=\frac{1}{2} \rho g A L \quad F=\frac{1}{2} W
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.30

A vertical load \mathbf{P} is applied at the center A of the upper section of a homogeneous frustum of a circular cone of height h, minimum radius a, and maximum radius b. Denoting by E the modulus of elasticity of the material and neglecting the effect of its weight, determine the deflection of point A.

SOLUTION

Extend the slant sides of the cone to meet at a point O and place the origin of the coordinate system there.

From geometry, $\quad \tan \alpha=\frac{b-a}{h}$

$$
a_{1}=\frac{a}{\tan \alpha}, \quad b_{1}=\frac{b}{\tan \alpha}, \quad r=y \tan \alpha
$$

At coordinate point $y, A=\pi r^{2}$
Deformation of element of height $d y: \quad d \delta=\frac{P d y}{A E}$

$$
d \delta=\frac{P}{E \pi} \frac{d y}{r^{2}}=\frac{P}{\pi E \tan ^{2} \alpha} \frac{d y}{y^{2}}
$$

Total deformation:

$$
\begin{array}{rlr}
\delta_{A} & =\frac{P}{\pi E \tan ^{2} \alpha} \int_{a_{1}}^{b_{1}} \frac{d y}{y^{2}}=\left.\frac{P}{\pi E \tan ^{2} \alpha}\left(-\frac{1}{y}\right)\right|_{a_{1}} ^{b_{1}}=\frac{P}{\pi E \tan ^{2} \alpha}\left(\frac{1}{a_{1}}-\frac{1}{b_{1}}\right) \\
& =\frac{P}{\pi E \tan ^{2} \alpha} \frac{b_{1}-a_{1}}{a_{1} b_{1}}=\frac{P\left(b_{1}-a_{1}\right)}{\pi E a b} & \delta_{A}=\frac{P h}{\pi E a b} \downarrow .
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.31

Denoting by ε the "engineering strain" in a tensile specimen, show that the true strain is $\varepsilon_{t}=\ln (1+\varepsilon)$.

SOLUTION

$$
\varepsilon_{t}=\ln \frac{L}{L_{0}}=\ln \frac{L_{0}+\delta}{L_{0}}=\ln \left(1+\frac{\delta}{L_{0}}\right)=\ln (1+\varepsilon)
$$

Thus,

$$
\varepsilon_{t}=\ln (1+\varepsilon)
$$

PROBLEM 2.32

The volume of a tensile specimen is essentially constant while plastic deformation occurs. If the initial diameter of the specimen is d_{1}, show that when the diameter is d, the true strain is $\varepsilon_{t}=2 \ln \left(d_{1} / d\right)$.

SOLUTION

If the volume is constant, $\frac{\pi}{4} d^{2} L=\frac{\pi}{4} d_{1}^{2} L_{0}$

$$
\begin{array}{ll}
\frac{L}{L_{0}}=\frac{d_{1}^{2}}{d^{2}}=\left(\frac{d_{1}}{d}\right)^{2} & \\
\varepsilon_{t}=\ln \frac{L}{L_{0}}=\ln \left(\frac{d_{1}}{d}\right)^{2} & \varepsilon_{t}=2 \ln \frac{d_{1}}{d}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.33

An axial centric force of magnitude $P=450 \mathrm{kN}$ is applied to the composite block shown by means of a rigid end plate. Knowing that $h=10 \mathrm{~mm}$, determine the normal stress in (a) the brass core, (b) the aluminum plates.

SOLUTION

$$
\begin{array}{r}
\delta_{A}=\delta_{B}=\delta ; \quad P=P_{A}+P_{B} \\
\delta=\frac{P_{A} L}{E_{A} A_{A}} \quad \text { and } \quad \delta=\frac{P_{B} L}{E_{B} A_{B}}
\end{array}
$$

Therefore,

$$
P_{A}=\left(E_{A} A_{A}\right)\left(\frac{\delta}{L}\right) ; \quad P_{B}=\left(E_{B} A_{B}\right)\left(\frac{\delta}{L}\right)
$$

Substituting,

$$
\begin{aligned}
P_{A} & =\left(E_{A} A_{A}+E_{B} A_{B}\right)\left(\frac{\delta}{L}\right) \\
& \in=\frac{\delta}{L}=\frac{P}{\left(E_{A} A_{A}+E_{B} A_{B}\right)}
\end{aligned}
$$

$$
\epsilon=\frac{\left(450 \times 10^{3} \mathrm{~N}\right)}{\left(70 \times 10^{9} \mathrm{~Pa}\right)(2)(0.06 \mathrm{~m})(0.01 \mathrm{~m})+\left(105 \times 10^{9} \mathrm{~Pa}\right)(0.06 \mathrm{~m})(0.04 \mathrm{~m})}
$$

$$
\epsilon=1.33929 \times 10^{-3}
$$

Now,

$$
\sigma=E \in
$$

(a) Brass-core:

$$
\begin{aligned}
\sigma_{B} & =\left(105 \times 10^{9} \mathrm{~Pa}\right)\left(1.33929 \times 10^{-3}\right) \\
& =1.40625 \times 10^{8} \mathrm{~Pa}
\end{aligned}
$$

$$
\sigma_{B}=140.6 \mathrm{MPa}
$$

(b) Aluminum: $\quad \sigma_{A}=\left(70 \times 10^{9} \mathrm{~Pa}\right)\left(1.33929 \times 10^{-3}\right)$

$$
=9.3750 \times 10^{7} \mathrm{~Pa}
$$

$$
\sigma_{A}=93.8 \mathrm{MPa}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.34

For the composite block shown in Prob. 2.33, determine (a) the value of h if the portion of the load carried by the aluminum plates is half the portion of the load carried by the brass core, (b) the total load if the stress in the brass is 80 MPa .

PROBLEM 2.33. An axial centric force of magnitude $P=450 \mathrm{kN}$ is applied to the composite block shown by means of a rigid end plate. Knowing that $h=10 \mathrm{~mm}$, determine the normal stress in (a) the brass core, (b) the aluminum plates.

SOLUTION

$$
\begin{aligned}
& \delta=\delta_{a}=\delta_{b} ; \quad P=P_{a}+P_{b} \\
& \delta=\frac{P_{a} L}{E_{a} A_{a}} \quad \text { and } \quad \delta=\frac{P_{b} L}{E_{b} A_{b}}
\end{aligned}
$$

Therefore,

$$
P_{a}=\left(E_{a} A_{a}\right) \frac{\delta}{L} ; \quad \quad P_{b}=\left(E_{b} A_{b}\right)\left(\frac{\delta}{L}\right)
$$

(a)

$$
P_{a}=\frac{1}{2} P_{b}
$$

$\left(E_{a} A_{a}\right)\left(\frac{\delta}{L}\right)=\frac{1}{2}\left(E_{b} A_{b}\right)\left(\frac{\delta}{L}\right)$

$$
A_{a}=\frac{1}{2}\left(\frac{E_{b}}{E_{a}}\right) A_{b}
$$

$$
A_{a}=\frac{1}{2}\left(\frac{105 \mathrm{GPa}}{70 \mathrm{GPa}}\right)(40 \mathrm{~mm})(60 \mathrm{~mm})
$$

$$
A_{a}=1800 \mathrm{~mm}^{2}
$$

$1800 \mathrm{~mm}^{2}=2(60 \mathrm{~mm})(h)$
(b) $\quad \sigma_{b}=\frac{P_{b}}{A_{b}} \Rightarrow P_{b}=\sigma_{b} A_{b}$ and $P_{a}=\frac{1}{2} P_{b}$

$$
P=P_{a}+P_{b}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.34 (Continued)

$$
\begin{aligned}
P & =\frac{1}{2}\left(\sigma_{b} A_{b}\right)+\sigma_{b} A_{b} \\
P & =\left(\sigma_{b} A_{b}\right) 1.5 \\
P & =\left(80 \times 10^{6} \mathrm{~Pa}\right)(0.04 \mathrm{~m})(0.06 \mathrm{~m})(1.5) \\
P & =2.880 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

$$
P=288 \mathrm{kN}
$$

PROBLEM 2.35

The $4.5-\mathrm{ft}$ concrete post is reinforced with six steel bars, each with a $1 \frac{1}{8}$-in. diameter. Knowing that $E_{s}=29 \times 10^{6} \mathrm{psi}$ and $E_{c}=4.2 \times 10^{6} \mathrm{psi}$, determine the normal stresses in the steel and in the concrete when a 350-kip axial centric force \mathbf{P} is applied to the post.

SOLUTION

Let $P_{c}=$ portion of axial force carried by concrete.
$P_{s}=$ portion carried by the six steel rods.

$$
\begin{aligned}
\delta & =\frac{P_{c} L}{E_{c} A_{c}} \quad P_{c}=\frac{E_{c} A_{c} \delta}{L} \\
\delta & =\frac{P_{s} L}{E_{s} A_{s}} \quad P_{s}=\frac{E_{s} A_{s} \delta}{L} \\
P & =P_{c}+P_{s}=\left(E_{c} A_{c}+E_{s} A_{s}\right) \frac{\delta}{L} \\
\varepsilon & =\frac{\delta}{L}=\frac{-P}{E_{c} A_{c}+E_{s} A_{s}} \\
A_{s} & =6 \frac{\pi}{4} d_{s}^{2}=\frac{6 \pi}{4}(1.125 \mathrm{in} .)^{2}=5.9641 \mathrm{in}^{2} \\
A_{c} & =\frac{\pi}{4} d_{c}^{2}-A_{s}=\frac{\pi}{4}(18 \mathrm{in} .)^{2}-5.9641 \mathrm{in}^{2} \\
& =248.51 \mathrm{in}^{2} \\
L & =4.5 \mathrm{ft}=54 \mathrm{in} . \\
\varepsilon & =\frac{\left(4.2 \times 10^{6} \mathrm{psi}\right)\left(248.51 \mathrm{in}^{2}\right)+\left(29 \times 10^{6} \mathrm{psi}\right)\left(5.9641 \mathrm{in}^{2}\right)}{(2020}=-2.8767 \times 10^{-4} \\
\sigma_{s}=E_{s} \varepsilon & =\left(29 \times 10^{6} \mathrm{psi}\right)\left(-2.8767 \times 10^{-4}\right)=-8.3424 \times 10^{3} \mathrm{psi} \\
\sigma_{c}=E_{c} \varepsilon & =\left(4.2 \times 10^{6} \mathrm{psi}\right)\left(-2.8767 \times 10^{-4}\right)=1.20821 \times 10^{3} \mathrm{psi} \quad \sigma_{s}=-8.34 \mathrm{ksi}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.36

For the post of Prob. 2.35, determine the maximum centric force that can be applied if the allowable normal stress is 20 ksi in the steel and 2.4 ksi in the concrete.

PROBLEM 2.35 The 4.5-ft concrete post is reinforced with six steel bars, each with a $1 \frac{1}{8}$-in. diameter. Knowing that $E_{s}=29 \times 10^{6} \mathrm{psi}$ and $E_{c}=4.2 \times 10^{6} \mathrm{psi}$, determine the normal stresses in the steel and in the concrete when a 350 -kip axial centric force \mathbf{P} is applied to the post.

SOLUTION

Allowable strain in each material:
Steel:

$$
\varepsilon_{s}=\frac{\sigma_{s}}{E_{s}}=\frac{20 \times 10^{3} \mathrm{psi}}{29 \times 10^{6} \mathrm{psi}}=6.8966 \times 10^{-4}
$$

Concrete:

$$
\varepsilon_{c}=\frac{\sigma_{c}}{E_{c}}=\frac{2.4 \times 10^{3} \mathrm{psi}}{4.2 \times 10^{6} \mathrm{psi}}=5.7143 \times 10^{-4}
$$

Smaller value governs.

$$
\varepsilon=\frac{\delta}{L}=5.7143 \times 10^{-4}
$$

Let $P_{c}=$ Portion of load carried by concrete.
$P_{s}=$ Portion of load carried by 6 steel rods.

$$
\begin{aligned}
& \delta=\frac{P_{c} L}{E_{c} A_{c}} \quad \therefore \quad P_{c}=E_{c} A_{c}\left(\frac{\delta}{L}\right)=E_{c} A_{c} \in \\
& \delta=\frac{P_{s} L}{E_{s} A_{s}} \quad \therefore \quad P_{s}=E_{s} A_{s}\left(\frac{\delta}{L}\right)=E_{s} A_{s} \in \\
& A_{s}=6\left(\frac{\pi}{4}\right) d_{s}^{2}=\frac{6 \pi}{4}(1.125 \mathrm{in} .)^{2}=5.9641 \mathrm{in}^{2} \\
& A_{c}=\left(\frac{\pi}{4}\right) d_{c}^{2}-A_{s}=\frac{\pi}{4}(18 \mathrm{in} .)^{2}-5.9641 \mathrm{in}^{2}=2.4851 \times 10^{2} \mathrm{in}^{2} \\
& P=P_{c}+P_{s}=E_{c} A_{c} \in+E_{s} A_{s} \in \\
& P=\left[\left(4.2 \times 10^{6} \mathrm{psi}\right)\left(2.4851 \times 10^{2} \mathrm{in}^{2}\right)+\left(29 \times 10^{6} \mathrm{psi}\right)\left(5.9641 \mathrm{in}^{2}\right)\right]\left(5.7143 \times 10^{-4}\right) \\
& P=6.9526 \times 10^{5} \mathrm{lb}
\end{aligned}
$$

$$
P=695 \mathrm{kips}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Let $P_{a}=$ Portion of axial force carried by shell.
$P_{b}=$ Portion of axial force carried by core.

$$
\begin{aligned}
& \delta=\frac{P_{a} L}{E_{a} A_{a}}, \quad \text { or } \quad P_{a}=\frac{E_{a} A_{a}}{L} \delta \\
& \delta=\frac{P_{b} L}{E_{b} A_{b}}, \quad \text { or } \quad P_{b}=\frac{E_{b} A_{b}}{L} \delta
\end{aligned}
$$

Thus,

$$
P=P_{a}+P_{b}=\left(E_{a} A_{a}+E_{b} A_{b}\right) \frac{\delta}{L}
$$

with

$$
\begin{aligned}
& A_{a}=\frac{\pi}{4}\left[(0.060)^{2}-(0.025)^{2}\right]=2.3366 \times 10^{-3} \mathrm{~m}^{2} \\
& A_{b}=\frac{\pi}{4}(0.025)^{2}=0.49087 \times 10^{-3} \mathrm{~m}^{2} \\
& P=\left[\left(70 \times 10^{9}\right)\left(2.3366 \times 10^{-3}\right)+\left(105 \times 10^{9}\right)\left(0.49087 \times 10^{-3}\right)\right] \frac{\delta}{L} \\
& P=215.10 \times 10^{6} \frac{\delta}{L}
\end{aligned}
$$

Strain:

$$
\varepsilon=\frac{\delta}{L}=\frac{P}{215.10 \times 10^{6}}=\frac{200 \times 10^{3}}{215.10 \times 10^{6}}=0.92980 \times 10^{-3}
$$

(a) $\sigma_{a}=E_{a} \varepsilon=\left(70 \times 10^{9}\right)\left(0.92980 \times 10^{-3}\right)=65.1 \times 10^{6} \mathrm{~Pa}$

$$
\sigma_{a}=65.1 \mathrm{MPa}
$$

(b) $\delta=\varepsilon L=\left(0.92980 \times 10^{-3}\right)(300 \mathrm{~mm})$

$$
\delta=0.279 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.38

The length of the assembly shown decreases by 0.40 mm when an axial force is applied by means of rigid end plates. Determine (a) the magnitude of the applied force, (b) the corresponding stress in the brass core.

SOLUTION

Let $P_{a}=$ Portion of axial force carried by shell and $P_{b}=$ Portion of axial force carried by core.

$$
\begin{aligned}
& \delta=\frac{P_{a} L}{E_{a} A_{a}}, \quad \text { or } \quad P_{a}=\frac{E_{a} A_{a}}{L} \delta \\
& \delta=\frac{P_{b} L}{E_{b} A_{b}}, \quad \text { or } \quad P_{b}=\frac{E_{b} A_{b}}{L} \delta
\end{aligned}
$$

Thus, $\quad P=P_{a}+P_{b}=\left(E_{a} A_{a}+E_{b} A_{b}\right) \frac{\delta}{L}$
with $\quad A_{a}=\frac{\pi}{4}\left[(0.060)^{2}-(0.025)^{2}\right]=2.3366 \times 10^{-3} \mathrm{~m}^{2}$

$$
\begin{aligned}
A_{b} & =\frac{\pi}{4}(0.025)^{2}=0.49087 \times 10^{-3} \mathrm{~m}^{2} \\
P & =\left[\left(70 \times 10^{9}\right)\left(2.3366 \times 10^{-3}\right)+\left(105 \times 10^{9}\right)\left(0.49087 \times 10^{-3}\right)\right] \frac{\delta}{L}=215.10 \times 10^{6} \frac{\delta}{L}
\end{aligned}
$$

with $\quad \delta=0.40 \mathrm{~mm}, L=300 \mathrm{~mm}$
(a) $P=\left(215.10 \times 10^{6}\right) \frac{0.40}{300}=286.8 \times 10^{3} \mathrm{~N}$

$$
P=287 \mathrm{kN}
$$

(b)

$$
\sigma_{b}=\frac{P_{b}}{A_{b}}=\frac{E_{b} \delta}{L}=\frac{\left(105 \times 10^{9}\right)\left(0.40 \times 10^{-3}\right)}{300 \times 10^{-3}}=140 \times 10^{6} \mathrm{~Pa}
$$

$$
\sigma_{b}=140.0 \mathrm{MPa}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

(a) We express that the elongation of the rod is zero.

$$
\delta=\frac{P_{A B} L_{A B}}{\frac{\pi}{4} d_{A B}^{2} E}+\frac{P_{B C} L_{B C}}{\frac{\pi}{4} d_{B C}^{2} E}=0
$$

But

$$
P_{A B}=+R_{A} \quad P_{B C}=-R_{C}
$$

Substituting and simplifying,

$$
\begin{align*}
\frac{R_{A} L_{A B}}{d_{A B}^{2}}-\frac{R_{C} L_{B C}}{d_{B C}^{2}} & =0 \\
R_{C} & =\frac{L_{A B}}{L_{B C}}\left(\frac{d_{B C}}{d_{A B}}\right)^{2} R_{A}=\frac{25}{15}\left(\frac{2}{1.25}\right)^{2} R_{A} \\
R_{C} & =4.2667 R_{A} \tag{1}
\end{align*}
$$

From the free body diagram,

$$
\begin{equation*}
R_{A}+R_{C}=12 \mathrm{kips} \tag{2}
\end{equation*}
$$

Substituting (1) into (2),
$5.2667 R_{A}=12$

$$
R_{A}=2.2785 \mathrm{kips}
$$

$$
R_{A}=2.28 \mathrm{kips} \uparrow
$$

From (1), $\quad R_{C}=4.2667(2.2785)=9.7217 \mathrm{kips}$
(b) $\quad \sigma_{A B}=\frac{P_{A B}}{A_{A B}}=\frac{+R_{A}}{A_{A B}}=\frac{2.2785}{\frac{\pi}{4}(1.25)^{2}}$
$\sigma_{A B}=+1.857 \mathrm{ksi}$
$\sigma_{B C}=\frac{P_{B C}}{A_{B C}}=\frac{-R_{C}}{A_{B C}}=\frac{-9.7217}{\frac{\pi}{4}(2)^{2}}$

$$
\sigma_{B C}=-3.09 \mathrm{ksi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.40

Three steel rods $\left(E=29 \times 10^{6} \mathrm{psi}\right)$ support an 8.5 -kip load \mathbf{P}. Each of the rods $A B$ and $C D$ has a $0.32-\mathrm{in}^{2}$ cross-sectional area and rod $E F$ has a $1-\mathrm{in}^{2}$ cross-sectional area. Neglecting the deformation of bar $B E D$, determine (a) the change in length of $\operatorname{rod} E F,(b)$ the stress in each rod.

SOLUTION

Use member $B E D$ as a free body.

By symmetry, or by $\sum M_{E}=0$:

$$
\begin{aligned}
P_{C D} & =P_{A B} \\
+\uparrow \sum F_{y} & =0: P_{A B}+P_{C D}+P_{E F}-P=0 \\
P & =2 P_{A B}+P_{E F} \\
\delta_{A B} & =\frac{P_{A B} L_{A B}}{E A_{A B}} \quad \delta_{C D}=\frac{P_{C D} L_{C D}}{E A_{C D}} \quad \delta_{E F}=\frac{P_{E F} L_{E F}}{E A_{E F}}
\end{aligned}
$$

Since $\quad L_{A B}=L_{C D}$ and $A_{A B}=A_{C D}, \delta_{A B}=\delta_{C D}$
Since points A, C, and F are fixed, $\delta_{B}=\delta_{A B}, \delta_{D}=\delta_{C D}, \delta_{E}=\delta_{E F}$
Since member $B E D$ is rigid, $\delta_{E}=\delta_{B}=\delta_{C}$

$$
\begin{aligned}
& \quad \frac{P_{A B} L_{A B}}{E A_{A B}}=\frac{P_{E F} L_{E F}}{E A_{E F}} \quad \therefore \quad P_{A B}=\frac{A_{A B}}{A_{E F}} \cdot \frac{L_{E F}}{L_{A B}} P_{E F}=\frac{0.32}{1} \cdot \frac{16}{20} P_{E F}=0.256 P_{E F} \\
& P=2 P_{A B}+P_{E F}=2\left(0.256 P_{E F}\right)+P_{E F}=1.512 P_{E F} \\
& P_{E F}=\frac{P}{1.512}=\frac{8.5}{1.512}=5.6217 \mathrm{kips} \\
& P_{A B}=P_{C D}=0.256(5.6217)=1.43916 \mathrm{kips}
\end{aligned}
$$

(a) $\delta_{E F}=\frac{P_{E F} L_{E F}}{E A_{E F}}=\frac{(5.6217)(16)}{\left(29 \times 10^{3}\right)(1)}=0.0031016 \mathrm{in} . \quad \delta_{E F}=0.00310 \mathrm{in}$.
(b) $\quad \sigma_{A B}=\sigma_{C D}=\frac{P_{A B}}{A_{A B}}=\frac{1.43916}{0.32}=4.4974 \mathrm{ksi}$ $\sigma_{A B}=\sigma_{C D}=4.50 \mathrm{ksi}$
$\sigma_{E F}=\frac{P_{E F}}{A_{E F}}=\frac{5.6217}{1}=5.6217 \mathrm{ksi}$ $\sigma_{E F}=5.62 \mathrm{ksi}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Dimensions in mm

PROBLEM 2.41

Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that $E_{s}=200 \mathrm{GPa}$ and $E_{b}=105 \mathrm{GPa}$, determine (a) the reactions at A and $E,(b)$ the deflection of point C.

SOLUTION

$$
\begin{array}{ll}
\underline{A} \text { to } C: \quad E & =200 \times 10^{9} \mathrm{~Pa} \\
A & =\frac{\pi}{4}(40)^{2}=1.25664 \times 10^{3} \mathrm{~mm}^{2}=1.25664 \times 10^{-3} \mathrm{~m}^{2} \\
E A & =251.327 \times 10^{6} \mathrm{~N} \\
\underline{C \text { to } E:} \quad E & =105 \times 10^{9} \mathrm{~Pa} \\
& A
\end{array}
$$

A to $B: \quad P=R_{A}$

$$
L=180 \mathrm{~mm}=0.180 \mathrm{~m}
$$

$$
\delta_{A B}=\frac{P L}{E A}=\frac{R_{A}(0.180)}{251.327 \times 10^{6}}
$$

$$
=716.20 \times 10^{-12} R_{A}
$$

B to $C: \quad P=R_{A}-60 \times 10^{3}$

$$
L=120 \mathrm{~mm}=0.120 \mathrm{~m}
$$

$$
\delta_{B C}=\frac{P L}{E A}=\frac{\left(R_{A}-60 \times 10^{3}\right)(0.120)}{251.327 \times 10^{6}}
$$

$$
=447.47 \times 10^{-12} R_{A}-26.848 \times 10^{-6}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.41 (Continued)

C to $D: \quad P=R_{A}-60 \times 10^{3}$

$$
L=100 \mathrm{~mm}=0.100 \mathrm{~m}
$$

$$
\delta_{B C}=\frac{P L}{E A}=\frac{\left(R_{A}-60 \times 10^{3}\right)(0.100)}{74.220 \times 10^{6}}
$$

$$
=1.34735 \times 10^{-9} R_{A}-80.841 \times 10^{-6}
$$

D to $E: \quad P=R_{A}-100 \times 10^{3}$

$$
L=100 \mathrm{~mm}=0.100 \mathrm{~m}
$$

$$
\delta_{D E}=\frac{P L}{E A}=\frac{\left(R_{A}-100 \times 10^{3}\right)(0.100)}{74.220 \times 10^{6}}
$$

$$
=1.34735 \times 10^{-9} R_{A}-134.735 \times 10^{-6}
$$

\underline{A} to $E: \quad \delta_{A E}=\delta_{A B}+\delta_{B C}+\delta_{C D}+\delta_{D E}$

$$
=3.85837 \times 10^{-9} R_{A}-242.424 \times 10^{-6}
$$

Since point E cannot move relative to $A, \quad \delta_{A E}=0$
(a) $3.85837 \times 10^{-9} R_{A}-242.424 \times 10^{-6}=0 \quad R_{A}=62.831 \times 10^{3} \mathrm{~N}$
$R_{E}=R_{A}-100 \times 10^{3}=62.8 \times 10^{3}-100 \times 10^{3}=-37.2 \times 10^{3} \mathrm{~N}$

$$
\begin{aligned}
& R_{A}=62.8 \mathrm{kN} \leftarrow \\
& R_{E}=37.2 \mathrm{kN} \leftarrow
\end{aligned}
$$

(b) $\delta_{C}=\delta_{A B}+\delta_{B C}=1.16367 \times 10^{-9} R_{A}-26.848 \times 10^{-6}$

$$
\begin{aligned}
& =\left(1.16369 \times 10^{-9}\right)\left(62.831 \times 10^{3}\right)-26.848 \times 10^{-6} \\
& =46.3 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

$$
\delta_{C}=46.3 \mu \mathrm{~m} \rightarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Dimensions in mm

PROBLEM 2.42

Solve Prob. 2.41, assuming that rod $A C$ is made of brass and $\operatorname{rod} C E$ is made of steel.

PROBLEM 2.41 Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that $E_{s}=200 \mathrm{GPa}$ and $E_{b}=105 \mathrm{GPa}$, determine (a) the reactions at A and $E,(b)$ the deflection of point C.

SOLUTION

$$
\begin{aligned}
& A \text { to } C: \quad E=105 \times 10^{9} \mathrm{~Pa} \\
& A=\frac{\pi}{4}(40)^{2}=1.25664 \times 10^{3} \mathrm{~mm}^{2}=1.25664 \times 10^{-3} \mathrm{~m}^{2} \\
& E A=131.947 \times 10^{6} \mathrm{~N} \\
& E=200 \times 10^{9} \mathrm{~Pa} \\
& \underline{C} \text { to } E: \quad A=\frac{\pi}{4}(30)^{2}=706.86 \mathrm{~mm}^{2}=706.86 \times 10^{-6} \mathrm{~m}^{2} \\
& E A=141.372 \times 10^{6} \mathrm{~N} \\
& P=R_{A} \\
& L=180 \mathrm{~mm}=0.180 \mathrm{~m} \\
& \underline{A} \text { to } B: \quad \\
& \delta_{A B}=\frac{P L}{E A}=\frac{R_{A}(0.180)}{131.947 \times 10^{6}} \\
&=1.36418 \times 10^{-9} R_{A} \\
& P=R_{A}-60 \times 10^{3} \\
& L=120 \mathrm{~mm}=0.120 \mathrm{~m} \\
& \underline{B} \text { to } C: \quad=\frac{P L}{E A}=\frac{\left(R_{A}-60 \times 10^{3}\right)(0.120)}{131.947 \times 10^{6}} \\
& \delta_{B C}=909.456 \times 10^{-12} R_{A}-54.567 \times 10^{-6} \\
& P \text { to } D: \quad P=R_{A}-60 \times 10^{3} \\
& L=100 \mathrm{~mm}=0.100 \mathrm{~m} \\
& \delta_{C D}=\frac{P L}{E A}=\frac{\left(R_{A}-60 \times 10^{3}\right)(0.100)}{141.372 \times 10^{6}} \\
&=707.354 \times 10^{-12} R_{A}-42.441 \times 10^{-6}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.42 (Continued)

$\underline{D \text { to } E:} \quad P=R_{A}-100 \times 10^{3}$

$$
L=100 \mathrm{~mm}=0.100 \mathrm{~m}
$$

$$
\delta_{D E}=\frac{P L}{E A}=\frac{\left(R_{A}-100 \times 10^{3}\right)(0.100)}{141.372 \times 10^{6}}
$$

$$
=707.354 \times 10^{-12} R_{A}-70.735 \times 10^{-6}
$$

$\underline{A \text { to } E}: \quad \delta_{A E}=\delta_{A B}+\delta_{B C}+\delta_{C D}+\delta_{D E}$

$$
=3.68834 \times 10^{-9} R_{A}-167.743 \times 10^{-6}
$$

Since point E cannot move relative to $A, \quad \delta_{A E}=0$
(a) $3.68834 \times 10^{-9} R_{A}-167.743 \times 10^{-6}=0 \quad R_{A}=45.479 \times 10^{3} \mathrm{~N}$

$$
R_{A}=45.5 \mathrm{kN} \leftarrow
$$

$$
R_{E}=R_{A}-100 \times 10^{3}=45.479 \times 10^{3}-100 \times 10^{3}=-54.521 \times 10^{3}
$$

$$
R_{E}=54.5 \mathrm{kN} \leftarrow
$$

(b) $\quad \delta_{C}=\delta_{A B}+\delta_{B C}=2.27364 \times 10^{-9} R_{A}-54.567 \times 10^{-6}$

$$
=\left(2.27364 \times 10^{-9}\right)\left(45.479 \times 10^{3}\right)-54.567 \times 10^{-6}
$$

$$
=48.8 \times 10^{-6} \mathrm{~m} \quad \delta_{C}=48.8 \mu \mathrm{~m} \rightarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Let θ be the rotation of member $A B C$ as shown.

Then $\delta_{A}=0.625 \theta_{1} \quad \delta_{B}=0.075 \theta_{1} \quad \delta_{C}=0.1 \theta$
But $\quad \delta_{B}=\frac{P_{B D} L_{B D}}{A E}$

$$
\begin{aligned}
P_{B D} & =\frac{E A \delta_{B}}{L_{B D}}=\frac{\left(105 \times 10^{9}\right)\left(200 \times 10^{-6}\right)(0.075 \theta)}{0.225} \\
& =7 \times 10^{6} \theta
\end{aligned}
$$

Free body $A B C$:

$$
\begin{aligned}
\delta_{C} & =\frac{P_{C E} L_{C E}}{A E} \\
P_{C E} & =\frac{E A \delta_{C}}{L_{C E}}=\frac{\left(105 \times 10^{9}\right)\left(200 \times 10^{-6}\right)(0.1 \theta)}{0.225} \\
& =9.3333 \times 10^{6} \theta
\end{aligned}
$$

From free body of member $A B C$:

$$
+) \sum \mathbf{M}_{F}=0:(0.625)(2000)-0.075 P_{B D}-0.1 P_{C E}=0
$$

or $\quad(0.625)(2000)-0.075\left(7 \times 10^{6} \theta\right)-0.1\left(9.3333 \times 10^{6} \theta\right)=0$

$$
\theta=0.85714 \times 10^{-3} \mathrm{rad}
$$

and

$$
\delta_{A}=0.625 \theta=0.625\left(0.85714 \times 10^{-3}\right)=0.53571 \times 10^{-3} \mathrm{~m}
$$

$$
\delta_{A}=0.536 \mathrm{~mm} \downarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Let θ be the notation of $\operatorname{bar} A B C D$.
Then $\delta_{B}=12 \theta$

$$
\begin{aligned}
\delta_{C} & =24 \theta \\
\delta_{B} & =\frac{P_{B E} L_{B E}}{A E} \\
P_{B E} & =\frac{E A \delta_{B E}}{L_{B E}}=\frac{\left(29 \times 10^{6}\right) \frac{\pi}{4}\left(\frac{1}{6}\right)^{2}(12 \theta)}{10} \\
& =106.765 \times 10^{3} \theta \\
\delta_{C} & =\frac{P_{C F} L_{C F}}{E A} \\
P_{C F} & =\frac{E A \delta_{C E}}{L_{C F}}=\frac{\left(29 \times 10^{6}\right) \frac{\pi}{4}\left(\frac{1}{16}\right)^{2}(24 \theta)}{18} \\
& =118.628 \times 10^{3} \theta
\end{aligned}
$$

Using free body $A B C D$,
$+) \sum \mathbf{M}_{A}=0$:

$$
\begin{aligned}
& 12 P_{B E}+24 P_{C F}-36 P=0 \\
& (12)\left(106.765 \times 10^{3} \theta\right)+(24)\left(118.628 \times 10^{6} \theta\right)-(36)(220)=0 \\
& 4.1283 \times 10^{6} \theta=(36)(220) \\
& \left.\theta=1.91847 \times 10^{-3} \mathrm{rad}\right)
\end{aligned}
$$

(a) $P_{B E}=\left(106.765 \times 10^{3}\right)\left(1.91847 \times 10^{-3}\right)=204.83 \mathrm{lb}$
$P_{B E}=205 \mathrm{lb}$
$P_{C F}=\left(118.628 \times 10^{3}\right)\left(1.91847 \times 10^{-3}\right)=227.58 \mathrm{lb}$ $P_{C F}=228 \mathrm{lb}$
(b) $\delta_{D}=36 \quad \theta=(36)\left(1.91847 \times 10^{-3}\right)=69.1 \times 10^{-3} \mathrm{in}$.
0.0691 in.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.45

The rigid bar $A B C$ is suspended from three wires of the same material. The crosssectional area of the wire at B is equal to half of the cross-sectional area of the wires at A and C. Determine the tension in each wire caused by the load \mathbf{P} shown.

SOLUTION

$$
\begin{aligned}
+\sum \mathbf{M}_{A} & =0: \quad 2 L P_{C}+L P_{B}-\frac{3}{4} L P=0 \\
P_{C} & =\frac{3}{8} P-\frac{1}{2} P_{B} \\
+\sum \mathbf{M}_{C} & =0: \quad-2 L P_{A}-L P_{B}+\frac{5}{4} L P=0 \\
P_{A} & =\frac{5}{8} P-\frac{1}{2} P_{B}
\end{aligned}
$$

Let l be the length of the wires.

$$
\begin{aligned}
& \delta_{A}=\frac{P_{A} l}{E A}=\frac{l}{E A}\left(\frac{5}{8} P-\frac{1}{2} P_{B}\right) \\
& \delta_{B}=\frac{P_{B} l}{E(A / 2)}=\frac{2 l}{E A} P_{B}
\end{aligned}
$$

$$
\delta_{C}=\frac{P_{C} l}{E A}=\frac{l}{E A}\left(\frac{3}{8} P-\frac{1}{2} P_{B}\right)
$$

From the deformation diagram,

$$
\begin{aligned}
\delta_{A}-\delta_{B} & =\delta_{B}-\delta_{C} \\
\text { or } \quad \delta_{B} & =\frac{1}{2}\left(\delta_{A}+\delta_{c}\right) \\
\frac{l}{E(A / 2)} P_{B} & =\frac{1}{2} \frac{l}{E A}\left(\frac{5}{8} P-\frac{1}{2} P_{B}+\frac{3}{8} P-\frac{1}{2} P_{B}\right) \\
\frac{5}{2} P_{B} & =\frac{1}{2} P ; \quad P_{B}=\frac{1}{5} P \quad P_{B}=0.200 P
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.45 (Continued)

$$
\begin{array}{ll}
P_{A}=\frac{5}{8} P-\frac{1}{2}\left(\frac{P}{5}\right)=\frac{21}{40} P & P_{A}=0.525 P \\
P_{C}=\frac{3}{8} P-\frac{1}{2}\left(\frac{P}{5}\right)=\frac{11}{40} P & P_{C}=0.275 P
\end{array}
$$

Check:

$$
P_{A}+P_{B}+P_{C}=1.000 P \quad \text { Ok }
$$

PROBLEM 2.46

The rigid bar $A D$ is supported by two steel wires of $\frac{1}{16}$-in. diameter ($E=29 \times 10^{6} \mathrm{psi}$) and a pin and bracket at D. Knowing that the wires were initially taut, determine (a) the additional tension in each wire when a $120-\mathrm{lb} \operatorname{load} \mathbf{P}$ is applied at $B,(b)$ the corresponding deflection of point B.

SOLUTION

Let θ be the rotation of $\operatorname{bar} A B C D$.
Then $\delta_{A}=24 \theta \quad \delta_{C}=8 \theta$

$$
P_{A E A}^{P_{C F}} \frac{D_{Y} \mid}{C P}
$$

$$
\begin{aligned}
& \delta_{A}= \frac{P_{A E} L_{A E}}{A E} \\
& \begin{aligned}
P_{A E}=\frac{E A \delta_{A}}{L_{A E}} & =\frac{\left(29 \times 10^{6}\right) \frac{\pi}{4}\left(\frac{1}{16}\right)^{2}(24 \theta)}{15} \\
& =142.353 \times 10^{3} \theta \\
\delta_{C} & =\frac{P_{C F} L_{C F}}{A E}
\end{aligned} \\
& \begin{aligned}
P_{C F}= & \frac{E A \delta_{C}}{L_{C F}}
\end{aligned}=\frac{\left(29 \times 10^{6}\right) \frac{\pi}{4}\left(\frac{1}{16}\right)^{2}(8 \theta)}{8} \\
&=88.971 \times 10^{3} \theta
\end{aligned}
$$

Using free body $A B C D$,

$$
\begin{gathered}
+) \Sigma M_{D}=0: \quad-24 P_{A E}+16 P-8 P_{C F}=0 \\
-24\left(142.353 \times 10^{3} \theta\right)+16(120)-8\left(88.971 \times 10^{3} \theta\right)=0 \\
\theta=0.46510 \times 10^{-3} \mathrm{radG}
\end{gathered}
$$

(a) $P_{A E}=\left(142.353 \times 10^{3}\right)\left(0.46510 \times 10^{-3}\right)$

$$
P_{C F}=\left(88.971 \times 10^{3}\right)\left(0.46510 \times 10^{-3}\right)
$$

(b) $\delta_{B}=16 \theta=16\left(0.46510 \times 10^{-3}\right)$

$$
\begin{array}{r}
P_{A E}=66.2 \mathrm{lb} \\
P_{C F}=41.4 \mathrm{lb} \\
\delta_{B}=7.44 \times 10^{-3} \mathrm{in} . \downarrow
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Brass core:

$$
\begin{aligned}
& E=105 \mathrm{GPa} \\
& \alpha=20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Aluminum shell:

$$
\begin{aligned}
& E=70 \mathrm{GPa} \\
& \alpha=23.6 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Let L be the length of the assembly.
Free thermal expansion:

$$
\Delta T=195-15=180^{\circ} \mathrm{C}
$$

Brass core: $\quad\left(\delta_{T}\right)_{b}=L \alpha_{b}(\Delta T)$
Aluminum shell: $\quad\left(\delta_{T}\right)_{a}=L \alpha_{a}(\Delta T)$
Net expansion of shell with respect to the core: $\quad \delta=L\left(\alpha_{a}-\alpha_{b}\right)(\Delta T)$
Let P be the tensile force in the core and the compressive force in the shell.
Brass core:

$$
\begin{aligned}
E_{b} & =105 \times 10^{9} \mathrm{~Pa} \\
A_{b} & =\frac{\pi}{4}(25)^{2}=490.87 \mathrm{~mm}^{2} \\
& =490.87 \times 10^{-6} \mathrm{~m}^{2} \\
\left(\delta_{P}\right)_{b} & =\frac{P L}{E_{b} A_{b}}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.47 (Continued)

Aluminum shell:

$$
\begin{aligned}
\left(\delta_{p}\right)_{a} & =\frac{P L}{E_{a} A_{a}} \\
E_{a} & =70 \times 10^{9} \mathrm{~Pa} \\
A_{a} & =\frac{\pi}{4}\left(60^{2}-25^{2}\right) \\
& =2.3366 \times 10^{3} \mathrm{~mm}^{2} \\
& =2.3366 \times 10^{-3} \mathrm{~m}^{2} \\
\delta & =\left(\delta_{P}\right)_{b}+\left(\delta_{P}\right)_{a} \\
L\left(\alpha_{b}-\alpha_{a}\right)(\Delta T) & =\frac{P L}{E_{b} A_{b}}+\frac{P L}{E_{a} A_{a}}=K P L
\end{aligned}
$$

where

$$
\begin{aligned}
K & =\frac{1}{E_{b} A_{b}}+\frac{1}{E_{a} A_{a}} \\
& =\frac{1}{\left(105 \times 10^{9}\right)\left(490.87 \times 10^{-6}\right)}+\frac{1}{\left(70 \times 10^{9}\right)\left(2.3366 \times 10^{-3}\right)} \\
& =25.516 \times 10^{-9} \mathrm{~N}^{-1}
\end{aligned}
$$

Then

$$
\begin{aligned}
P & =\frac{\left(\alpha_{b}-\alpha_{a}\right)(\Delta T)}{K} \\
& =\frac{\left(23.6 \times 10^{-6}-20.9 \times 10^{-6}\right)(180)}{25.516 \times 10^{-9}} \\
& =19.047 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Stress in aluminum:

$$
\sigma_{a}=-\frac{P}{A_{a}}=-\frac{19.047 \times 10^{3}}{2.3366 \times 10^{-3}}=-8.15 \times 10^{6} \mathrm{~Pa} \quad \sigma_{a}=-8.15 \mathrm{MPa}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.48

Solve Prob. 2.47, assuming that the core is made of steel ($E_{s}=200 \mathrm{GPa}$, $\alpha_{s}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$) instead of brass.

PROBLEM 2.47 The aluminum shell is fully bonded to the brass core and the assembly is unstressed at a temperature of $15^{\circ} \mathrm{C}$. Considering only axial deformations, determine the stress in the aluminum when the temperature reaches $195^{\circ} \mathrm{C}$.

SOLUTION

Aluminum shell: $\quad E=70 \mathrm{GPa} \alpha=23.6 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Let L be the length of the assembly.
Free thermal expansion: $\quad \Delta T=195-15=180^{\circ} \mathrm{C}$
Steel core:

$$
\left(\delta_{T}\right)_{s}=L \alpha_{s}(\Delta T)
$$

Aluminum shell:

$$
\left(\delta_{T}\right)_{a}=L \alpha_{a}(\Delta T)
$$

Net expansion of shell with respect to the core: $\quad \delta=L\left(\alpha_{a}-\alpha_{s}\right)(\Delta T)$
Let P be the tensile force in the core and the compressive force in the shell.

Steel core:

$$
\begin{aligned}
E_{s} & =200 \times 10^{9} \mathrm{~Pa}, \quad A_{s}=\frac{\pi}{4}(25)^{2}=490.87 \mathrm{~mm}^{2}=490.87 \times 10^{-6} \mathrm{~m}^{2} \\
\left(\delta_{P}\right)_{s} & =\frac{P L}{E_{s} A_{s}}
\end{aligned}
$$

Aluminum shell: $\quad E_{a}=70 \times 10^{9} \mathrm{~Pa}$

$$
\begin{aligned}
\left(\delta_{P}\right)_{a} & =\frac{P L}{E_{a} A_{a}} \\
A_{a} & =\frac{\pi}{4}\left(60^{2}-25\right)^{2}=2.3366 \times 10^{3} \mathrm{~mm}^{2}=2.3366 \times 10^{-3} \mathrm{~m}^{2} \\
\delta & =\left(\delta_{P}\right)_{s}+\left(\delta_{P}\right)_{a} \\
L\left(\alpha_{a}-\alpha_{s}\right)(\Delta T) & =\frac{P L}{E_{s} A_{s}}+\frac{P L}{E_{a} A_{a}}=K P L
\end{aligned}
$$

where

$$
\begin{aligned}
K & =\frac{1}{E_{s} A_{s}}+\frac{1}{E_{a} A_{a}} \\
& =\frac{1}{\left(200 \times 10^{9}\right)\left(490.87 \times 10^{-6}\right)}+\frac{1}{\left(70 \times 10^{9}\right)\left(2.3366 \times 10^{-3}\right)} \\
& =16.2999 \times 10^{-9} \mathrm{~N}^{-1}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.48 (Continued)

Then

$$
P=\frac{\left(\alpha_{a}-\alpha_{s}\right)(\Delta T)}{K}=\frac{\left(23.6 \times 10^{-6}-11.7 \times 10^{-6}\right)(180)}{16.2999 \times 10^{-9}}=131.412 \times 10^{3} \mathrm{~N}
$$

Stress in aluminum: $\sigma_{a}=-\frac{P}{A_{a}}=-\frac{131.412 \times 10^{3}}{2.3366 \times 10^{-3}}=-56.241 \times 10^{6} \mathrm{~Pa} \quad \sigma_{a}=-56.2 \mathrm{MPa}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Let $P_{s}=$ axial force developed in the steel core.
For equilibrium with zero total force, the compressive force in the brass shell is P_{s}.
Strains:

$$
\begin{aligned}
& \varepsilon_{s}=\frac{P_{s}}{E_{s} A_{s}}+\alpha_{s}(\Delta T) \\
& \varepsilon_{b}=-\frac{P_{s}}{E_{b} A_{b}}+\alpha_{b}(\Delta T)
\end{aligned}
$$

Matching:

$$
\varepsilon_{s}=\varepsilon_{b}
$$

$$
\begin{aligned}
& \frac{P_{s}}{E_{s} A_{s}}+\alpha_{s}(\Delta T)=-\frac{P_{s}}{E_{b} A_{b}}+\alpha_{b}(\Delta T) \\
&\left(\frac{1}{E_{s} A_{s}}+\frac{1}{E_{b} A_{b}}\right) P_{s}=\left(\alpha_{b}-\alpha_{s}\right)(\Delta T) \\
& A_{b}=(1.5)(1.5)-(1.0)(1.0)=1.25 \mathrm{in}^{2} \\
& A_{s}=(1.0)(1.0)=1.0 \mathrm{in}^{2} \\
& \alpha_{b}-\alpha_{s}=5.1 \times 10^{-6} /{ }^{\circ} \mathrm{F} \\
& P_{s}=\sigma_{s} A_{s}=\left(8 \times 10^{3}\right)(1.0)=8 \times 10^{3} \mathrm{lb} \\
& \frac{1}{E_{s} A_{s}}+\frac{1}{E_{b} A_{b}}=\frac{1}{\left(29 \times 10^{6}\right)(1.0)}+\frac{1}{\left(15 \times 10^{6}\right)(1.25)}=87.816 \times 10^{-9} \mathrm{lb}^{-1}
\end{aligned}
$$

From (1),

$$
\left(87.816 \times 10^{-9}\right)\left(8 \times 10^{3}\right)=\left(5.1 \times 10^{-6}\right)(\Delta T)
$$

$$
\Delta T=137.8^{\circ} \mathrm{F}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.50

The concrete post ($E_{c}=3.6 \times 10^{6} \mathrm{psi}$ and $\alpha_{c}=5.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}$) is reinforced with six steel bars, each of $\frac{7}{8}-\mathrm{in}$. diameter $\left(E_{s}=29 \times 10^{6} \mathrm{psi}\right.$ and $\left.\alpha_{s}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$. Determine the normal stresses induced in the steel and in the concrete by a temperature rise of $65^{\circ} \mathrm{F}$.

SOLUTION

$$
\begin{aligned}
& A_{s}=6 \frac{\pi}{4} d^{2}=6 \frac{\pi}{4}\left(\frac{7}{8}\right)^{2}=3.6079 \mathrm{in}^{2} \\
& A_{c}=10^{2}-A_{s}=10^{2}-3.6079=96.392 \mathrm{in}^{2}
\end{aligned}
$$

Let $P_{c}=$ tensile force developed in the concrete.
For equilibrium with zero total force, the compressive force in the six steel rods equals P_{c}.
Strains: $\quad \varepsilon_{s}=-\frac{P_{c}}{E_{s} A_{s}}+\alpha_{s}(\Delta T) \quad \varepsilon_{c}=\frac{P_{c}}{E_{c} A_{c}}+\alpha_{c}(\Delta T)$
Matching: $\varepsilon_{c}=\varepsilon_{s} \quad \frac{P_{c}}{E_{c} A_{c}}+\alpha_{c}(\Delta T)=-\frac{P_{c}}{E_{s} A_{s}}+\alpha_{s}(\Delta T)$

$$
\left(\frac{1}{E_{c} A_{c}}+\frac{1}{E_{s} A_{s}}\right) P_{c}=\left(\alpha_{s}-\alpha_{c}\right)(\Delta T)
$$

$$
\left[\frac{1}{\left(3.6 \times 10^{6}\right)(96.392)}+\frac{1}{\left(29 \times 10^{6}\right)(3.6079)}\right] P_{c}=\left(1.0 \times 10^{-6}\right)(65)
$$

$$
P_{c}=5.2254 \times 10^{3} \mathrm{lb}
$$

$$
\begin{array}{ll}
\sigma_{c}=\frac{P_{c}}{A_{c}}=\frac{5.2254 \times 10^{3}}{96.392}=54.210 \mathrm{psi} & \sigma_{c}=54.2 \mathrm{psi} \\
\sigma_{s}=-\frac{P_{c}}{A_{s}}=-\frac{5.2254 \times 10^{3}}{3.6079}=-1448.32 \mathrm{psi} & \sigma_{s}=-1.448 \mathrm{ksi}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.51

A rod consisting of two cylindrical portions $A B$ and $B C$ is restrained at both ends. Portion $A B$ is made of steel ($\left.E_{s}=200 \mathrm{GPa}, \alpha_{s}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ and portion $B C$ is made of brass ($\left.E_{b}=105 \mathrm{GPa}, \alpha_{b}=20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$. Knowing that the rod is initially unstressed, determine the compressive force induced in $A B C$ when there is a temperature rise of $50^{\circ} \mathrm{C}$.

SOLUTION

$$
\begin{aligned}
& A_{A B}=\frac{\pi}{4} d_{A B}^{2}=\frac{\pi}{4}(30)^{2}=706.86 \mathrm{~mm}^{2}=706.86 \times 10^{-6} \mathrm{~m}^{2} \\
& A_{B C}=\frac{\pi}{4} d_{B C}^{2}=\frac{\pi}{4}(50)^{2}=1.9635 \times 10^{3} \mathrm{~mm}^{2}=1.9635 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

Free thermal expansion:

$$
\begin{aligned}
\delta_{T} & =L_{A B} \alpha_{s}(\Delta T)+L_{B C} \alpha_{b}(\Delta T) \\
& =(0.250)\left(11.7 \times 10^{-6}\right)(50)+(0.300)\left(20.9 \times 10^{-6}\right)(50) \\
& =459.75 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

$\underline{\text { Shortening due to induced compressive force } P}$:

$$
\begin{aligned}
\delta_{P} & =\frac{P L}{E_{s} A_{A B}}+\frac{P L}{E_{b} A_{B C}} \\
& =\frac{0.250 P}{\left(200 \times 10^{9}\right)\left(706.86 \times 10^{-6}\right)}+\frac{0.300 P}{\left(105 \times 10^{9}\right)\left(1.9635 \times 10^{-3}\right)} \\
& =3.2235 \times 10^{-9} \mathrm{P}
\end{aligned}
$$

For zero net deflection, $\delta_{P}=\delta_{T}$

$$
\begin{aligned}
3.2235 \times 10^{-9} P & =459.75 \times 10^{-6} \\
P & =142.624 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

$$
P=142.6 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.52

A rod consisting of two cylindrical portions $A B$ and $B C$ is restrained at both ends. Portion $A B$ is made of steel ($\left.E_{s}=29 \times 10^{6} \mathrm{psi}, \alpha_{s}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$ and portion $B C$ is made of aluminum ($\left.E_{a}=10.4 \times 10^{6} \mathrm{psi}, \alpha_{a}=13.3 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$. Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions $A B$ and $B C$ by a temperature rise of $70^{\circ} \mathrm{F},(b)$ the corresponding deflection of point B.

SOLUTION

$$
A_{A B}=\frac{\pi}{4}(2.25)^{2}=3.9761 \mathrm{in}^{2} \quad A_{B C}=\frac{\pi}{4}(1.5)^{2}=1.76715 \mathrm{in}^{2}
$$

Free thermal expansion.

$$
\Delta T=70^{\circ} \mathrm{F}
$$

$$
\begin{aligned}
& \left(\delta_{T}\right)_{A B}=L_{A B} \alpha_{s}(\Delta T)=(24)\left(6.5 \times 10^{-6}\right)(70)=10.92 \times 10^{-3} \mathrm{in} \\
& \left(\delta_{T}\right)_{B C}=L_{B C} \alpha_{a}(\Delta T)=(32)\left(13.3 \times 10^{-6}\right)(70)=29.792 \times 10^{-3} \mathrm{in}
\end{aligned}
$$

Total:

$$
\delta_{T}=\left(\delta_{T}\right)_{A B}+\left(\delta_{T}\right)_{B C}=40.712 \times 10^{-3} \mathrm{in}
$$

$\underline{\text { Shortening due to induced compressive force } P}$.

$$
\begin{aligned}
& \left(\delta_{P}\right)_{A B}=\frac{P L_{A B}}{E_{s} A_{A B}}=\frac{24 P}{\left(29 \times 10^{6}\right)(3.9761)}=208.14 \times 10^{-9} \mathrm{P} \\
& \left(\delta_{P}\right)_{B C}=\frac{P L_{B C}}{E_{a} A_{B C}}=\frac{32 P}{\left(10.4 \times 10^{6}\right)(1.76715)}=1741.18 \times 10^{-9} \mathrm{P}
\end{aligned}
$$

Total:

$$
\delta_{P}=\left(\delta_{P}\right)_{A B}+\left(\delta_{P}\right)_{B C}=1949.32 \times 10^{-9} P
$$

For zero net deflection, $\delta_{P}=\delta_{T} \quad 1949.32 \times 10^{-9} P=40.712 \times 10^{-3} \quad P=20.885 \times 10^{3} \mathrm{lb}$
(a) $\sigma_{A B}=-\frac{P}{A_{A B}}=-\frac{20.885 \times 10^{3}}{3.9761}=-5.25 \times 10^{3} \mathrm{psi}$ $\sigma_{A B}=-5.25 \mathrm{ksi}$

$$
\sigma_{B C}=-\frac{P}{A_{B C}}=-\frac{20.885 \times 10^{3}}{1.76715}=-11.82 \times 10^{3} \mathrm{psi}
$$

$$
\sigma_{B C}=-11.82 \mathrm{ksi}
$$

(b) $\quad\left(\delta_{P}\right)_{A B}=\left(208.14 \times 10^{-9}\right)\left(20.885 \times 10^{3}\right)=4.3470 \times 10^{-3} \mathrm{in}$.

$$
\delta_{B}=\left(\delta_{T}\right)_{A B} \rightarrow+\left(\delta_{P}\right)_{A B} \leftarrow=10.92 \times 10^{-3} \rightarrow+4.3470 \times 10^{-3} \leftarrow \quad \delta_{B}=6.57 \times 10^{-3} \text { in. } \rightarrow
$$

or

$$
\begin{aligned}
\left(\delta_{P}\right)_{B C} & =\left(1741.18 \times 10^{-9}\right)\left(20.885 \times 10^{3}\right)=36.365 \times 10^{-3} \mathrm{in} \\
\delta_{B} & =\left(\delta_{T}\right)_{B C} \leftarrow+\left(\delta_{P}\right)_{B C} \rightarrow=29.792 \times 10^{-3} \leftarrow+36.365 \times 10^{-3} \rightarrow=6.57 \times 10^{-3} \mathrm{in} . \rightarrow
\end{aligned}
$$

(checks)

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.53

Solve Prob. 2.52, assuming that portion $A B$ of the composite rod is made of aluminum and portion $B C$ is made of steel.

PROBLEM 2.52 A rod consisting of two cylindrical portions $A B$ and $B C$ is restrained at both ends. Portion $A B$ is made of steel $\left(E_{s}=29 \times 10^{6} \mathrm{psi}\right.$, $\left.\alpha_{s}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$ and portion $B C$ is made of aluminum ($E_{a}=10.4 \times 10^{6} \mathrm{psi}$, $\alpha_{a}=13.3 \times 10^{-6} / \mathrm{F}$). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions $A B$ and $B C$ by a temperature rise of $70^{\circ} \mathrm{F}$, (b) the corresponding deflection of point B.

SOLUTION

$$
A_{A B}=\frac{\pi}{4}(2.25)^{2}=3.9761 \mathrm{in}^{2}
$$

$$
A_{B C}=\frac{\pi}{4}(1.5)^{2}=1.76715 \mathrm{in}^{2}
$$

Free thermal expansion.
$\Delta T=70^{\circ} \mathrm{F}$

$$
\begin{aligned}
& \left(\delta_{T}\right)_{A B}=L_{A B} \alpha_{a}(\Delta T)=(24)\left(13.3 \times 10^{-6}\right)(70)=22.344 \times 10^{-3} \mathrm{in} . \\
& \left(\delta_{T}\right)_{B C}=L_{B C} \alpha_{s}(\Delta T)=(32)\left(6.5 \times 10^{-6}\right)(70)=14.56 \times 10^{-3} \mathrm{in}
\end{aligned}
$$

Total:

$$
\delta_{T}=\left(\delta_{T}\right)_{A B}+\left(\delta_{T}\right)_{B C}=36.904 \times 10^{-3} \mathrm{in} .
$$

Shortening due to induced compressive force P.

$$
\begin{aligned}
& \left(\delta_{P}\right)_{A B}=\frac{P L_{A B}}{E_{a} A_{A B}}=\frac{24 P}{\left(10.4 \times 10^{6}\right)(3.9761)}=580.39 \times 10^{-9} P \\
& \left(\delta_{P}\right)_{B C}=\frac{P L_{B C}}{E_{s} A_{B C}}=\frac{32 P}{\left(29 \times 10^{6}\right)(1.76715)}=624.42 \times 10^{-9} P
\end{aligned}
$$

Total:

$$
\delta_{P}=\left(\delta_{P}\right)_{A B}+\left(\delta_{P}\right)_{B C}=1204.81 \times 10^{-9} P
$$

For zero net deflection, $\delta_{P}=\delta_{T} \quad 1204.81 \times 10^{-9} P=36.904 \times 10^{-3} \quad P=30.631 \times 10^{3} \mathrm{lb}$
(a) $\sigma_{A B}=-\frac{P}{A_{A B}}=-\frac{30.631 \times 10^{3}}{3.9761}=-7.70 \times 10^{3} \mathrm{psi}$ $\sigma_{A B}=-7.70 \mathrm{ksi}$
$\sigma_{B C}=-\frac{P}{A_{B C}}=-\frac{30.631 \times 10^{3}}{1.76715}=-17.33 \times 10^{3} \mathrm{psi}$
$\sigma_{B C}=-17.33 \mathrm{ksi}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.53 (Continued)

(b) $\quad\left(\delta_{P}\right)_{A B}=\left(580.39 \times 10^{-9}\right)\left(30.631 \times 10^{3}\right)=17.7779 \times 10^{-3}$ in.

$$
\delta_{B}=\left(\delta_{T}\right)_{A B} \rightarrow+\left(\delta_{P}\right)_{A B} \leftarrow=22.344 \times 10^{-3} \rightarrow+17.7779 \times 10^{-3} \leftarrow \quad \delta_{B}=4.57 \times 10^{-3} \mathrm{in} . \rightarrow \boldsymbol{4}
$$

or

$$
\left(\delta_{P}\right)_{B C}=\left(624.42 \times 10^{-9}\right)\left(30.631 \times 10^{3}\right)=19.1266 \times 10^{-3} \text { in. }
$$

$\delta_{B}=\left(\delta_{T}\right)_{B C} \leftarrow+\left(\delta_{P}\right)_{B C} \rightarrow=14.56 \times 10^{-3} \leftarrow+19.1266 \times 10^{-3} \rightarrow=4.57 \times 10^{-3} \mathrm{in} . \rightarrow$ (checks)

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.54

The steel rails of a railroad track $\left(E_{s}=200 \mathrm{GPa}, \alpha_{s}=11.7 \times 102^{-6} /{ }^{\circ} \mathrm{C}\right)$ were laid at a temperature of $6^{\circ} \mathrm{C}$. Determine the normal stress in the rails when the temperature reaches $48^{\circ} \mathrm{C}$, assuming that the rails (a) are welded to form a continuous track, (b) are 10 m long with 3-mm gaps between them.

SOLUTION

(a) $\delta_{T}=\alpha(\Delta T) L=\left(11.7 \times 10^{-6}\right)(48-6)(10)=4.914 \times 10^{-3} \mathrm{~m}$

$$
\delta_{P}=\frac{P L}{A E}=\frac{L \sigma}{E}=\frac{(10) \sigma}{200 \times 10^{9}}=50 \times 10^{-12} \sigma
$$

$$
\delta=\delta_{T}+\delta_{P}=4.914 \times 10^{-3}+50 \times 10^{-12} \sigma=0
$$

$$
\sigma=-98.3 \times 10^{6} \mathrm{~Pa}
$$

$$
\sigma=-98.3 \mathrm{MPa}
$$

(b) $\delta=\delta_{T}+\delta_{P}=4.914 \times 10^{-3}+50 \times 10^{-12} \sigma=3 \times 10^{-3}$

$$
\begin{aligned}
& \sigma=\frac{3 \times 10^{-3}-4.914 \times 10^{-3}}{50 \times 10^{-12}} \\
&=-38.3 \times 10^{6} \mathrm{~Pa} \\
& \sigma=-38.3 \mathrm{MPa}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.55

Two steel bars ($E_{s}=200 \mathrm{GPa}$ and $\left.\alpha_{s}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ are used to reinforce a brass $\operatorname{bar}\left(E_{b}=105 \mathrm{GPa}, \alpha_{b}=20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ that is subjected to a load $P=25 \mathrm{kN}$. When the steel bars were fabricated, the distance between the centers of the holes that were to fit on the pins was made 0.5 mm smaller than the 2 m needed. The steel bars were then placed in an oven to increase their length so that they would just fit on the pins. Following fabrication, the temperature in the steel bars dropped back to room temperature. Determine (a) the increase in temperature that was required to fit the steel bars on the pins, (b) the stress in the brass bar after the load is applied to it.

SOLUTION

(a) Required temperature change for fabrication:

$$
\delta_{T}=0.5 \mathrm{~mm}=0.5 \times 10^{-3} \mathrm{~m}
$$

Temperature change required to expand steel bar by this amount:

$$
\begin{aligned}
\delta_{T} & =L \alpha_{s} \Delta T, \quad 0.5 \times 10^{-3}=(2.00)\left(11.7 \times 10^{-6}\right)(\Delta T) \\
\Delta T & =0.5 \times 10^{-3}=(2)\left(11.7 \times 10^{-6}\right)(\Delta T) \\
\Delta T & =21.368^{\circ} \mathrm{C}
\end{aligned}
$$

(b) Once assembled, a tensile force P^{*} develops in the steel, and a compressive force P^{*} develops in the brass, in order to elongate the steel and contract the brass.

Elongation of steel: $\quad A_{s}=(2)(5)(40)=400 \mathrm{~mm}^{2}=400 \times 10^{-6} \mathrm{~m}^{2}$

$$
\left(\delta_{P}\right)_{s}=\frac{F^{*} L}{A_{s} E_{s}}=\frac{P^{*}(2.00)}{\left(400 \times 10^{-6}\right)\left(200 \times 10^{9}\right)}=25 \times 10^{-9} P^{*}
$$

Contraction of brass: $A_{b}=(40)(15)=600 \mathrm{~mm}^{2}=600 \times 10^{-6} \mathrm{~m}^{2}$

$$
\left(\delta_{P}\right)_{b}=\frac{P^{*} L}{A_{b} E_{b}}=\frac{P^{*}(2.00)}{\left(600 \times 10^{-6}\right)\left(105 \times 10^{9}\right)}=31.746 \times 10^{-9} P^{*}
$$

But $\left(\delta_{P}\right)_{s}+\left(\delta_{P}\right)_{b}$ is equal to the initial amount of misfit:

$$
\begin{aligned}
\left(\delta_{P}\right)_{s}+\left(\delta_{P}\right)_{b} & =0.5 \times 10^{-3}, \quad 56.746 \times 10^{-9} P^{*}=0.5 \times 10^{-3} \\
P^{*} & =8.8112 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Stresses due to fabrication:
Steel: $\quad \sigma_{s}^{*}=\frac{P^{*}}{A_{s}}=\frac{8.8112 \times 10^{3}}{400 \times 10^{-6}}=22.028 \times 10^{6} \mathrm{~Pa}=22.028 \mathrm{MPa}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.55 (Continued)

Brass: $\quad \sigma_{b}^{*}=-\frac{P^{*}}{A_{b}}=-\frac{8.8112 \times 10^{3}}{600 \times 10^{-6}}=-14.6853 \times 10^{6} \mathrm{~Pa}=-14.685 \mathrm{MPa}$
To these stresses must be added the stresses due to the $25-\mathrm{kN}$ load.
For the added load, the additional deformation is the same for both the steel and the brass. Let δ^{\prime} be the additional displacement. Also, let P_{s} and P_{b} be the additional forces developed in the steel and brass, respectively.

$$
\begin{aligned}
& \delta^{\prime}=\frac{P_{s} L}{A_{s} E_{s}}=\frac{P_{b} L}{A_{b} E_{b}} \\
& P_{s}=\frac{A_{s} E_{s}}{L} \delta^{\prime}=\frac{\left(400 \times 10^{-6}\right)\left(200 \times 10^{9}\right)}{2.00} \delta^{\prime}=40 \times 10^{6} \delta^{\prime} \\
& P_{b}=\frac{A_{b} E_{b}}{L} \delta^{\prime}=\frac{\left(600 \times 10^{-6}\right)\left(105 \times 10^{9}\right)}{2.00} \delta^{\prime}=31.5 \times 10^{6} \delta^{\prime}
\end{aligned}
$$

Total:

$$
P=P_{s}+P_{b}=25 \times 10^{3} \mathrm{~N}
$$

$$
\begin{aligned}
& 40 \times 10^{6} \delta^{\prime}+31.5 \times 10^{6} \delta^{\prime}=25 \times 10^{3} \quad \delta^{\prime}=349.65 \times 10^{-6} \mathrm{~m} \\
& P_{s}=\left(40 \times 10^{6}\right)\left(349.65 \times 10^{-6}\right)=13.9860 \times 10^{3} \mathrm{~N} \\
& P_{b}=\left(31.5 \times 10^{6}\right)\left(349.65 \times 10^{-6}\right)=11.0140 \times 10^{3} \mathrm{~N} \\
& \sigma_{s}=\frac{P_{s}}{A_{s}}=\frac{13.9860 \times 10^{3}}{400 \times 10^{-6}}=34.965 \times 10^{6} \mathrm{~Pa} \\
& \sigma_{b}=\frac{P_{b}}{A_{b}}=\frac{11.0140 \times 10^{3}}{600 \times 10^{-6}}=18.3566 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

Add stress due to fabrication.
Total stresses:

$$
\begin{array}{ll}
\sigma_{s}=34.965 \times 10^{6}+22.028 \times 10^{6}=56.991 \times 10^{6} \mathrm{~Pa} & \sigma_{s}=57.0 \mathrm{MPa} \\
\sigma_{b}=18.3566 \times 10^{6}-14.6853 \times 10^{6}=3.6713 \times 10^{6} \mathrm{~Pa} & \sigma_{b}=3.67 \mathrm{MPa}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.56

Determine the maximum load P that may be applied to the brass bar of Prob. 2.55 if the allowable stress in the steel bars is 30 MPa and the allowable stress in the brass bar is 25 MPa .

PROBLEM 2.55 Two steel bars $\left(E_{s}=200 \mathrm{GPa}\right.$ and $\left.\alpha_{s}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ are used to reinforce a brass bar ($\left.E_{b}=105 \mathrm{GPa}, \alpha_{b}=20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ that is subjected to a load $P=25 \mathrm{kN}$. When the steel bars were fabricated, the distance between the centers of the holes that were to fit on the pins was made 0.5 mm smaller than the 2 m needed. The steel bars were then placed in an oven to increase their length so that they would just fit on the pins. Following fabrication, the temperature in the steel bars dropped back to room temperature. Determine (a) the increase in temperature that was required to fit the steel bars on the pins, (b) the stress in the brass bar after the load is applied to it.

SOLUTION

See solution to Problem 2.55 to obtain the fabrication stresses.

$$
\begin{aligned}
\sigma_{s}^{*} & =22.028 \mathrm{MPa} \\
\sigma_{b}^{*} & =14.6853 \mathrm{MPa}
\end{aligned}
$$

Allowable stresses:

$$
\sigma_{s, \text { all }}=30 \mathrm{MPa}, \sigma_{b, \mathrm{all}}=25 \mathrm{MPa}
$$

Available stress increase from load.

$$
\begin{aligned}
& \sigma_{s}=30-22.028=7.9720 \mathrm{MPa} \\
& \sigma_{b}=25+14.6853=39.685 \mathrm{MPa}
\end{aligned}
$$

Corresponding available strains.

$$
\begin{aligned}
& \varepsilon_{s}=\frac{\sigma_{s}}{E_{s}}=\frac{7.9720 \times 10^{6}}{200 \times 10^{9}}=39.860 \times 10^{-6} \\
& \varepsilon_{b}=\frac{\sigma_{b}}{E_{b}}=\frac{39.685 \times 10^{6}}{105 \times 10^{9}}=377.95 \times 10^{-6}
\end{aligned}
$$

Smaller value governs $\therefore \varepsilon=39.860 \times 10^{-6}$
Areas: $A_{s}=(2)(5)(40)=400 \mathrm{~mm}^{2}=400 \times 10^{-6} \mathrm{~m}^{2}$

$$
A_{b}=(15)(40)=600 \mathrm{~mm}^{2}=600 \times 10^{-6} \mathrm{~m}^{2}
$$

Forces $P_{s}=E_{s} A_{s} \varepsilon=\left(200 \times 10^{9}\right)\left(400 \times 10^{-6}\right)\left(39.860 \times 10^{-6}\right)=3.1888 \times 10^{3} \mathrm{~N}$

$$
P_{b}=E_{b} A_{b} \varepsilon=\left(105 \times 10^{9}\right)\left(600 \times 10^{-6}\right)\left(39.860 \times 10^{-6}\right)=2.5112 \times 10^{-3} \mathrm{~N}
$$

Total allowable additional force:

$$
P=P_{s}+P_{b}=3.1888 \times 10^{3}+2.5112 \times 10^{3}=5.70 \times 10^{3} \mathrm{~N}
$$

$$
P=5.70 \mathrm{kN}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

$$
\Delta T=T_{f}-T_{i}=150^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}=130^{\circ} \mathrm{C}
$$

Unrestrained thermal expansion of each part:
Aluminum rod: $\quad\left(\delta_{T}\right)_{a}=L \alpha_{a}(\Delta T)$

$$
\begin{aligned}
\left(\delta_{T}\right)_{a} & =(0.200 \mathrm{~m})\left(23.6 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)\left(130^{\circ} \mathrm{C}\right) \\
& =6.1360 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

Steel link:

$$
\begin{aligned}
\left(\delta_{T}\right)_{s} & =L \alpha_{s}(\Delta T) \\
\left(\delta_{T}\right)_{s} & =(0.200 \mathrm{~m})\left(11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)\left(130^{\circ} \mathrm{C}\right) \\
& =3.0420 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

Let P be the compressive force developed in the aluminum rod. It is also the tensile force in the steel link.
Aluminum rod: $\quad\left(\delta_{P}\right)_{a}=\frac{P L}{E_{a} A_{a}}$

$$
\begin{aligned}
& =\frac{P(0.200 \mathrm{~m})}{\left(70 \times 10^{9} \mathrm{~Pa}\right)(\pi / 4)(0.03 \mathrm{~m})^{2}} \\
& =4.0420 \times 10^{-9} \mathrm{P}
\end{aligned}
$$

Steel link:

$$
\begin{aligned}
\left(\delta_{P}\right)_{s} & =\frac{P L}{E_{s} A_{s}} \\
& =\frac{P(0.200)}{\left(200 \times 10^{9} \mathrm{~Pa}\right)(2)(0.02 \mathrm{~m})^{2}} \\
& =1.250 \times 10^{-9} \mathrm{P}
\end{aligned}
$$

Setting the total deformed lengths in the link and rod equal gives

$$
(0.200)+\left(\delta_{T}\right)_{s}+\left(\delta_{P}\right)_{s}=(0.200)+\left(0.15 \times 10^{-3}\right)+\left(\delta_{T}\right)_{a}-\left(\delta_{P}\right)_{a}
$$

PROBLEM 2.57 (Continued)

$$
\begin{aligned}
\left(\delta_{P}\right)_{s}+\left(\delta_{P}\right)_{a} & =0.15 \times 10^{-3}+\left(\delta_{T}\right)_{a}-\left(\delta_{T}\right)_{s} \\
1.25 \times 10^{-9} P+4.0420 \times 10^{-9} P & =0.15 \times 10^{-3}+6.1360 \times 10^{-4}-3.0420 \times 10^{-4} \\
P & =8.6810 \times 10^{4} \mathrm{~N} \\
\text { (a) } \quad \text { Stress in rod: } \quad \sigma & =\frac{P}{A} \\
\sigma_{R} & =\frac{-8.6810 \times 10^{4} \mathrm{~N}}{(\pi / 4)(0.030 \mathrm{~m})^{2}}=-1.22811 \times 10^{8} \mathrm{~Pa}
\end{aligned}
$$

$$
\sigma_{R}=-122.8 \mathrm{MPa}
$$

(b) Stress in link:

$$
\sigma_{L}=\frac{8.6810 \times 10^{4} \mathrm{~N}}{(2)(0.020 \mathrm{~m})^{2}}=1.08513 \times 10^{8} \mathrm{~Pa}
$$

$$
\sigma_{L}=108.5 \mathrm{MPa}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.58

Knowing that a 0.02 -in. gap exists when the temperature is $75^{\circ} \mathrm{F}$, determine (a) the temperature at which the normal stress in the aluminum bar will be equal to $-11 \mathrm{ksi},(b)$ the corresponding exact length of the aluminum bar.

SOLUTION

$$
\begin{aligned}
\sigma_{a} & =-11 \mathrm{ksi}=-11 \times 10^{3} \mathrm{psi} \\
P & =-\sigma_{a} A_{a}=\left(11 \times 10^{3}\right)(2.8)=30.8 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

$\underline{\text { Shortening due to } P}$:

$$
\begin{aligned}
\delta_{P} & =\frac{P L_{b}}{E_{b} A_{b}}+\frac{P L_{a}}{E_{a} A_{a}} \\
& =\frac{\left(30.8 \times 10^{3}\right)(14)}{\left(15 \times 10^{6}\right)(2.4)}+\frac{\left(30.8 \times 10^{3}\right)(18)}{\left(10.6 \times 10^{6}\right)(2.8)} \\
& =30.657 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

Available elongation for thermal expansion:

$$
\delta_{T}=0.02+30.657 \times 10^{-3}=50.657 \times 10^{-3} \mathrm{in}
$$

But $\delta_{T}=L_{b} \alpha_{b}(\Delta T)+L_{a} \alpha_{a}(\Delta T)$

$$
=(14)\left(12 \times 10^{-6}\right)(\Delta T)+(18)\left(12.9 \times 10^{-6}\right)(\Delta T)=\left(400.2 \times 10^{-6}\right) \Delta T
$$

Equating, $\left(400.2 \times 10^{-6}\right) \Delta T=50.657 \times 10^{-3} \quad \Delta T=126.6^{\circ} \mathrm{F}$
(a) $T_{\text {hot }}=T_{\text {cold }}+\Delta T=75+126.6=201.6^{\circ} \mathrm{F}$ $T_{\text {hot }}=201.6^{\circ} \mathrm{F}$
(b) $\delta_{a}=L_{a} \alpha_{a}(\Delta T)-\frac{P L_{a}}{E_{a} A_{a}}$

$$
\begin{array}{cc}
=(18)\left(12.9 \times 10^{-6}\right)(26.6)-\frac{\left(30.8 \times 10^{3}\right)(18)}{\left(10.6 \times 10^{6}\right)(2.8)}=10.712 \times 10^{-3} \mathrm{in} \\
L_{\text {exact }}=18+10.712 \times 10^{-3}=18.0107 \mathrm{in} . & L=18.0107 \mathrm{in}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.59

Determine (a) the compressive force in the bars shown after a temperature rise of $180^{\circ} \mathrm{F},(b)$ the corresponding change in length of the bronze bar.

SOLUTION

Thermal expansion if free of constraint:

$$
\begin{aligned}
\delta_{T} & =L_{b} \alpha_{b}(\Delta T)+L_{a} \alpha_{a}(\Delta T) \\
& =(14)\left(12 \times 10^{-6}\right)(180)+(18)\left(12.9 \times 10^{-6}\right)(180) \\
& =72.036 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

Constrained expansion: $\delta=0.02 \mathrm{in}$.
Shortening due to induced compressive force P :

$$
\delta_{P}=72.036 \times 10^{-3}-0.02=52.036 \times 10^{-3} \mathrm{in} .
$$

But

$$
\begin{aligned}
\delta_{P} & =\frac{P L_{b}}{E_{b} A_{b}}+\frac{P L_{a}}{E_{a} A_{a}}=\left(\frac{L_{b}}{E_{b} A_{b}}+\frac{L_{a}}{E_{a} A_{a}}\right) P \\
& =\left(\frac{14}{\left(15 \times 10^{6}\right)(2.4)}+\frac{18}{\left(10.6 \times 10^{6}\right)(2.8)}\right) P=995.36 \times 10^{-9} P
\end{aligned}
$$

Equating,

$$
\begin{aligned}
995.36 \times 10^{-9} P & =52.036 \times 10^{-3} \\
P & =52.279 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

(a)
(b) $\delta_{b}=L_{b} \alpha_{b}(\Delta T)-\frac{P L_{b}}{E_{b} A_{b}}$

$$
=(14)\left(12 \times 10^{-6}\right)(180)-\frac{\left(52.279 \times 10^{3}\right)(14)}{\left(15 \times 10^{6}\right)(2.4)}=9.91 \times 10^{-3} \mathrm{in} . \quad \delta_{b}=9.91 \times 10^{-3} \mathrm{in}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Aluminum	Stainless steel
$A=2000 \mathrm{~mm}^{2}$	$A=800 \mathrm{~mm}^{2}$
$E=75 \mathrm{GPa}$	$E=190 \mathrm{GPa}$
$\alpha=23 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\alpha=17.3 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

PROBLEM 2.60

At room temperature $\left(20^{\circ} \mathrm{C}\right)$ a $0.5-\mathrm{mm}$ gap exists between the ends of the rods shown. At a later time when the temperature has reached $140^{\circ} \mathrm{C}$, determine (a) the normal stress in the aluminum rod, (b) the change in length of the aluminum rod.

SOLUTION

$$
\Delta T=140-20=120^{\circ} \mathrm{C}
$$

Free thermal expansion:

$$
\begin{aligned}
\delta_{T} & =L_{a} \alpha_{a}(\Delta T)+L_{s} \alpha_{s}(\Delta T) \\
& =(0.300)\left(23 \times 10^{-6}\right)(120)+(0.250)\left(17.3 \times 10^{-6}\right)(120) \\
& =1.347 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$\underline{\text { Shortening due to } P \text { to meet constraint: }}$

$$
\begin{aligned}
\delta_{P} & =1.347 \times 10^{-3}-0.5 \times 10^{-3}=0.847 \times 10^{-3} \mathrm{~m} \\
\delta_{P} & =\frac{P L_{a}}{E_{a} A_{a}}+\frac{P L_{s}}{E_{s} A_{s}}=\left(\frac{L_{a}}{E_{a} A_{a}}+\frac{L_{s}}{E_{s} A_{s}}\right) P \\
& =\left(\frac{0.300}{\left(75 \times 10^{9}\right)\left(2000 \times 10^{-6}\right)}+\frac{0.250}{\left(190 \times 10^{9}\right)\left(800 \times 10^{-6}\right)}\right) P \\
& =3.6447 \times 10^{-9} \mathrm{P}
\end{aligned}
$$

Equating,

$$
\begin{aligned}
3.6447 \times 10^{-9} P & =0.847 \times 10^{-3} \\
P & =232.39 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

(a) $\sigma_{a}=-\frac{P}{A_{a}}=-\frac{232.39 \times 10^{3}}{2000 \times 10^{-6}}=-116.2 \times 10^{6} \mathrm{~Pa}$ $\sigma_{a}=-116.2 \mathrm{MPa}$
(b) $\delta_{a}=L_{a} \alpha_{a}(\Delta T)-\frac{P L_{a}}{E_{a} A_{a}}$ $=(0.300)\left(23 \times 10^{-6}\right)(120)-\frac{\left(232.39 \times 10^{3}\right)(0.300)}{\left(75 \times 10^{9}\right)\left(2000 \times 10^{-6}\right)}=363 \times 10^{-6} \mathrm{~m} \quad \delta_{a}=0.363 \mathrm{~mm}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.61

A standard tension test is used to determine the properties of an experimental plastic. The test specimen is a $\frac{5}{8}$-in.-diameter rod and it is subjected to an $800-\mathrm{lb}$ tensile force. Knowing that an elongation of 0.45 in . and a decrease in diameter of 0.025 in . are observed in a $5-\mathrm{in}$. gage length, determine the modulus of elasticity, the modulus of rigidity, and Poisson's ratio for the material.

SOLUTION

$$
\begin{array}{rl}
A & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}\left(\frac{5}{8}\right)^{2}=0.306796 \mathrm{in}^{2} \\
P & =800 \mathrm{lb} \\
\sigma_{y} & =\frac{P}{A}=\frac{800}{0.306796}=2.6076 \times 10^{3} \mathrm{psi} \\
\varepsilon_{y} & =\frac{\delta_{y}}{L}=\frac{0.45}{5.0}=0.090 \\
\varepsilon_{x} & =\frac{\delta_{x}}{d}=\frac{-0.025}{0.625}=-0.040 \\
E=\frac{\delta_{y}}{\varepsilon_{y}}=\frac{2.6076 \times 10^{3}}{0.090}=28.973 \times 10^{3} \mathrm{psi} & \\
v=-\frac{\varepsilon_{x}}{\varepsilon_{y}}=\frac{-0.040}{0.090}=0.44444 & E=29.0 \times 10^{3} \mathrm{psi} \\
\sigma=\frac{E}{2(1+v)}=\frac{28.973 \times 10^{3}}{(2)(1+0.44444)}=10.0291 \times 10^{3} \mathrm{psi} & \\
\quad v=0.444
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

$$
\begin{aligned}
d_{o} & =0.240 \quad t=0.010 \quad L=2.0 \\
d_{i} & =d_{o}-2 t=0.240-2(0.010)=0.220 \mathrm{~m} \quad P=640 \times 10^{3} \mathrm{~N} \\
A & =\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)=\frac{\pi}{4}(0.240-0.220)=7.2257 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

(a) $\delta=-\frac{P L}{E A}=-\frac{\left(640 \times 10^{3}\right)(2.0)}{\left(73 \times 10^{9}\right)\left(7.2257 \times 10^{-3}\right)}$

$$
=-2.4267 \times 10^{-3} \mathrm{~m} \quad \delta=-2.43 \mathrm{~mm}
$$

$$
\varepsilon=\frac{\delta}{L}=\frac{-2.4267}{2.0}=-1.21335 \times 10^{-3}
$$

$$
\varepsilon_{L A T}=-v \varepsilon=-(0.33)\left(-1.21335 \times 10^{-3}\right)
$$

$$
=4.0041 \times 10^{-4}
$$

(b) $\Delta d_{o}=d_{o} \varepsilon_{L A T}=(240 \mathrm{~mm})\left(4.0041 \times 10^{-4}\right)=9.6098 \times 10^{-2} \mathrm{~mm}$

$$
\Delta d_{o}=0.0961 \mathrm{~mm}
$$

$$
\Delta t=t \varepsilon_{L A T}=(10 \mathrm{~mm})\left(4.0041 \times 10^{-4}\right)=4.0041 \times 10^{-3} \mathrm{~mm}
$$

$$
\Delta t=0.00400 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.63

A line of slope 4:10 has been scribed on a cold-rolled yellow-brass plate, 150 mm wide and 6 mm thick. Knowing that $E=105 \mathrm{GPa}$ and $v=0.34$, determine the slope of the line when the plate is subjected to a $200-\mathrm{kN}$ centric axial load as shown.

SOLUTION

$$
\begin{aligned}
A & =(0.150)(0.006)=0.9 \times 10^{-3} \mathrm{~m}^{2} \\
\sigma_{x} & =\frac{P}{A}=\frac{200 \times 10^{3}}{0.9 \times 10^{-3}}=222.22 \times 10^{6} \mathrm{~Pa} \\
\varepsilon_{x} & =\frac{\sigma_{x}}{E}=\frac{222.22 \times 10^{6}}{105 \times 10^{9}}=2.1164 \times 10^{-3} \\
\varepsilon_{y} & =-v \varepsilon_{x}=-(0.34)\left(2.1164 \times 10^{-3}\right) \\
& =-0.71958 \times 10^{-3} \\
4\left(1+\varepsilon_{y}\right) & \tan \theta
\end{aligned} \quad=\frac{4\left(1+\varepsilon_{y}\right)}{10\left(1+\varepsilon_{x}\right)}
$$

$\tan \theta=0.399$

PROBLEM 2.64

A $2.75-\mathrm{kN}$ tensile load is applied to a test coupon made from $1.6-\mathrm{mm}$ flat steel plate $(\mathrm{E}=200 \mathrm{GPa}$, $v=0.30$). Determine the resulting change (a) in the $50-\mathrm{mm}$ gage length, (b) in the width of portion $A B$ of the test coupon, (c) in the thickness of portion $A B,(d)$ in the crosssectional area of portion $A B$.

SOLUTION

$$
\begin{aligned}
A & =(1.6)(12)=19.20 \mathrm{~mm}^{2} \\
& =19.20 \times 10^{-6} \mathrm{~m}^{2} \\
P & =2.75 \times 10^{3} \mathrm{~N} \\
\sigma_{x} & =\frac{P}{A}=\frac{2.75 \times 10^{3}}{19.20 \times 10^{-6}} \\
& =143.229 \times 10^{6} \mathrm{~Pa} \\
\varepsilon_{x} & =\frac{\sigma_{x}}{E}=\frac{143.229 \times 10^{6}}{200 \times 10^{9}}=716.15 \times 10^{-6} \\
\varepsilon_{y} & =\varepsilon_{z}=-v \varepsilon_{x}=-(0.30)\left(716.15 \times 10^{-6}\right)=-214.84 \times 10^{-6}
\end{aligned}
$$

(a)

$$
L=0.050 \mathrm{~m} \quad \delta_{x}=L \varepsilon_{x}=(0.50)\left(716.15 \times 10^{-6}\right)=35.808 \times 10^{-6} \mathrm{~m}
$$

0.0358 mm
(b) $\quad w=0.012 \mathrm{~m} \quad \delta_{y}=w \varepsilon_{y}=(0.012)\left(-214.84 \times 10^{-6}\right)=-2.5781 \times 10^{-6} \mathrm{~m}$ $-0.00258 \mathrm{~mm}$
(c) $\quad t=0.0016 \mathrm{~m} \quad \delta_{z}=t \varepsilon_{z}=(0.0016)\left(-214.84 \times 10^{-6}\right)=-343.74 \times 10^{-9} \mathrm{~m}$ $-0.000344 \mathrm{~mm}$
(d)

$$
\begin{aligned}
A & =w_{0}\left(1+\varepsilon_{y}\right) t_{0}\left(1+\varepsilon_{z}\right)=w_{0} t_{0}\left(1+\varepsilon_{y}+\varepsilon_{z}+\varepsilon_{y} \varepsilon_{z}\right) \quad A_{0}=w_{0} t_{0} \\
\Delta A & =A-A_{0}=w_{0} t_{0}\left(\varepsilon_{y}+\varepsilon_{z}+\text { negligible term }\right)=2 w_{0} t_{0} \varepsilon_{y} \\
& =(2)(0.012)(0.0016)\left(-214.84 \times 10^{-6}\right)=-8.25 \times 10^{-9} \mathrm{~m}^{2}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.65

In a standard tensile test, a steel rod of $22-\mathrm{mm}$ diameter is subjected to a tension force of 75 kN . Knowing that $v=0.3$ and $E=200 \mathrm{GPa}$, determine (a) the elongation of the rod in a $200-\mathrm{mm}$ gage length, (b) the change in diameter of the rod.

SOLUTION

$$
\begin{aligned}
P=75 \mathrm{kN}=75 \times 10^{3} \mathrm{~N} \quad A & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.022)^{2}=380.13 \times 10^{-6} \mathrm{~m}^{2} \\
\sigma & =\frac{P}{A}=\frac{75 \times 10^{3}}{380.13 \times 10^{-6}}=197.301 \times 10^{6} \mathrm{~Pa} \\
\varepsilon_{x} & =\frac{\sigma}{E}=\frac{197.301 \times 10^{6}}{200 \times 10^{9}}=986.51 \times 10^{-6} \\
\delta_{x} & =L \varepsilon_{x}=(200 \mathrm{~mm})\left(986.51 \times 10^{-6}\right)
\end{aligned}
$$

(a) $\delta_{x}=0.1973 \mathrm{~mm}$
$\varepsilon_{y}=-v \varepsilon_{x}=-(0.3)\left(986.51 \times 10^{-6}\right)=-295.95 \times 10^{-6}$
$\delta_{y}=d \varepsilon_{y}=(22 \mathrm{~mm})\left(-295.95 \times 10^{-6}\right)$
(b) $\delta_{y}=-0.00651 \mathrm{~mm}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.66

The change in diameter of a large steel bolt is carefully measured as the nut is tightened. Knowing that $E=29 \times 10^{6}$ psi and $v=0.30$, determine the internal force in the bolt if the diameter is observed to decrease by $0.5 \times 10^{-3} \mathrm{in}$.

SOLUTION

$$
\begin{aligned}
\delta_{y} & =-0.5 \times 10^{-3} \mathrm{in} . \quad d=2.5 \mathrm{in} . \\
\varepsilon_{y} & =\frac{\varepsilon_{y}}{d}=-\frac{0.5 \times 10^{-3}}{2.5}=-0.2 \times 10^{-3} \\
v & =-\frac{\varepsilon_{y}}{\varepsilon_{x}}: \quad \varepsilon_{x}=\frac{-\varepsilon_{y}}{v}=\frac{0.2 \times 10^{-3}}{0.3}=0.66667 \times 10^{-3} \\
\sigma_{x} & =E \varepsilon_{x}=\left(29 \times 10^{6}\right)\left(0.66667 \times 10^{-3}\right)=19.3334 \times 10^{3} \mathrm{psi} \\
A & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}(2.5)^{2}=4.9087 \mathrm{in}^{2} \\
F & =\sigma_{x} A=\left(19.3334 \times 10^{3}\right)(4.9087)=94.902 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

$$
F=94.9 \mathrm{kips}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.67

The brass $\operatorname{rod} A D$ is fitted with a jacket that is used to apply a hydrostatic pressure of 48 MPa to the $240-\mathrm{mm}$ portion $B C$ of the rod. Knowing that $E=105 \mathrm{GPa}$ and $v=0.33$, determine (a) the change in the total length $A D,(b)$ the change in diameter at the middle of the rod.

SOLUTION

$$
\begin{aligned}
\sigma_{x} & =\sigma_{z}=-p=-48 \times 10^{6} \mathrm{~Pa}, \quad \sigma_{y}=0 \\
\varepsilon_{x} & =\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right) \\
& =\frac{1}{105 \times 10^{9}}\left[-48 \times 10^{6}-(0.33)(0)-(0.33)\left(-48 \times 10^{6}\right)\right] \\
& =306.29 \times 10^{-6} \\
\varepsilon_{y} & =\frac{1}{E}\left(-v \sigma_{x}-\sigma_{y}-v \sigma_{z}\right) \\
& =\frac{1}{105 \times 10^{9}}\left[-(0.33)\left(-48 \times 10^{6}\right)+0-(0.33)\left(-48 \times 10^{6}\right)\right] \\
& =301.71 \times 10^{-6}
\end{aligned}
$$

(a) Change in length: only portion $B C$ is strained. $L=240 \mathrm{~mm}$

$$
\delta_{y}=L \varepsilon_{y}=(240)\left(-301.71 \times 10^{-6}\right)=-0.0724 \mathrm{~mm}
$$

(b) Change in diameter: $d=50 \mathrm{~mm}$

$$
\delta_{x}=\delta_{z}=d \varepsilon_{x}=(50)\left(-306.29 \times 10^{-6}\right)=-0.01531 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.68

A fabric used in air-inflated structures is subjected to a biaxial loading that results in normal stresses $\sigma_{x}=18 \mathrm{ksi}$ and $\sigma_{z}=24 \mathrm{ksi}$. Knowing that the properties of the fabric can be approximated as $E=12.6 \times 10^{6}$ psi and $v=0.34$, determine the change in length of (a) side $A B$, (b) side $B C$, (c) diagonal $A C$.

SOLUTION

$$
\begin{aligned}
\sigma_{x} & =18 \mathrm{ksi} \quad \sigma_{y}=0 \quad \sigma_{z}=24 \mathrm{ksi} \\
\varepsilon_{x} & =\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)=\frac{1}{12.6 \times 10^{6}}[18,000-(0.34)(24,000)]=780.95 \times 10^{-6} \\
\varepsilon_{z} & =\frac{1}{E}\left(-v \sigma_{x}-v \sigma_{y}+\sigma_{z}\right)=\frac{1}{12.6 \times 10^{6}}[-(0.34)(18,000)+24,000]=1.41905 \times 10^{-3}
\end{aligned}
$$

(a) $\delta_{A B}=(A B) \varepsilon_{x}=(4 \mathrm{in}).\left(780.95 \times 10^{-6}\right)=0.0031238 \mathrm{in}$.
0.00312 in .
(b) $\delta_{B C}=(B C) \varepsilon_{z}=(3$ in. $)\left(1.41905 \times 10^{-3}\right)=0.0042572 \mathrm{in}$.
0.00426 in.

Label sides of right triangle $A B C$ as a, b, c.
Then

$$
c^{2}=a^{2}+b^{2}
$$

Obtain differentials by calculus.

$$
\begin{aligned}
& 2 c d c=2 a d a+2 b d b \\
& d c=\frac{a}{c} d a+\frac{b}{c} d b
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { But } a & =4 \mathrm{in.} & b=3 \mathrm{in} . & \\
d a & =\sqrt{4^{2}+3^{2}}=5 \mathrm{in} . \\
d a B & =0.0031238 \mathrm{in} . & & d b=\delta_{B C}=0.0042572 \mathrm{in.}
\end{array}
$$

(c) $\delta_{A C}=d c=\frac{4}{5}(0.0031238)+\frac{3}{5}(0.0042572)$
0.00505 in.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.69

A 1-in. square was scribed on the side of a large steel pressure vessel. After pressurization the biaxial stress condition at the square is as shown. Knowing that $E=29 \times 10^{6} \mathrm{psi}$ and $v=0.30$, determine the change in length of (a) side $A B,(b)$ side $B C,(c)$ diagonal $A C$.

SOLUTION

$$
\begin{aligned}
\varepsilon_{x} & =\frac{1}{E}\left(\sigma_{x}-v \delta_{y}\right)=\frac{1}{29 \times 10^{6}}\left[12 \times 10^{3}-(0.30)\left(6 \times 10^{3}\right)\right] \\
& =351.72 \times 10^{-6} \\
\varepsilon_{y} & =\frac{1}{E}\left(\sigma_{y}-v \delta_{x}\right)=\frac{1}{29 \times 10^{6}}\left[6 \times 10^{3}-(0.30)\left(12 \times 10^{3}\right)\right] \\
& =82.759 \times 10^{-6}
\end{aligned}
$$

(a) $\delta_{A B}=(A B)_{0} \varepsilon_{x}=(1.00)\left(351.72 \times 10^{-6}\right)=352 \times 10^{-6} \mathrm{in}$.
(b) $\quad \delta_{B C}=(B C)_{0} \varepsilon_{y}=(1.00)\left(82.759 \times 10^{-6}\right)=82.8 \times 10^{-6} \mathrm{in}$.
(c) $\quad(A C)=\sqrt{(A B)^{2}+(B C)^{2}}=\sqrt{\left(A B_{0}+\delta_{x}\right)^{2}+\left(B C_{0}+\delta_{y}\right)^{2}}$

$$
=\sqrt{\left(1+351.72 \times 10^{-6}\right)^{2}+\left(1+82.759 \times 10^{-6}\right)^{2}}
$$

$$
=1.41452
$$

$$
(A C)_{0}=\sqrt{2} \quad A C-(A C)_{0}=307 \times 10^{-6}
$$

or use calculus as follows:

Label sides using a, b, and c as shown.
$c^{2}=a^{2}+b^{2}$
Obtain differentials. $\quad 2 c d c=2 a d a+2 b d c$
from which

$$
d c=\frac{a}{c} d a+\frac{b}{c} d c
$$

But $a=100$ in., $b=1.00$ in., $c=\sqrt{2}$ in.

$$
\begin{aligned}
d a & =\delta_{A B}=351.72 \times 10^{-6} \mathrm{in} ., d b=\delta_{B C}=82.8 \times 10^{-6} \mathrm{in.} \\
\delta_{A C} & =d c=\frac{1.00}{\sqrt{2}}\left(351.7 \times 10^{-6}\right)+\frac{1.00}{\sqrt{2}}\left(82.8 \times 10^{-6}\right) \\
& =307 \times 10^{-6} \mathrm{in.}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

(a) $\quad \delta_{y}=0 \quad \varepsilon_{y}=0 \quad \sigma_{z}=0$
$\varepsilon_{y}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)$
$\sigma_{y}=v \sigma_{x}=(0.35)\left(-180 \times 10^{6}\right)$

$$
=-63 \times 10^{6} \mathrm{~Pa}
$$

$$
\sigma_{y}=-63.0 \mathrm{MPa}
$$

$$
\begin{aligned}
& \varepsilon_{z}=\frac{1}{E}\left(\sigma_{z}-v \sigma_{x}-v \sigma_{y}\right)=-\frac{v}{E}\left(\sigma_{x}+\sigma_{y}\right)=-\frac{(0.35)\left(-243 \times 10^{6}\right)}{45 \times 10^{9}}=+1.890 \times 10^{-3} \\
& \varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)=\frac{\sigma_{x}-v \sigma_{y}}{E}=-\frac{157.95 \times 10^{6}}{45 \times 10^{9}}=-3.510 \times 10^{-3}
\end{aligned}
$$

(b) $A_{0}=L_{x} L_{z}$
$A=L_{x}\left(1+\varepsilon_{x}\right) L_{z}\left(1+\varepsilon_{z}\right)=L_{x} L_{z}\left(1+\varepsilon_{x}+\varepsilon_{z}+\varepsilon_{x} \varepsilon_{z}\right)$
$\Delta A=A-A_{0}=L_{x} L_{z}\left(\varepsilon_{x}+\varepsilon_{z}+\varepsilon_{x} \varepsilon_{z}\right) \approx L_{x} L_{z}\left(\varepsilon_{x}+\varepsilon_{z}\right)$
$\Delta A=(100 \mathrm{~mm})(25 \mathrm{~mm})\left(-3.510 \times 10^{-3}+1.890 \times 10^{-3}\right) \quad \Delta A=-4.05 \mathrm{~mm}^{2}$
(c) $V_{0}=L_{x} L_{y} L_{z}$

$$
V=L_{x}\left(1+\varepsilon_{x}\right) L_{y}\left(1+\varepsilon_{y}\right) L_{z}\left(1+\varepsilon_{z}\right)
$$

$$
=L_{x} L_{y} L_{z}\left(1+\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}+\varepsilon_{x} \varepsilon_{y}+\varepsilon_{y} \varepsilon_{z}+\varepsilon_{z} \varepsilon_{x}+\varepsilon_{x} \varepsilon_{y} \varepsilon_{z}\right)
$$

$\Delta V=V-V_{0}=L_{x} L_{y} L_{z}\left(\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}+\right.$ small terms $)$
$\Delta V=(100)(40)(25)\left(-3.510 \times 10^{-3}+0+1.890 \times 10^{-3}\right)$
$\Delta V=-162.0 \mathrm{~mm}^{3}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.71

The homogeneous plate $A B C D$ is subjected to a biaxial loading as shown. It is known that $\sigma_{z}=\sigma_{0}$ and that the change in length of the plate in the x direction must be zero, that is, $\varepsilon_{x}=0$. Denoting by E the modulus of elasticity and by v Poisson's ratio, determine (a) the required magnitude of $\sigma_{x},(b)$ the ratio $\sigma_{0} / \varepsilon_{z}$.

SOLUTION

$$
\begin{aligned}
& \sigma_{z}=\sigma_{0}, \quad \sigma_{y}=0, \quad \varepsilon_{x}=0 \\
& \varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)=\frac{1}{E}\left(\sigma_{x}-v \sigma_{0}\right)
\end{aligned}
$$

(a)
(b) $\varepsilon_{z}=\frac{1}{E}\left(-v \sigma_{x}-v \sigma_{y}+\sigma_{z}\right)=\frac{1}{E}\left(-v^{2} \sigma_{0}-0+\sigma_{0}\right)=\frac{1-v^{2}}{E} \sigma_{0}$

$$
\begin{gathered}
\sigma_{x}=v \sigma_{0} \\
\frac{\sigma_{0}}{\varepsilon_{z}}=\frac{E}{1-v^{2}}
\end{gathered}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.72

For a member under axial loading, express the normal strain ε^{\prime} in a direction forming an angle of 45° with the axis of the load in terms of the axial strain ε_{x} by (a) comparing the hypotenuses of the triangles shown in Fig. 2.43, which represent, respectively, an element before and after deformation, (b) using the values of the corresponding stresses of σ^{\prime} and σ_{x} shown in Fig. 1.38, and the generalized Hooke's law.

SOLUTION

Figure 2.49
(a) $\quad\left[\sqrt{2}\left(1+\varepsilon^{\prime}\right)\right]^{2}=\left(1+\varepsilon_{x}\right)^{2}+\left(1-v \varepsilon_{x}\right)^{2}$
$2\left(1+2 \varepsilon^{\prime}+\varepsilon^{\prime 2}\right)=1+2 \varepsilon_{x}+\varepsilon_{x}^{2}+1-2 v \varepsilon_{x}+v^{2} \varepsilon_{x}^{2}$
$4 \varepsilon^{\prime}+2 \varepsilon^{\prime 2}=2 \varepsilon_{x}+\varepsilon_{x}^{2}-2 v \varepsilon_{x}+v^{2} \varepsilon_{x}^{2}$

$$
\text { Neglect squares as small. } \quad 4 \varepsilon^{\prime}=2 \varepsilon_{x}-2 v \varepsilon_{x} \quad \varepsilon^{\prime}=\frac{1-v}{2} \varepsilon_{x}
$$

(A)

After deformation
(B)

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.72 (Continued)

(b) $\varepsilon^{\prime}=\frac{\sigma^{\prime}}{E}-\frac{v \sigma^{\prime}}{E}$

$$
\begin{aligned}
& =\frac{1-v}{E} \cdot \frac{P}{2 A} \\
& =\frac{1-v}{2 E} \sigma_{x} \\
& =\frac{1-v}{2} \varepsilon_{x}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.73

In many situations, it is known that the normal stress in a given direction is zero. For example, $\sigma_{z}=0$ in the case of the thin plate shown. For this case, which is known as plane stress, show that if the strains ε_{x} and ε_{y} have been determined experimentally, we can express σ_{x}, σ_{y}, and ε_{z} as follows:

$$
\sigma_{x}=E \frac{\varepsilon_{x}+v \varepsilon_{y}}{1-v^{2}} \quad \sigma_{y}=E \frac{\varepsilon_{y}+v \varepsilon_{x}}{1-v^{2}} \quad \varepsilon_{z}=-\frac{v}{1-v}\left(\varepsilon_{x}+\varepsilon_{y}\right)
$$

SOLUTION

$$
\begin{align*}
\sigma_{z} & =0 \\
\varepsilon_{x} & =\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right) \tag{1}\\
\varepsilon_{y} & =\frac{1}{E}\left(-v \sigma_{x}+\sigma_{y}\right) \tag{2}
\end{align*}
$$

Multiplying (2) by v and adding to (1),

$$
\varepsilon_{x}+v \varepsilon_{y}=\frac{1-v^{2}}{E} \sigma_{x} \quad \text { or } \quad \sigma_{x}=\frac{E}{1-v^{2}}\left(\varepsilon_{x}+v \varepsilon_{y}\right)
$$

Multiplying (1) by v and adding to (2),

$$
\begin{aligned}
\varepsilon_{y}+v \varepsilon_{x} & =\frac{1-v^{2}}{E} \sigma_{y} \quad \text { or } \quad \sigma_{y}=\frac{E}{1-v^{2}}\left(\varepsilon_{y}+v \varepsilon_{x}\right) \\
\varepsilon_{z} & =\frac{1}{E}\left(-v \sigma_{x}-v \sigma_{y}\right)=-\frac{v}{\not{ }^{\prime}} \cdot \frac{\not E^{\prime}}{1-v^{2}}\left(\varepsilon_{x}+v \varepsilon_{y}+\varepsilon_{y}+v \varepsilon_{x}\right) \\
& =-\frac{v(1+v)}{1-v^{2}}\left(\varepsilon_{x}+\varepsilon_{y}\right)=-\frac{v}{1-v}\left(\varepsilon_{x}+\varepsilon_{y}\right)
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

$$
\begin{aligned}
\varepsilon_{z} & =0=\frac{1}{E}\left(-v \sigma_{x}-v \sigma_{y}+\sigma_{z}\right) \text { or } \sigma_{z}=v\left(\sigma_{x}+\sigma_{y}\right) \\
\varepsilon_{x} & =\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right) \\
& =\frac{1}{E}\left[\sigma_{x}-v \sigma_{y}-v^{2}\left(\sigma_{x}+\sigma_{y}\right)\right] \\
& =\frac{1}{E}\left[\left(1-v^{2}\right) \sigma_{x}-v(1+v) \sigma_{y}\right] \\
\varepsilon_{y} & =\frac{1}{E}\left(-v \sigma_{x}+\sigma_{y}-v \sigma_{z}\right) \\
& =\frac{1}{E}\left[-v \sigma_{x}+\sigma_{y}-v^{2}\left(\sigma_{x}+\sigma_{y}\right)\right] \\
& =\frac{1}{E}\left[\left(1-v^{2}\right) \sigma_{y}-v(1+v) \sigma_{x}\right]
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.75

The plastic block shown is bonded to a rigid support and to a vertical plate to which a $55-$ kip load \mathbf{P} is applied. Knowing that for the plastic used $G=150 \mathrm{ksi}$, determine the deflection of the plate.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.76

What load \mathbf{P} should be applied to the plate of Prob. 2.75 to produce a $\frac{1}{16}$ - in . deflection?

PROBLEM 2.75 The plastic block shown is bonded to a rigid support and to a vertical plate to which a 55 -kip load \mathbf{P} is applied. Knowing that for the plastic used $G=150 \mathrm{ksi}$, determine the deflection of the plate.

SOLUTION

$$
\begin{aligned}
& \delta=\frac{1}{16} \mathrm{in.}=0.0625 \mathrm{in} . \\
& h=2 \mathrm{in.} \\
& \gamma=\frac{\delta}{h}=\frac{0.0625}{2}=0.03125 \\
& G=150 \times 10^{3} \mathrm{psi} \\
& \begin{aligned}
\tau & =G \gamma=\left(150 \times 10^{3}\right)(0.03125) \\
& =4687.5 \mathrm{psi}
\end{aligned} \\
& \begin{aligned}
A & =(3.2)(4.8)=15.36 \mathrm{in}^{2} \\
P & =\tau A=(4687.5)(15.36) \\
& =72.0 \times 10^{3} \mathrm{lb}
\end{aligned}
\end{aligned}
$$

PROBLEM 2.77

Two blocks of rubber with a modulus of rigidity $G=12 \mathrm{MPa}$ are bonded to rigid supports and to a plate $A B$. Knowing that $c=100 \mathrm{~mm}$ and $P=45 \mathrm{kN}$, determine the smallest allowable dimensions a and b of the blocks if the shearing stress in the rubber is not to exceed 1.4 MPa and the deflection of the plate is to be at least 5 mm .

SOLUTION

Shearing strain: $\quad \gamma=\frac{\delta}{a}=\frac{\tau}{G}$
$a=\frac{G \delta}{\tau}=\frac{\left(12 \times 10^{6} \mathrm{~Pa}\right)(0.005 \mathrm{~m})}{1.4 \times 10^{6} \mathrm{~Pa}}=0.0429 \mathrm{~m}$
$a=42.9 \mathrm{~mm}$

Shearing stress: $\quad \tau=\frac{\frac{1}{2} P}{A}=\frac{P}{2 b c}$
$b=\frac{P}{2 c \tau}=\frac{45 \times 10^{3} \mathrm{~N}}{2(0.1 \mathrm{~m})\left(1.4 \times 10^{6} \mathrm{~Pa}\right)}=0.1607 \mathrm{~m}$
$b=160.7 \mathrm{~mm}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.78

Two blocks of rubber with a modulus of rigidity $G=10 \mathrm{MPa}$ are bonded to rigid supports and to a plate $A B$. Knowing that $b=200 \mathrm{~mm}$ and $c=125 \mathrm{~mm}$, determine the largest allowable load P and the smallest allowable thickness a of the blocks if the shearing stress in the rubber is not to exceed 1.5 MPa and the deflection of the plate is to be at least 6 mm .

SOLUTION

Shearing stress: $\quad \tau=\frac{\frac{1}{2} P}{A}=\frac{P}{2 b c}$

$$
P=2 b c \tau=2(0.2 \mathrm{~m})(0.125 \mathrm{~m})\left(1.5 \times 10^{3} \mathrm{kPa}\right) \quad P=75.0 \mathrm{kN}
$$

Shearing strain: $\quad \gamma=\frac{\delta}{a}=\frac{\tau}{G}$

$$
a=\frac{G \delta}{\tau}=\frac{\left(10 \times 10^{6} \mathrm{~Pa}\right)(0.006 \mathrm{~m})}{1.5 \times 10^{6} \mathrm{~Pa}}=0.04 \mathrm{~m}
$$

$$
a=40.0 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.79

An elastomeric bearing ($G=130 \mathrm{psi}$) is used to support a bridge girder as shown to provide flexibility during earthquakes. The beam must not displace more than $\frac{3}{8}$ in. when a 5 -kip lateral load is applied as shown. Knowing that the maximum allowable shearing stress is 60 psi , determine (a) the smallest allowable dimension $b,(b)$ the smallest required thickness a.

SOLUTION

Shearing force:

$$
P=5 \mathrm{kips}=5000 \mathrm{lb}
$$

Shearing stress:

$$
\tau=60 \mathrm{psi}
$$

$$
\tau=\frac{P}{A}, \quad \text { or } \quad A=\frac{P}{\tau}=\frac{5000}{60}=83.333 \mathrm{in}^{2}
$$

and $\quad A=(8 \mathrm{in}).(b)$

(a) $b=\frac{A}{8}=\frac{83.333}{8}=10.4166 \mathrm{in}$.

$$
b=10.42 \mathrm{in}
$$

$$
\gamma=\frac{\tau}{\sigma}=\frac{60}{130}=461.54 \times 10^{-3} \mathrm{rad}
$$

(b) But $\gamma=\frac{\delta}{a}, \quad$ or $\quad a=\frac{\delta}{\gamma}=\frac{0.375 \mathrm{in} \text {. }}{461.54 \times 10^{-3}}$ $a=0.813$ in.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Shearing force: $\quad P=5 \mathrm{kips}=5000 \mathrm{lb}$
Area:

$$
A=(8 \mathrm{in} .)(10 \mathrm{in} .)=80 \mathrm{in}^{2}
$$

Shearing stress:

$$
\tau=\frac{P}{A}=\frac{5000}{80}
$$

$$
\tau=62.5 \mathrm{psi}
$$

Shearing strain:
$\gamma=\frac{\delta}{a}=\frac{0.4 \mathrm{in} .}{1 \mathrm{in.}}=0.400 \mathrm{rad}$
Shearing modulus:
$G=\frac{\tau}{\gamma}=\frac{62.5}{0.400}$
$G=156.3 \mathrm{psi}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.81

A vibration isolation unit consists of two blocks of hard rubber bonded to a plate $A B$ and to rigid supports as shown. Knowing that a force of magnitude $P=25 \mathrm{kN}$ causes a deflection $\delta=1.5 \mathrm{~mm}$ of plate $A B$, determine the modulus of rigidity of the rubber used.

SOLUTION

$$
\begin{aligned}
F & =\frac{1}{2} P=\frac{1}{2}\left(25 \times 10^{3} \mathrm{~N}\right)=12.5 \times 10^{3} \mathrm{~N} \\
\tau & =\frac{F}{A}=\frac{\left(12.5 \times 10^{3} \mathrm{~N}\right)}{(0.15 \mathrm{~m})(0.1 \mathrm{~m})}=833.33 \times 10^{3} \mathrm{~Pa} \\
\delta & =1.5 \times 10^{-3} \mathrm{~m} \quad h=0.03 \mathrm{~m} \\
\gamma & =\frac{\delta}{h}=\frac{1.5 \times 10^{-3}}{0.03}=0.05 \\
G & =\frac{\tau}{\gamma}=\frac{833.33 \times 10^{3}}{0.05}=16.67 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

PROBLEM 2.82

A vibration isolation unit consists of two blocks of hard rubber with a modulus of rigidity $G=19 \mathrm{MPa}$ bonded to a plate $A B$ and to rigid supports as shown. Denoting by P the magnitude of the force applied to the plate and by δ the corresponding deflection, determine the effective spring constant, $k=P / \delta$, of the system.

SOLUTION

Effective spring constant: $\quad k=\frac{P}{\delta}=\frac{2 G A}{h}$
with

$$
A=(0.15)(0.1)=0.015 \mathrm{~m}^{2} \quad h=0.03 \mathrm{~m}
$$

$k=\frac{2\left(19 \times 10^{6} \mathrm{~Pa}\right)\left(0.015 \mathrm{~m}^{2}\right)}{0.03 \mathrm{~m}}=19.00 \times 10^{6} \mathrm{~N} / \mathrm{m}$

$$
k=19.00 \times 10^{3} \mathrm{kN} / \mathrm{m}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.83*

A 6-in.-diameter solid steel sphere is lowered into the ocean to a point where the pressure is 7.1 ksi (about 3 miles below the surface). Knowing that $E=29 \times 10^{6}$ psi and $v=0.30$, determine (a) the decrease in diameter of the sphere, (b) the decrease in volume of the sphere, (c) the percent increase in the density of the sphere.

SOLUTION

For a solid sphere, $\quad V_{0}=\frac{\pi}{6} d_{0}^{3}$

$$
=\frac{\pi}{6}(6.00)^{3}
$$

$$
=113.097 \mathrm{in}^{3}
$$

$$
\sigma_{x}=\sigma_{y}=\sigma_{z}=-p
$$

$$
=-7.1 \times 10^{3} \mathrm{psi}
$$

$$
\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)
$$

$$
=-\frac{(1-2 v) p}{E}=-\frac{(0.4)\left(7.1 \times 10^{3}\right)}{29 \times 10^{6}}
$$

$$
=-97.93 \times 10^{-6}
$$

Likewise,

$$
\varepsilon_{y}=\varepsilon_{z}=-97.93 \times 10^{-6}
$$

$$
e=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}=-293.79 \times 10^{-6}
$$

(a) $-\Delta d=-d_{0} \varepsilon_{x}=-(6.00)\left(-97.93 \times 10^{-6}\right)=588 \times 10^{-6} \mathrm{in}$.
(b) $-\Delta V=-V_{0} e=-(113.097)\left(-293.79 \times 10^{-6}\right)=33.2 \times 10^{-3} \mathrm{in}^{3}$

$$
\begin{gathered}
-\Delta d=588 \times 10^{-6} \mathrm{in} \\
-\Delta V=33.2 \times 10^{-3} \mathrm{in}^{3}
\end{gathered}
$$

(c) Let $m=$ mass of sphere. $\quad m=$ constant.

$$
\begin{aligned}
m & =\rho_{0} V_{0}=\rho V=\rho V_{0}(1+e) \\
\frac{\rho-\rho_{0}}{\rho_{0}} & =\frac{\rho}{\rho_{0}}-1=\frac{m}{V_{0}(1+e)} \times \frac{V_{0}}{m}-1=\frac{1}{1+e}-1 \\
& =\left(1-e+e^{2}-e^{3}+\cdots\right)-1=-e+e^{2}-e^{3}+\cdots \\
& \approx-e=293.79 \times 10^{-6} \\
\frac{\rho-\rho_{0}}{\rho_{0}} \times 100 \% & =\left(293.79 \times 10^{-6}\right)(100 \%)
\end{aligned}
$$

0.0294\%

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

$$
h_{0}=135 \mathrm{~mm}=0.135 \mathrm{~m}
$$

$$
A_{0}=\frac{\pi}{4} d_{0}^{2}=\frac{\pi}{4}(85)^{2}=5.6745 \times 10^{3} \mathrm{~mm}^{2}=5.6745 \times 10^{-3} \mathrm{~m}^{2}
$$

$$
V_{0}=A_{0} h_{0}=766.06 \times 10^{3} \mathrm{~mm}^{3}=766.06 \times 10^{-6} \mathrm{~m}^{3}
$$

(a) $\sigma_{x}=0, \sigma_{y}=-58 \times 10^{6} \mathrm{~Pa}, \sigma_{z}=0$
$\varepsilon_{y}=\frac{1}{E}\left(-v \sigma_{x}+\sigma_{y}-v \sigma_{z}\right)=\frac{\sigma_{y}}{E}=-\frac{58 \times 10^{6}}{105 \times 10^{9}}=-552.38 \times 10^{-6}$
$\Delta h=h_{0} \varepsilon_{y}=(135 \mathrm{~mm})\left(-552.38 \times 10^{-6}\right)$ $\Delta h=-0.0746 \mathrm{~mm}$

$$
e=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)=\frac{(1-2 v) \sigma_{y}}{E}=\frac{(0.34)\left(-58 \times 10^{6}\right)}{105 \times 10^{9}}=-187.81 \times 10^{-6}
$$

$$
\Delta V=V_{0} e=\left(766.06 \times 10^{3} \mathrm{~mm}^{3}\right)\left(-187.81 \times 10^{-6}\right)
$$

$$
\Delta V=-143.9 \mathrm{~mm}^{3}
$$

(b) $\sigma_{x}=\sigma_{y}=\sigma_{z}=-70 \times 10^{6} \mathrm{~Pa} \quad \sigma_{x}+\sigma_{y}+\sigma_{z}=-210 \times 10^{6} \mathrm{~Pa}$
$\varepsilon_{y}=\frac{1}{E}\left(-v \sigma_{x}+\sigma_{y}-v \sigma_{z}\right)=\frac{1-2 v}{E} \sigma_{y}=\frac{(0.34)\left(-70 \times 10^{6}\right)}{105 \times 10^{9}}=-226.67 \times 10^{-6}$
$\Delta h=h_{0} \varepsilon_{y}=(135 \mathrm{~mm})\left(-226.67 \times 10^{-6}\right)$ $\Delta h=-0.0306 \mathrm{~mm}$

$$
e=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)=\frac{(0.34)\left(-210 \times 10^{6}\right)}{105 \times 10^{9}}=-680 \times 10^{-6}
$$

$\Delta V=V_{0} e=\left(766.06 \times 10^{3} \mathrm{~mm}^{3}\right)\left(-680 \times 10^{-6}\right) \quad \Delta V=-521 \mathrm{~mm}^{3}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.85*

Determine the dilatation e and the change in volume of the 8 -in. length of the rod shown if (a) the rod is made of steel with $E=29 \times 10^{6} \mathrm{psi}$ and $v=0.30,(b)$ the rod is made of aluminum with $E=10.6 \times 10^{6} \mathrm{psi}$ and $v=0.35$.

SOLUTION

$$
\begin{aligned}
& A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(1)^{2}=0.78540 \mathrm{in}^{2} \\
& P=11 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

Stresses :

$$
\begin{aligned}
& \sigma_{x}=\frac{P}{A}=\frac{11 \times 10^{3}}{0.78540}=14.0056 \times 10^{3} \mathrm{psi} \\
& \sigma_{y}=\sigma_{z}=0
\end{aligned}
$$

(a) Steel.

$$
\begin{aligned}
& E=29 \times 10^{6} \mathrm{psi} \quad v=0.30 \\
& \varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)=\frac{\sigma_{x}}{E}=\frac{14.0056 \times 10^{3}}{29 \times 10^{6}}=482.95 \times 10^{-6} \\
& \varepsilon_{y}=\frac{1}{E}\left(-v \sigma_{x}+\sigma_{y}-v \sigma_{z}\right)=-\frac{v \sigma_{x}}{E}=-v \varepsilon_{x}=-(0.30)\left(482.95 \times 10^{-6}\right) \\
&=-144.885 \times 10^{-6}
\end{aligned} \quad \begin{aligned}
\varepsilon_{z} & =\frac{1}{E}\left(-v \sigma_{x}-v \sigma_{y}+\sigma_{z}\right)=-\frac{v \sigma_{x}}{E}=\varepsilon_{y}=-144.885 \times 10^{-6} \\
e & =\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}=193.2 \times 10^{-6}
\end{aligned}
$$

$$
\Delta v=v e=\Delta L e=(0.78540)(8)\left(193.2 \times 10^{-6}\right)=1.214 \times 10^{-3} \mathrm{in}^{3}
$$

(b) Aluminum. $E=10.6 \times 10^{6} \mathrm{psi} \quad v=0.35$

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\sigma_{x}}{E}=\frac{14.0056 \times 10^{3}}{10.6 \times 10^{6}}=1.32128 \times 10^{-3} \\
& \varepsilon_{y}=-v \varepsilon_{x}=-(0.35)\left(1.32128 \times 10^{-3}\right)=-462.45 \times 10^{-6} \\
& \varepsilon_{z}=\varepsilon_{y}=-462.45 \times 10^{-6} \\
& e=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}=396 \times 10^{-6} \\
& \Delta v=v e=\Delta L e=(0.78540)(8)\left(396 \times 10^{-6}\right)=2.49 \times 10^{-3} \mathrm{in}^{3}
\end{aligned}
$$

PROBLEM 2.86

Determine the change in volume of the $50-\mathrm{mm}$ gage length segment $A B$ in Prob. 2.64 (a) by computing the dilatation of the material, (b) by subtracting the original volume of portion $A B$ from its final volume.

PROBLEM 2.64 A $2.75-\mathrm{kN}$ tensile load is applied to a test coupon made from $1.6-\mathrm{mm}$ flat steel plate $(E=200 \mathrm{GPa}, v=0.30)$. Determine the resulting change (a) in the $50-\mathrm{mm}$ gage length, (b) in the width of portion $A B$ of the test coupon, (c) in the thickness of portion $A B,(d)$ in the cross-sectional area of portion $A B$.

SOLUTION

(a) $A_{0}=(12)(1.6)=19.2 \mathrm{~mm}^{2}=19.2 \times 10^{-6} \mathrm{~m}^{2}$

Volume $\quad V_{0}=L_{0} A_{0}=(50)(19.2)=960 \mathrm{~mm}^{3}$
$\sigma_{x}=\frac{P}{A_{0}}=\frac{2.75 \times 10^{3}}{19.2 \times 10^{-6}}=143.229 \times 10^{6} \mathrm{~Pa} \quad \sigma_{y}=\sigma_{z}=0$
$\varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}-v \sigma_{z}\right)=\frac{\sigma_{x}}{E}=\frac{143.229 \times 10^{6}}{200 \times 10^{9}}=716.15 \times 10^{-6}$
$\varepsilon_{y}=\varepsilon_{z}=-v \varepsilon_{x}=-(0.30)\left(716.15 \times 10^{-3}\right)=-214.84 \times 10^{-6}$

$$
e=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}=286.46 \times 10^{-6}
$$

$\Delta v=v_{0} e=(960)\left(286.46 \times 10^{-6}\right)=0.275 \mathrm{~mm}^{3}$
(b) From the solution to problem 2.64,

$$
\delta_{x}=0.035808 \mathrm{~mm} \quad \delta_{y}=-0.0025781 \quad \delta_{z}=-0.00034374 \mathrm{~mm}
$$

The dimensions when under the $2.75-\mathrm{kN}$ load are
Length: $\quad L=L_{0}+\delta_{x}=50+0.035808=50.035808 \mathrm{~mm}$
Width: $\quad w=w_{0}+\delta_{y}=12-0.0025781=11.997422 \mathrm{~mm}$
Thickness: $\quad t=t_{0}+\delta_{z}=1.6-0.00034374=1.599656 \mathrm{~mm}$
Volume: $\quad V=L w t=(50.03581)(11.997422)(1.599656)=960.275 \mathrm{~mm}^{3}$

$$
\Delta V=V-V_{0}=960.275-960=0.275 \mathrm{~mm}^{3}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Let r be a radial coordinate. Over the hollow rubber cylinder, $R_{1} \leq r \leq R_{2}$.
Shearing stress τ acting on a cylindrical surface of radius r is

$$
\tau=\frac{P}{A}=\frac{P}{2 \pi r h}
$$

The shearing strain is

$$
\gamma=\frac{\tau}{G}=\frac{P}{2 \pi G h r}
$$

Shearing deformation over radial length $d r$:

$$
\begin{aligned}
& \frac{d \delta}{d r}=\gamma \\
& d \delta=\gamma d r=\frac{P}{2 \pi G h} \frac{d r}{r}
\end{aligned}
$$

Total deformation.

$$
\begin{aligned}
\delta & =\int_{R_{1}}^{R_{2}} d \delta=\frac{P}{2 \pi G h} \int_{R_{1}}^{R_{2}} \frac{d r}{r} \\
& =\left.\frac{P}{2 \pi G h} \ln r\right|_{R_{1}} ^{R_{2}}=\frac{P}{2 \pi G h}\left(\ln R_{2}-\ln R_{1}\right) \\
& =\frac{P}{2 \pi G h} \ln \frac{R_{2}}{R_{1}} \text { or } P=\frac{2 \pi G h \delta}{\ln \left(R_{2} / R_{1}\right)}
\end{aligned}
$$

Data: $\quad R_{1}=10 \mathrm{~mm}=0.010 \mathrm{~m}, \quad R_{2}=25 \mathrm{~mm}=0.025 \mathrm{~m}, h=80 \mathrm{~mm}=0.080 \mathrm{~m}$

$$
\begin{align*}
& G=12 \times 10^{6} \mathrm{~Pa} \quad \delta=2.50 \times 10^{-3} \mathrm{~m} \\
& P=\frac{(2 \pi)\left(12 \times 10^{6}\right)(0.080)\left(2.50 \times 10^{-3}\right)}{\ln (0.025 / 0.010)}=16.46 \times 10^{3} \mathrm{~N}
\end{align*}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Let r be a radial coordinate. Over the hollow rubber cylinder, $R_{1} \leq r \leq R_{2}$.
Shearing stress τ acting on a cylindrical surface of radius r is

$$
\tau=\frac{P}{A}=\frac{P}{2 \pi r h}
$$

The shearing strain is

$$
\gamma=\frac{\tau}{G}=\frac{P}{2 \pi G h r}
$$

Shearing deformation over radial length $d r$:

$$
\begin{aligned}
\frac{d \delta}{d r} & =\gamma \\
d \delta & =\gamma d r \\
d r \delta & =\frac{P}{2 \pi G h} \frac{d r}{r}
\end{aligned}
$$

Total deformation.

$$
\begin{gathered}
\delta=\int_{R_{1}}^{R_{2}} d \delta=\frac{P}{2 \pi G h} \int_{R_{1}}^{R_{2}} \frac{d r}{r} \\
=\left.\frac{P}{2 \pi G h} \ln r\right|_{R_{1}} ^{R_{2}}=\frac{P}{2 \pi G h}\left(\ln R_{2}-\ln R_{1}\right) \\
=\frac{P}{2 \pi G h} \ln \frac{R_{2}}{R_{1}} \\
\ln \frac{R_{2}}{R_{1}}=\frac{2 \pi G h \delta}{P}=\frac{(2 \pi)\left(10.93 \times 10^{6}\right)(0.080)(0.002)}{10.10^{3}}=1.0988 \\
\frac{R_{2}}{R_{1}}=\exp (1.0988)=3.00
\end{gathered}
$$

$$
R_{2} / R_{1}=3.00
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.89*

The material constants E, G, k, and v are related by Eqs. (2.33) and (2.43). Show that any one of these constants may be expressed in terms of any other two constants. For example, show that (a)k=GE/(9G-3E) and (b) $v=(3 k-2 G) /(6 k+2 G)$.

SOLUTION

$$
k=\frac{E}{3(1-2 v)} \quad \text { and } \quad G=\frac{E}{2(1+v)}
$$

(a) $1+v=\frac{E}{2 G} \quad$ or $\quad v=\frac{E}{2 G}-1$

$$
k=\frac{E}{3\left[1-2\left(\frac{E}{2 G}-1\right)\right]}=\frac{2 E G}{3[2 G-2 E+4 G]}=\frac{2 E G}{18 G-6 E} \quad k=\frac{E G}{9 G-6 E}
$$

(b) $\frac{k}{G}=\frac{2(1+v)}{3(1-2 v)}$

$$
\begin{aligned}
3 k-6 k v & =2 G+2 G v \\
3 k-2 G & =2 G+6 k
\end{aligned}
$$

$$
v=\frac{3 k-2 G}{6 k+2 G}
$$

PROBLEM 2.90*

Show that for any given material, the ratio G / E of the modulus of rigidity over the modulus of elasticity is always less than $\frac{1}{2}$ but more than $\frac{1}{3}$. [Hint: Refer to Eq. (2.43) and to Sec. 2.13.]

SOLUTION

$$
G=\frac{E}{2(1+v)} \quad \text { or } \quad \frac{E}{G}=2(1+v)
$$

Assume $v>0$ for almost all materials, and $v<\frac{1}{2}$ for a positive bulk modulus.

Applying the bounds,

Taking the reciprocals,

$$
2 \leq \frac{E}{G}<2\left(1+\frac{1}{2}\right)=3
$$

$$
\frac{1}{2}>\frac{G}{E}>\frac{1}{3}
$$

or $\frac{1}{3}<\frac{G}{E}<\frac{1}{2}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.91*

A composite cube with $40-\mathrm{mm}$ sides and the properties shown is made with glass polymer fibers aligned in the x direction. The cube is constrained against deformations in the y and z directions and is subjected to a tensile load of 65 kN in the x direction. Determine (a) the change in the length of the cube in the x direction, (b) the stresses σ_{x}, σ_{y}, and σ_{z}.

$$
\begin{array}{ll}
E_{x}=50 \mathrm{GPa} & v_{x z}=0.254 \\
E_{y}=15.2 \mathrm{GPa} & v_{x y}=0.254 \\
E_{z}=15.2 \mathrm{GPa} & v_{z y}=0.428
\end{array}
$$

SOLUTION

Stress-to-strain equations are

$$
\begin{gather*}
\varepsilon_{x}=\frac{\sigma_{x}}{E_{x}}-\frac{v_{y x} \sigma_{y}}{E_{y}}-\frac{v_{z x} \sigma_{z}}{E_{z}} \tag{1}\\
\varepsilon_{y}=-\frac{v_{x y} \sigma_{x}}{E_{x}}+\frac{\sigma_{y}}{E_{y}}-\frac{v_{z y} \sigma_{z}}{E_{z}} \tag{2}\\
\varepsilon_{z}=-\frac{v_{x z} \sigma_{x}}{E_{x}}-\frac{v_{y z} \sigma_{y}}{E_{y}}+\frac{\sigma_{z}}{E_{z}} \tag{3}\\
\frac{v_{x y}}{E_{x}}=\frac{v_{y x}}{E_{y}} \tag{4}\\
\frac{v_{y z}}{E_{y}}=\frac{v_{z y}}{E_{z}} \tag{5}\\
\frac{v_{z x}}{E_{z}}=\frac{v_{x z}}{E_{x}} \tag{6}
\end{gather*}
$$

The constraint conditions are

$$
\varepsilon_{y}=0 \quad \text { and } \quad \varepsilon_{z}=0
$$

Using (2) and (3) with the constraint conditions gives

$$
\begin{align*}
& \frac{1}{E_{y}} \sigma_{y}-\frac{v_{z y}}{E_{z}} \sigma_{z}=\frac{v_{x y}}{E_{x}} \sigma_{x} \tag{7}\\
& -\frac{v_{y z}}{E_{y}} \sigma_{y}+\frac{1}{E_{z}} \sigma_{z}=\frac{V_{x z}}{E_{x}} \sigma_{x} \tag{8}\\
\frac{1}{15.2} \sigma_{y}-\frac{0.428}{15.2} \sigma_{z} & =\frac{0.254}{50} \sigma_{x} \text { or } \sigma_{y}-0.428 \sigma_{z}=0.077216 \sigma_{x} \\
-\frac{0.428}{15.2} \sigma_{y}+\frac{1}{15.2} \sigma_{z} & =\frac{0.254}{50} \sigma_{x} \text { or }-0.428 \sigma_{y}+\sigma_{z}=0.077216 \sigma_{x}
\end{align*}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.91* (Continued)

Solving simultaneously, $\quad \sigma_{y}=\sigma_{z}=0.134993 \sigma_{x}$
Using (4) and (5) in (1), $\quad \varepsilon_{x}=\frac{1}{E_{x}} \sigma_{x}-\frac{v_{x y}}{E_{x}} \sigma_{y}-\frac{v_{x z}}{E} \sigma_{z}$

$$
\begin{aligned}
E_{x} & =\frac{1}{E_{x}}[1-(0.254)(0.134993)-(0.254)(0.134993)] \sigma_{x} \\
& =\frac{0.93142 \sigma_{x}}{E_{x}} \\
A & =(40)(40)=1600 \mathrm{~mm}^{2}=1600 \times 10^{-6} \mathrm{~m}^{2} \\
\sigma_{x} & =\frac{P}{A}=\frac{65 \times 10^{3}}{1600 \times 10^{-6}}=40.625 \times 10^{6} \mathrm{~Pa} \\
\varepsilon_{x} & =\frac{(0.93142)\left(40.625 \times 10^{3}\right)}{50 \times 10^{9}}=756.78 \times 10^{-6}
\end{aligned}
$$

(a) $\delta_{x}=L_{x} \varepsilon_{x}=(40 \mathrm{~mm})\left(756.78 \times 10^{-6}\right)$
(b) $\sigma_{x}=40.625 \times 10^{6} \mathrm{~Pa}$
$\sigma_{y}=\sigma_{z}=(0.134993)\left(40.625 \times 10^{6}\right)=5.48 \times 10^{6} \mathrm{~Pa}$

$$
\begin{array}{r}
\delta_{x}=0.0303 \mathrm{~mm} \\
\sigma_{x}=40.6 \mathrm{MPa} \\
\sigma_{y}=\sigma_{z}=5.48 \mathrm{MPa}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.92*

The composite cube of Prob. 2.91 is constrained against deformation in the z direction and elongated in the x direction by 0.035 mm due to a tensile load in the x direction. Determine (a) the stresses σ_{x}, σ_{y}, and σ_{z} and (b) the change in the dimension in the y direction.

$$
\begin{aligned}
& E_{x}=50 \mathrm{GPa} \quad v_{x z}=0.254 \\
& E_{y}=15.2 \mathrm{GPa} v_{x y}=0.254 \\
& E_{z}=15.2 \text { GPa } v_{z y}=0.428
\end{aligned}
$$

SOLUTION

$$
\begin{gather*}
\varepsilon_{x}=\frac{\sigma_{x}}{E_{x}}-\frac{v_{y x} \sigma_{y}}{E_{y}}-\frac{v_{z x} \sigma_{z}}{E_{z}} \tag{1}\\
\varepsilon_{y}=-\frac{v_{x y} \sigma_{x}}{E_{x}}+\frac{\sigma_{y}}{E_{y}}-\frac{v_{z y} \sigma_{z}}{E_{z}} \tag{2}\\
\varepsilon_{z}=-\frac{v_{x z} \sigma_{x}}{E_{x}}-\frac{v_{y z} \sigma_{y}}{E_{y}}+\frac{\sigma_{z}}{E_{z}} \tag{3}\\
\frac{v_{x y}}{E_{x}}=\frac{v_{y x}}{E_{y}} \tag{4}\\
\frac{v_{y z}}{E_{y}}=\frac{v_{z y}}{E_{z}} \tag{5}\\
\frac{v_{z x}}{E_{z}}=\frac{v_{x z}}{E_{x}} \tag{6}
\end{gather*}
$$

Constraint condition: $\quad \varepsilon_{z}=0$
Load condition: $\quad \sigma_{y}=0$

From Equation (3),

$$
\begin{gathered}
0=-\frac{v_{x z}}{E_{x}} \sigma_{x}+\frac{1}{E_{z}} \sigma_{z} \\
\sigma_{z}=\frac{v_{x z} E_{z}}{E_{x}} \sigma_{x}=\frac{(0.254)(15.2)}{50}=0.077216 \sigma_{x}
\end{gathered}
$$

PROBLEM 2.92* (Continued)

From Equation (1) with $\sigma_{y}=0$,

$$
\begin{aligned}
\varepsilon_{x} & =\frac{1}{E_{x}} \sigma_{x}-\frac{v_{z x}}{E_{z}} \sigma_{z}=\frac{1}{E_{x}} \sigma_{x}-\frac{v_{x z}}{E_{x}} \sigma_{z} \\
& =\frac{1}{E_{x}}\left[\sigma_{x}-0.254 \sigma_{z}\right]=\frac{1}{E_{x}}[1-(0.254)(0.077216)] \sigma_{x} \\
& =\frac{0.98039}{E_{x}} \sigma_{x} \\
\sigma_{x} & =\frac{E_{x} \varepsilon_{x}}{0.98039}
\end{aligned}
$$

But $\quad \varepsilon_{x}=\frac{\delta_{x}}{L_{x}}=\frac{0.035 \mathrm{~mm}}{40 \mathrm{~mm}}=875 \times 10^{-6}$
(a) $\sigma_{x}=\frac{\left(50 \times 10^{9}\right)\left(875 \times 10^{-6}\right)}{0.98039}=44.625 \times 10^{3} \mathrm{~Pa}$

$$
\sigma_{x}=44.6 \mathrm{MPa}
$$

$$
\sigma_{y}=0
$$

$$
\sigma_{z}=(0.077216)\left(44.625 \times 10^{6}\right)=3.446 \times 10^{6} \mathrm{~Pa} \quad \sigma_{z}=3.45 \mathrm{MPa}
$$

From (2), $\quad \varepsilon_{y}=\frac{v_{x y}}{E_{x}} \sigma_{x}+\frac{1}{E_{y}} \sigma_{y}-\frac{v_{z y}}{E_{z}} \sigma_{z}$ $=-\frac{(0.254)\left(44.625 \times 10^{6}\right)}{50 \times 10^{9}}+0-\frac{(0.428)\left(3.446 \times 10^{6}\right)}{15.2 \times 10^{9}}$ $=-323.73 \times 10^{-6}$
(b) $\delta_{y}=L_{y} \varepsilon_{y}=(40 \mathrm{~mm})\left(-323.73 \times 10^{-6}\right)$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

$$
\begin{aligned}
A & =(60)(15)=900 \mathrm{~mm}^{2}=900 \times 10^{-6} \mathrm{~m}^{2} \\
\frac{D}{d} & =\frac{120 \mathrm{~mm}}{60 \mathrm{~mm}}=2.00
\end{aligned}
$$

(a) $r=12 \mathrm{~mm} \quad \frac{r}{d}=\frac{12 \mathrm{~mm}}{60 \mathrm{~mm}}=0.2$

From Fig. 2.60b,

$$
K=1.92 \quad \sigma_{\max }=K \frac{P}{A}
$$

$$
P=\frac{A \sigma_{\max }}{K}=\frac{\left(900 \times 10^{-6}\right)\left(125 \times 10^{6}\right)}{1.92}=58.6 \times 10^{3} \mathrm{~N}
$$

$$
=58.3 \mathrm{kN}
$$

(b) $\quad r=18 \mathrm{~mm}, \quad \frac{r}{d}=\frac{18 \mathrm{~mm}}{60 \mathrm{~mm}}=0.30 \quad$ From Fig 2.60b, $\quad K=1.75$
$P=\frac{A \sigma_{\max }}{K}=\frac{\left(900 \times 10^{-6}\right)\left(125 \times 10^{6}\right)}{1.75}=64.3 \times 10^{3} \mathrm{~N} \quad=64.3 \mathrm{kN}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.94

Knowing that $P=38 \mathrm{kN}$, determine the maximum stress when (a) $r=10 \mathrm{~mm}$, (b) $r=16 \mathrm{~mm},(c) r=18 \mathrm{~mm}$.

SOLUTION

$$
\begin{aligned}
A & =(60)(15)=900 \mathrm{~mm}^{2}=900 \times 10^{-6} \mathrm{~m}^{2} \\
\frac{D}{d} & =\frac{10 \mathrm{~mm}}{60 \mathrm{~mm}}=2.00
\end{aligned}
$$

(a) $r=10 \mathrm{~mm} \quad \frac{r}{d}=\frac{10 \mathrm{~mm}}{60 \mathrm{~mm}}=0.1667$

From Fig. 2.60b, $\quad K=2.06 \quad \sigma_{\text {max }}=\frac{K P}{A}$

$$
\sigma_{\max }=\frac{(2.06)\left(38 \times 10^{3}\right)}{900 \times 10^{-6}}=87.0 \times 10^{6} \mathrm{~Pa}
$$

$$
=87.0 \mathrm{MPa}
$$

(b) $r=16 \mathrm{~mm} \quad \frac{r}{d}=\frac{16 \mathrm{~mm}}{60 \mathrm{~mm}}=0.2667$

From Fig. 2.60b,$\quad K=1.78$

$$
\sigma_{\max }=\frac{(1.78)\left(38 \times 10^{3}\right)}{900 \times 10^{-6}}=75.2 \times 10^{6} \mathrm{~Pa}
$$

$$
=75.2 \mathrm{MPa}
$$

(c) $r=18 \mathrm{~mm}, \quad \frac{r}{d}=\frac{18 \mathrm{~mm}}{60 \mathrm{~mm}}=0.30$

From Fig 2.60b, $\quad K=1.75$
$\sigma_{\text {max }}=\frac{(1.75)\left(38 \times 10^{3}\right)}{900 \times 10^{-6}}=73.9 \times 10^{6} \mathrm{~Pa}$
$=73.9 \mathrm{MPa}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.95

A hole is to be drilled in the plate at A. The diameters of the bits available to drill the hole range from $\frac{1}{2}$ to $1 \frac{1}{2} \mathrm{in}$. in $\frac{1}{4}$-in. increments. If the allowable stress in the plate is 21 ksi , determine (a) the diameter d of the largest bit that can be used if the allowable load \mathbf{P} at the hole is to exceed that at the fillets, (b) the corresponding allowable load \mathbf{P}.

SOLUTION

At the fillets:

$$
\frac{D}{d}=\frac{4.6875}{3.125}=1.5 \quad \frac{r}{d}=\frac{0.375}{3.125}=0.12
$$

From Fig. 2.60b,

$$
K=2.10
$$

$$
\begin{aligned}
A_{\min } & =(3.125)(0.5)=1.5625 \mathrm{in}^{2} \\
\sigma_{\max } & =K \frac{P_{\text {all }}}{A_{\min }}=\sigma_{\text {all }} \\
P_{\text {all }} & =\frac{A_{\min } \sigma_{\text {all }}}{K}=\frac{(1.5625)(21)}{2.10}=15.625 \mathrm{kips}
\end{aligned}
$$

At the hole: $\quad A_{\text {net }}=(D-2 r) t, K$ from Fig. 2.60a

$$
\sigma_{\max }=K \frac{P}{A_{\text {net }}}=\sigma_{\text {all }} \quad \therefore \quad P_{\text {all }}=\frac{A_{\text {net }} \sigma_{\text {all }}}{K}
$$

with

$$
D=4.6875 \mathrm{in} . \quad t=0.5 \mathrm{in} . \quad \sigma_{\text {all }}=21 \mathrm{ksi}
$$

Hole diam.	r	$d=D-2 r$	$2 r / D$	K	$A_{\text {net }}$	$P_{\text {all }}$
0.5 in.	0.25 in.	4.1875 in.	0.107	2.68	$2.0938 \mathrm{in}^{2}$	16.41 kips
0.75 in.	0.375 in.	3.9375 in.	0.16	2.58	$1.96875 \mathrm{in}^{2}$	16.02 kips
1 in.	0.5 in.	3.6875 in.	0.213	2.49	$1.84375 \mathrm{in}^{2}$	15.55 kips
1.25 in.	0.625 in.	3.4375 in.	0.267	2.41	$1.71875 \mathrm{in}^{2}$	14.98 kips
1.5 in.	0.75 in.	3.1875 in.	0.32	2.34	$1.59375 \mathrm{in}^{2}$	14.30 kips

(a) Largest hole with $P_{\text {all }}>15.625 \mathrm{kips}$ is the $\frac{3}{4}$-in.-diameter hole.
(b) Allowable load $P_{\text {all }}=15.63 \mathrm{kips}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Maximum stress at hole:
Use Fig. 2.60a for values of K.

$$
\begin{aligned}
\frac{2 r}{D} & =\frac{0.5}{4.6875}=0.017, \quad K=2.68 \\
A_{\text {net }} & =(0.5)(4.6875-0.5)=2.0938 \mathrm{in}^{2} \\
\sigma_{\max } & =K \frac{P}{A_{\text {net }}}=\frac{(2.68)(13)}{2.0938}=16.64 \mathrm{ksi}
\end{aligned}
$$

Maximum stress at fillets:
Use Fig. 2.60b for values of K.

$$
\begin{aligned}
\frac{r}{d} & =\frac{0.375}{3.125}=0.12 \quad \frac{D}{d}=\frac{4.6875}{3.125}=1.5 \quad K=2.10 \\
A_{\min } & =(0.5)(3.125)=1.5625 \mathrm{in}^{2} \\
\sigma_{\max } & =K \frac{P}{A_{\min }}=\frac{(2.10)(13)}{1.5625}=17.47 \mathrm{ksi}
\end{aligned}
$$

(a) With hole and fillets:
(b) Without hole:

PROBLEM 2.97

Knowing that the hole has a diameter of 9 mm , determine (a) the radius r_{f} of the fillets for which the same maximum stress occurs at the hole A and at the fillets, (b) the corresponding maximum allowable load \mathbf{P} if the allowable stress is 100 MPa .

SOLUTION

For the circular hole, $\quad r=\left(\frac{1}{2}\right)(9)=4.5 \mathrm{~mm}$

$$
\begin{aligned}
d & =96-9=87 \mathrm{~mm} \quad \frac{2 r}{D}=\frac{2(4.5)}{96}=0.09375 \\
A_{\mathrm{net}} & =d t=(0.087 \mathrm{~m})(0.009 \mathrm{~m})=783 \times 10^{-6} \mathrm{~m}^{2}
\end{aligned}
$$

From Fig. 2.60a,

$$
K_{\text {hole }}=2.72
$$

$$
\sigma_{\max }=\frac{K_{\mathrm{hole}} P}{A_{\mathrm{net}}}
$$

$$
P=\frac{A_{\mathrm{net}} \sigma_{\max }}{K_{\mathrm{hole}}}=\frac{\left(783 \times 10^{-6}\right)\left(100 \times 10^{6}\right)}{2.72}=28.787 \times 10^{3} \mathrm{~N}
$$

(a) For fillet,

$$
D=96 \mathrm{~mm}, d=60 \mathrm{~mm}
$$

$$
\begin{aligned}
\frac{D}{d} & =\frac{96}{60}=1.60 \\
A_{\min } & =d t=(0.060 \mathrm{~m})(0.009 \mathrm{~m})=540 \times 10^{-6} \mathrm{~m}^{2} \\
\sigma_{\max } & =\frac{K_{\text {fillet }} P}{A_{\min }} \therefore \quad \therefore \quad K_{\text {fillet }}=\frac{A_{\min } \sigma_{\max }}{P}
\end{aligned} \begin{aligned}
& =\frac{\left(5.40 \times 10^{-6}\right)\left(100 \times 10^{6}\right)}{28.787 \times 10^{3}} \\
& =1.876
\end{aligned}
$$

From Fig. 2.60b,

$$
\frac{r_{f}}{d} \approx 0.19 \quad \therefore \quad r_{f} \approx 0.19 d=0.19(60)
$$

$$
r_{f}=11.4 \mathrm{~mm}
$$

(b) $P=28.8 \mathrm{kN}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.98

For $P=100 \mathrm{kN}$, determine the minimum plate thickness t required if the allowable stress is 125 MPa .

SOLUTION

At the hole:

$$
r_{A}=20 \mathrm{~mm} \quad d_{A}=88-40=48 \mathrm{~mm}
$$

$$
\frac{2 r_{A}}{D_{A}}=\frac{2(20)}{88}=0.455
$$

From Fig. 2.60a,
$K=2.20$

$$
\begin{aligned}
\sigma_{\max } & =\frac{K P}{A_{\text {net }}}=\frac{K P}{d_{A} t} \quad \therefore \quad t=\frac{K P}{d_{A} \sigma_{\max }} \\
t & =\frac{(2.20)\left(100 \times 10^{3} \mathrm{~N}\right)}{(0.048 \mathrm{~m})\left(125 \times 10^{6} \mathrm{~Pa}\right)}=36.7 \times 10^{-3} \mathrm{~m}=36.7 \mathrm{~mm}
\end{aligned}
$$

At the fillet:

$$
\begin{array}{ll}
D=88 \mathrm{~mm}, & d_{B}=64 \mathrm{~mm} \quad \frac{D}{d_{B}}=\frac{88}{64}=1.375 \\
r_{B}=15 \mathrm{~mm} & \frac{r_{B}}{d_{B}}=\frac{15}{64}=0.2344
\end{array}
$$

From Fig. 2.60b,

$$
K=1.70
$$

$$
\begin{aligned}
\sigma_{\max } & =\frac{K P}{A_{\min }}=\frac{K P}{d_{B} t} \\
t & =\frac{K P}{d_{B} \sigma_{\max }}=\frac{(1.70)\left(100 \times 10^{3} \mathrm{~N}\right)}{(0.064 \mathrm{~m})\left(125 \times 10^{6} \mathrm{~Pa}\right)}=21.25 \times 10^{-3} \mathrm{~m}=21.25 \mathrm{~mm}
\end{aligned}
$$

The larger value is the required minimum plate thickness.

$$
t=36.7 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.99

(a) Knowing that the allowable stress is 20 ksi , determine the maximum allowable magnitude of the centric load \mathbf{P}. (b) Determine the percent change in the maximum allowable magnitude of \mathbf{P} if the raised portions are removed at the ends of the specimen.

SOLUTION

$$
\frac{D}{d}=\frac{3}{2}=1.50 \quad \frac{r}{d}=\frac{0.250}{2}=0.125
$$

From Fig. 2.60b, $\quad K=2.08$

$$
A_{\min }=t d=(0.625)(2)=1.25 \mathrm{in}^{2}
$$

(a) $\quad \sigma_{\max }=\frac{K P}{A_{\min }} \quad \therefore \quad P=\frac{A_{\min } \sigma_{\max }}{K} \frac{(1.25)(20)}{2.08}=12.0192 \mathrm{kips} \quad P=12.02 \mathrm{kips}$
(b) Without raised section, $K=1.00$
$P=A_{\min } \sigma_{\text {max }}=(1.25)(20)=25 \mathrm{kips}$
$\%$ change $=\left(\frac{25-12.02}{12.02}\right) \times 100 \%$ $=108.0 \%$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.100

A centric axial force is applied to the steel bar shown. Knowing that $\sigma_{\text {all }}=20 \mathrm{ksi}$, determine the maximum allowable load \mathbf{P}.

SOLUTION

At the hole: $\quad r=0.5$ in. $\quad \mathrm{d}=5-1=4 \mathrm{in}$.

$$
\begin{aligned}
\frac{2 r}{d} & =\frac{2(0.5)}{5}=0.2 \quad \text { From Fig. 2.60a, } \quad K=2.51 \\
A_{\text {net }} & =t d=(0.75)(4)=3 \mathrm{in}^{2} \\
\sigma_{\max } & =\frac{K P}{A_{\text {net }}} \\
P & =\frac{A_{\text {net }} \sigma_{\max }}{K}=\frac{(3)(20)}{2.51}=23.9 \mathrm{kips}
\end{aligned}
$$

At the fillet : $\quad D=6.5$ in., $\quad \mathrm{d}=5$ in., $\frac{D}{d}=\frac{6.5}{5}=1.3$

$$
r=0.5 \mathrm{in} . \quad \frac{r}{d}=\frac{0.5}{5}=0.1
$$

From Fig. 2.60b, $\quad K=2.04$

$$
\begin{aligned}
& A_{\min }=t d=(0.75)(5)=3.75 \mathrm{in}^{2} \\
& \sigma_{\max }=\frac{K P}{A_{\min }} \\
& P=\frac{A_{\min } \sigma_{\max }}{K}=\frac{(3.75)(20)}{2.04}=36.8 \mathrm{kips}
\end{aligned}
$$

Smaller value for P controls.
$P=23.9 \mathrm{kips}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.101

The cylindrical rod $A B$ has a length $L=5 \mathrm{ft}$ and a $0.75-\mathrm{in}$. diameter; it is made of a mild steel that is assumed to be elastoplastic with $E=29 \times 10^{6} \mathrm{psi}$ and $\sigma_{Y}=36 \mathrm{ksi}$. A force \mathbf{P} is applied to the bar and then removed to give it a permanent set δ_{P}. Determine the maximum value of the force \mathbf{P} and the maximum amount δ_{m} by which the bar should be stretched if the desired value of δ_{P} is (a) $0.1 \mathrm{in} .,(b) 0.2 \mathrm{in}$.

SOLUTION

$$
\begin{aligned}
A & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.75)^{2}=0.44179 \mathrm{in}^{2} \quad L=5 \mathrm{ft}=60 \mathrm{in} . \\
\delta_{y} & =L \varepsilon_{Y}=\frac{L \sigma_{Y}}{E}=\frac{(60)\left(36 \times 10^{3}\right)}{29 \times 10^{3}}=0.074483 \mathrm{in} .
\end{aligned}
$$

When δ_{m} exceeds δ_{Y}, thus causing permanent stretch δ_{p}, the maximum force is

$$
P_{m}=A \sigma_{Y}=(0.44179)\left(36 \times 10^{3}\right)=15.9043 \times 10^{3} \mathrm{lb}
$$

$$
P=15.90 \text { kips }
$$

$\delta_{p}=\delta_{m}-\delta^{\prime}=\delta_{m}-\delta_{Y}$ so that $\quad \delta_{m}=\delta_{p}+\delta_{Y}$
(a) $\quad \delta_{p}=0.1 \mathrm{in} . \quad \delta_{m}=0.1+0.074483=0.1745 \mathrm{in}$.
(b) $\quad \delta_{p}=0.2 \mathrm{in} . \quad \delta_{m}=0.2+0.074483=0.274 \mathrm{in}$.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.102

The cylindrical $\operatorname{rod} A B$ has a length $L=6 \mathrm{ft}$ and a $1.25-\mathrm{in}$. diameter; it is made of a mild steel that is assumed to be elastoplastic with $E=29 \times 10^{6} \mathrm{psi}$ and $\sigma_{Y}=36 \mathrm{ksi}$. A force \mathbf{P} is applied to the bar until end A has moved down by an amount δ_{m}. Determine the maximum value of the force \mathbf{P} and the permanent set of the bar after the force has been removed, knowing (a) $\delta_{m}=0.125$ in., (b) $\delta_{m}=0.250 \mathrm{in}$.

SOLUTION

$$
\begin{aligned}
& A=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(1.25)^{2}=1.22718 \mathrm{in}^{2} \quad L=6 \mathrm{ft}=72 \mathrm{in} . \\
& \delta_{Y}=L \varepsilon_{Y}=\frac{L \sigma_{Y}}{E}=\frac{(72)\left(36 \times 10^{3}\right)}{29 \times 10^{3}}=0.089379 \mathrm{in} . \\
& \text { If } \delta_{m} \geq \delta_{Y}, \quad P_{m}=A \sigma_{Y}=(1.22718)\left(36 \times 10^{3}\right) \\
& \quad=44.179 \times 10^{3} \mathrm{lb}=44.2 \mathrm{kips}
\end{aligned}
$$

(a) $\quad \delta_{m}=0.125 \mathrm{in} .>\delta_{Y} \quad$ so that $\quad P_{m}=44.2 \mathrm{kips}$
$\delta^{\prime}=\frac{P_{m} L}{A E}=\frac{\sigma_{Y} L}{E}=\delta_{Y}=0.089379$
$\delta_{p}=\delta_{m}-\delta^{\prime}=0.125-0.089379=0.356 \mathrm{in}$.
(b) $\delta_{m}=0.250 \mathrm{in} .>\delta_{Y} \quad$ so that $P_{m}=44.2 \mathrm{kips}$

$$
\delta^{\prime}=\delta_{Y}
$$

$\delta_{p}=\delta_{m}-\delta^{\prime}=0.250-0.089379=0.1606 \mathrm{in}$.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.103

Rod $A B$ is made of a mild steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=345 \mathrm{MPa}$. After the rod has been attached to the rigid lever $C D$, it is found that end C is 6 mm too high. A vertical force \mathbf{Q} is then applied at C until this point has moved to position C^{\prime}. Determine the required magnitude of \mathbf{Q} and the deflection δ_{1} if the lever is to snap back to a horizontal position after \mathbf{Q} is removed.

SOLUTION

$$
A_{A B}=\frac{\pi}{4}(9)^{2}=63.617 \mathrm{~mm}^{2}=63.617 \times 10^{-6} \mathrm{~m}^{2}
$$

Since $\operatorname{rod} A B$ is to be stretched permanently,

$$
\begin{aligned}
&\left(F_{A B}\right)_{\max }=A_{A B} \sigma_{Y}=\left(63.617 \times 10^{-6}\right)\left(345 \times 10^{6}\right) \\
&=21.948 \times 10^{3} \mathrm{~N} \\
&+) \sum M_{D}=0: \quad 1.1 Q-0.7 F_{A B}=0 \\
& Q_{\max }=\frac{0.7}{1.1}\left(21.948 \times 10^{3}\right)=13.9669 \times 10^{-3} \mathrm{~N} \\
& \delta_{A B}^{\prime}=\frac{\left(F_{A B}\right)_{\max } L_{A B}}{E A_{A B}}=\frac{\left(21.948 \times 10^{3}\right)(1.25)}{\left(200 \times 10^{9}\right)\left(63.617 \times 10^{-6}\right)}=2.15625 \times 10^{-3} \mathrm{~m} \\
& \theta^{\prime}=\frac{\delta_{A B^{\prime}}}{0.7}=3.0804 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

$$
\delta_{1}=1.1 \theta^{\prime}=3.39 \times 10^{-3} \mathrm{~m}
$$

PROBLEM 2.104

Solve Prob. 2.103, assuming that the yield point of the mild steel is 250 MPa .

PROBLEM 2.103 Rod $A B$ is made of a mild steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=345 \mathrm{MPa}$. After the rod has been attached to the rigid lever $C D$, it is found that end C is 6 mm too high. A vertical force \mathbf{Q} is then applied at C until this point has moved to position C^{\prime}. Determine the required magnitude of \mathbf{Q} and the deflection δ_{1} if the lever is to snap back to a horizontal position $\operatorname{after} \mathbf{Q}$ is removed.

SOLUTION

$$
A_{A B}=\frac{\pi}{4}(9)^{2}=63.617 \mathrm{~mm}^{2}=63.617 \times 10^{-6} \mathrm{~m}^{2}
$$

Since $\operatorname{rod} A B$ is to be stretched permanently,

$$
\begin{align*}
&\left(F_{A B}\right)_{\max }=A_{A B} \sigma_{Y}=\left(63.617 \times 10^{-6}\right)\left(250 \times 10^{6}\right) \\
&=15.9043 \times 10^{3} \mathrm{~N} \\
&+) \Sigma M_{D}=0: \quad 1.1 Q-0.7 F_{A B}=0 \\
& Q_{\max }=\frac{0.7}{1.1}\left(15.9043 \times 10^{3}\right)=10.12 \times 10^{3} \mathrm{~N} \\
& \delta_{A B}^{\prime}=\frac{\left(F_{A B}\right)_{\max } L_{A B}}{E A_{A B}}=\frac{\left(15.9043 \times 10^{3}\right)(1.25)}{\left(200 \times 10^{9}\right)\left(63.617 \times 10^{-6}\right)}=1.5625 \times 10^{-3} \mathrm{~m} \\
& \theta^{\prime}=\frac{\delta^{\prime}{ }_{A B}}{0.7}=2.2321 \times 10^{-3} \mathrm{rad} \\
& \delta_{1}=1.1 \theta^{\prime}=2.46 \times 10^{-3} \mathrm{~m}
\end{align*}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.105

Rod $A B C$ consists of two cylindrical portions $A B$ and $B C$; it is made of a mild steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$. A force \mathbf{P} is applied to the rod and then removed to give it a permanent set $\delta_{p}=2 \mathrm{~mm}$. Determine the maximum value of the force \mathbf{P} and the maximum amount δ_{m} by which the rod should be stretched to give it the desired permanent set.

SOLUTION

$$
\begin{gathered}
A_{A B}=\frac{\pi}{4}(30)^{2}=706.86 \mathrm{~mm}^{2}=706.86 \times 10^{-6} \mathrm{~m}^{2} \\
A_{B C}=\frac{\pi}{4}(40)^{2}=1.25664 \times 10^{3} \mathrm{~mm}^{2}=1.25664 \times 10^{-3} \mathrm{~m}^{2} \\
P_{\max }=A_{\min } \sigma_{Y}=\left(706.86 \times 10^{-6}\right)\left(250 \times 10^{6}\right)=176.715 \times 10^{3} \mathrm{~N} \\
\delta^{\prime}=\frac{P^{\prime} L_{A B}}{E A_{A B}}+\frac{P^{\prime} L_{B C}}{E A_{B C}}=\frac{\left(176.715 \times 10^{3}\right)(0.8)}{\left(200 \times 10^{9}\right)\left(706.86 \times 10^{-6}\right)}+\frac{\left(176.715 \times 10^{3}\right)(1.2)}{\left(200 \times 10^{9}\right)\left(1.25664 \times 10^{-3}\right)} \\
=1.84375 \times 10^{-3} \mathrm{~m}=1.84375 \mathrm{~mm} \\
\delta_{p}=\delta_{m}-\delta^{\prime} \text { or } \delta_{m}=\delta_{p}+\delta^{\prime}=2+176.8 \mathrm{kN} \\
\delta_{m}=3.84 \mathrm{~mm}
\end{gathered}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.106

Rod $A B C$ consists of two cylindrical portions $A B$ and $B C$; it is made of a mild steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$. A force \mathbf{P} is applied to the rod until its end A has moved down by an amount $\delta_{m}=5 \mathrm{~mm}$. Determine the maximum value of the force \mathbf{P} and the permanent set of the rod after the force has been removed.

SOLUTION

$$
\begin{gathered}
A_{A B}=\frac{\pi}{4}(30)^{2}=706.86 \mathrm{~mm}^{2}=706.86 \times 10^{-6} \mathrm{~m}^{2} \\
A_{B C}=\frac{\pi}{4}(40)^{2}=1.25664 \times 10^{3} \mathrm{~mm}^{2}=1.25644 \times 10^{-3} \mathrm{~m}^{2} \\
P_{\max }=A_{\min } \sigma_{Y}=\left(706.86 \times 10^{-6}\right)\left(250 \times 10^{6}\right)=176.715 \times 10^{3} \mathrm{~N} \\
\delta^{\prime}=\frac{P^{\prime} L_{A B}}{E A_{A B}}+\frac{P^{\prime} L_{B C}}{E A_{B C}}=\frac{\left(176.715 \times 10^{3}\right)(0.8)}{\left(200 \times 10^{9}\right)\left(706.68 \times 10^{-6}\right)}+\frac{\left(176.715 \times 10^{3}\right)(1.2)}{\left(200 \times 10^{9}\right)\left(1.25664 \times 10^{-3}\right)} \\
=1.84375 \times 10^{-3} \mathrm{~m}=1.84375 \mathrm{~mm}
\end{gathered}
$$

$$
\delta_{p}=\delta_{m}-\delta^{\prime}=5-1.84375=3.16 \mathrm{~mm} \quad \delta_{p}=3.16 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.107

Rod $A B$ consists of two cylindrical portions $A C$ and $B C$, each with a cross-sectional area of $1750 \mathrm{~mm}^{2}$. Portion $A C$ is made of a mild steel with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$, and portion $C B$ is made of a high-strength steel with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=345 \mathrm{MPa}$. A load \mathbf{P} is applied at C as shown. Assuming both steels to be elastoplastic, determine (a) the maximum deflection of C if P is gradually increased from zero to 975 kN and then reduced back to zero, (b) the maximum stress in each portion of the rod, (c) the permanent deflection of C.

SOLUTION

Displacement at C to cause yielding of $A C$.

$$
\begin{gathered}
\delta_{C, Y}=L_{A C} \varepsilon_{Y, A C}=\frac{L_{A C} \sigma_{Y, A C}}{E}=\frac{(0.190)\left(250 \times 10^{6}\right)}{200 \times 10^{9}}=0.2375 \times 10^{-3} \mathrm{~m} \\
F_{A C}=A \sigma_{Y, A C}=\left(1750 \times 10^{-6}\right)\left(250 \times 10^{6}\right)=437.5 \times 10^{3} \mathrm{~N} \\
F_{C B}=-\frac{E A \delta_{C}}{L_{C B}}=-\frac{\left(200 \times 10^{9}\right)\left(1750 \times 10^{-6}\right)\left(0.2375 \times 10^{-3}\right)}{0.190}=-437.5 \times 10^{3} \mathrm{~N}
\end{gathered}
$$

Corresponding force.

For equilibrium of element at C,

$$
F_{A C}-\left(F_{C B}+P_{Y}\right)=0 \quad P_{Y}=F_{A C}-F_{C B}=875 \times 10^{3} \mathrm{~N}
$$

Since applied load $P=975 \times 10^{3} \mathrm{~N}>875 \times 10^{3} \mathrm{~N}$, portion $A C$ yields.

$$
F_{C B}=F_{A C}-P=437.5 \times 10^{3}-975 \times 10^{3} \mathrm{~N}=-537.5 \times 10^{3} \mathrm{~N}
$$

(a)

$$
\delta_{C}=-\frac{F_{C B} L_{C D}}{E A}=\frac{\left(537.5 \times 10^{3}\right)(0.190)}{\left(200 \times 10^{9}\right)\left(1750 \times 10^{-6}\right)}=0.29179 \times 10^{-3} \mathrm{~m}
$$

(b) Maximum stresses: $\sigma_{A C}=\sigma_{Y, A C}=250 \mathrm{MPa}$

$$
\sigma_{B C}=\frac{F_{B C}}{A}=-\frac{537.5 \times 10^{3}}{1750 \times 10^{-6}}=-307.14 \times 10^{6} \mathrm{~Pa}=-307 \mathrm{MPa}
$$

(c) Deflection and forces for unloading.

$$
\begin{aligned}
\delta^{\prime} & =\frac{P_{A C}^{\prime} L_{A C}}{E A}=-\frac{P_{C B}^{\prime} L_{C B}}{E A} \quad \therefore \quad P_{C B}^{\prime}=-P_{A C}^{\prime} \frac{L_{A C}}{L_{A B}}=-P_{A C}^{\prime} \\
P^{\prime} & =975 \times 10^{3}=P_{A C}^{\prime}-P_{C B}^{\prime}=2 P_{A C}^{\prime} \quad P_{A C}^{\prime}=487.5 \times 10^{-3} \mathrm{~N} \\
\delta^{\prime} & =\frac{\left(487.5 \times 10^{3}\right)(0.190)}{\left(200 \times 10^{9}\right)\left(1750 \times 10^{-6}\right)}=0.26464 \times 10^{3} \mathrm{~m} \\
\delta_{p} & =\delta_{m}-\delta^{\prime}=0.29179 \times 10^{-3}-0.26464 \times 10^{-3} \\
& =0.02715 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$$
0.0272 \mathrm{~mm}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.108

For the composite rod of Prob. 2.107, if P is gradually increased from zero until the deflection of point C reaches a maximum value of $\delta_{m}=0.3 \mathrm{~mm}$ and then decreased back to zero, determine (a) the maximum value of $P,(b)$ the maximum stress in each portion of the rod, (c) the permanent deflection of C after the load is removed.

PROBLEM 2.107 Rod $A B$ consists of two cylindrical portions $A C$ and $B C$, each with a cross-sectional area of $1750 \mathrm{~mm}^{2}$. Portion $A C$ is made of a mild steel with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$, and portion $C B$ is made of a high-strength steel with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=345 \mathrm{MPa}$. A load \mathbf{P} is applied at C as shown. Assuming both steels to be elastoplastic, determine (a) the maximum deflection of C if P is gradually increased from zero to 975 kN and then reduced back to zero, (b) the maximum stress in each portion of the rod, (c) the permanent deflection of C.

SOLUTION

Displacement at C is $\delta_{m}=0.30 \mathrm{~mm}$. The corresponding strains are

$$
\begin{aligned}
\varepsilon_{A C} & =\frac{\delta_{m}}{L_{A C}}=\frac{0.30 \mathrm{~mm}}{190 \mathrm{~mm}}=1.5789 \times 10^{-3} \\
\varepsilon_{C B} & =-\frac{\delta_{m}}{L_{C B}}=-\frac{0.30 \mathrm{~mm}}{190 \mathrm{~mm}}=-1.5789 \times 10^{-3}
\end{aligned}
$$

Strains at initial yielding:

$$
\begin{aligned}
& \varepsilon_{Y, A C}=\frac{\sigma_{Y, A C}}{E}=\frac{250 \times 10^{6}}{200 \times 10^{9}}=1.25 \times 10^{-3} \quad \text { (yielding) } \\
& \varepsilon_{Y, C B}=\frac{\sigma_{Y, B C}}{E}=-\frac{345 \times 10^{6}}{200 \times 10^{9}}=-1.725 \times 10^{-3} \quad \text { (elastic) }
\end{aligned}
$$

(a) Forces: $F_{A C}=A \sigma_{Y}=\left(1750 \times 10^{-6}\right)\left(250 \times 10^{6}\right)=437.5 \times 10^{-3} \mathrm{~N}$

$$
F_{C B}=E A \varepsilon_{C B}=\left(200 \times 10^{9}\right)\left(1750 \times 10^{-6}\right)\left(-1.5789 \times 10^{-3}\right)=-552.6 \times 10^{-3} \mathrm{~N}
$$

For equilibrium of element at $C, F_{A C}-F_{C B}-P=0$

$$
P=F_{A C}-F_{C D}=437.5 \times 10^{3}+552.6 \times 10^{3}=990.1 \times 10^{3} \mathrm{~N}
$$

(b) Stresses: $A C: \sigma_{A C}=\sigma_{Y, A C}$ 250 MPa

$$
C B: \quad \sigma_{C B}=\frac{F_{C B}}{A}=-\frac{552.6 \times 10^{3}}{1750 \times 10^{-6}}=-316 \times 10^{6} \mathrm{~Pa}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.108 (Continued)

(c) Deflection and forces for unloading.

$$
\begin{aligned}
& \delta^{\prime}=\frac{P_{A C}^{\prime} L_{A C}}{E A}=-\frac{P_{C B}^{\prime} L_{C B}}{E A} \therefore P_{C B}^{\prime}=-P_{A C}^{\prime} \frac{L_{A C}}{L_{A B}}=-P_{A C} \\
& P^{\prime}=P_{A C}^{\prime}-P_{C B}^{\prime}=2 P_{A C}^{\prime}=990.1 \times 10^{3} \mathrm{~N} \quad \therefore P_{A C}^{\prime}=495.05 \times 10^{3} \mathrm{~N} \\
& \delta^{\prime}=\frac{\left(495.05 \times 10^{3}\right)(0.190)}{\left(200 \times 10^{9}\right)\left(1750 \times 10^{-6}\right)}=0.26874 \times 10^{-3} \mathrm{~m}=0.26874 \mathrm{~mm}
\end{aligned}
$$

$$
\delta_{p}=\delta_{m}-\delta^{\prime}=0.30 \mathrm{~mm}-0.26874 \mathrm{~mm}
$$

SOLUTION

Elongation constraints for taut cables.
Let $\theta=$ rotation angle of rigid bar $A B C$.

$$
\begin{align*}
\theta & =\frac{\delta_{B D}}{L_{A B}}=\frac{\delta_{C E}}{L_{A C}} \\
\delta_{B D} & =\frac{L_{A B}}{L_{A C}} \delta_{C E}=\frac{1}{2} \delta_{C E} \tag{1}
\end{align*}
$$

Equilibrium of bar $A B C$.

Assume cable $C E$ is yielded. $\quad F_{C E}=A \sigma_{Y}=\left(100 \times 10^{-6}\right)\left(345 \times 10^{6}\right)=34.5 \times 10^{3} \mathrm{~N}$
From (2),

$$
F_{B D}=2\left(Q-F_{C E}\right)=(2)\left(50 \times 10^{3}-34.5 \times 10^{3}\right)=31.0 \times 10^{3} \mathrm{~N}
$$

Since $F_{B D}<A \sigma_{Y}=34.5 \times 10^{3} \mathrm{~N}$, cable $B D$ is elastic when $Q=50 \mathrm{kN}$.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.109 (Continued)

(a) Maximum stresses. $\quad \sigma_{C E}=\sigma_{Y}=345 \mathrm{MPa}$

$$
\sigma_{B D}=\frac{F_{B D}}{A}=\frac{31.0 \times 10^{3}}{100 \times 10^{-6}}=310 \times 10^{6} \mathrm{~Pa} \quad \sigma_{B D}=310 \mathrm{MPa}
$$

(b) Maximum of deflection of point C.

$$
\delta_{B D}=\frac{F_{B D} L_{B D}}{E A}=\frac{\left(31.0 \times 10^{3}\right)(2)}{\left(200 \times 10^{9}\right)\left(100 \times 10^{-6}\right)}=3.1 \times 10^{-3} \mathrm{~m}
$$

From (1),

$$
\delta_{C}=\delta_{C E}=2 \delta_{B D}=6.2 \times 10^{-3} \mathrm{~m}
$$

Permanent elongation of cable $C E:\left(\delta_{C E}\right)_{p}=\left(\delta_{C E}\right)-\frac{\sigma_{Y} L_{C E}}{E}$

$$
\begin{aligned}
\left(\delta_{C E}\right)_{P} & =\left(\delta_{C E}\right)_{\max }-\frac{\sigma_{Y} L_{C E}}{E} \\
& =6.20 \times 10^{-3}-\frac{\left(345 \times 10^{6}\right)(2)}{200 \times 10^{9}}=2.75 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

(c) Unloading. Cable $C E$ is slack $\left(F_{C E}=0\right)$ at $Q=0$.

From (2),

$$
F_{B D}=2\left(Q-F_{C E}\right)=2(0-0)=0
$$

Since cable $B D$ remained elastic, $\delta_{B D}=\frac{F_{B D} L_{B D}}{E A}=0$.

PROBLEM 2.110

Solve Prob. 2.109, assuming that the cables are replaced by rods of the same cross-sectional area and material. Further assume that the rods are braced so that they can carry compressive forces.

PROBLEM 2.109 Each cable has a cross-sectional area of $100 \mathrm{~mm}^{2}$ and is made of an elastoplastic material for which $\sigma_{Y}=345 \mathrm{MPa}$ and $E=200 \mathrm{GPa}$. A force \mathbf{Q} is applied at C to the rigid bar $A B C$ and is gradually increased from 0 to 50 kN and then reduced to zero. Knowing that the cables were initially taut, determine (a) the maximum stress that occurs in cable $B D,(b)$ the maximum deflection of point C, (c) the final displacement of point C. (Hint: In part c, cable $C E$ is not taut.)

SOLUTION

Elongation constraints.

Let $\theta=$ rotation angle of rigid bar $A B C$.

$$
\begin{gather*}
\theta=\frac{\delta_{B C}}{L_{A B}}=\frac{\delta_{C E}}{L_{A C}} \\
\delta_{B D}=\frac{L_{A B}}{L_{A C}} \delta_{C E}=\frac{1}{2} \delta_{C E} \tag{1}
\end{gather*}
$$

Equilibrium of bar $A B C$.

$$
\begin{align*}
+\rangle M_{A} & =0: \quad L_{A B} F_{B D}+L_{A C} F_{C E}-L_{A C} Q=0 \\
Q & =F_{C E}+\frac{L_{A B}}{L_{A C}} F_{B D}=F_{C E}+\frac{1}{2} F_{B D} \tag{2}
\end{align*}
$$

Assume cable $C E$ is yielded. $F_{C E}=A \sigma_{Y}=\left(100 \times 10^{-6}\right)\left(345 \times 10^{6}\right)=34.5 \times 10^{3} \mathrm{~N}$
From (2),

$$
F_{B D}=2\left(Q-F_{C E}\right)=(2)\left(50 \times 10^{3}-34.5 \times 10^{3}\right)=31.0 \times 10^{3} \mathrm{~N}
$$

Since $F_{B D}<A \sigma_{Y}=34.5 \times 10^{3} \mathrm{~N}$, cable $B D$ is elastic when $Q=50 \mathrm{kN}$.

PROBLEM 2.110 (Continued)

(a) Maximum stresses. $\quad \sigma_{C E}=\sigma_{Y}=345 \mathrm{MPa}$

$$
\sigma_{B D}=\frac{F_{B D}}{A}=\frac{31.0 \times 10^{3}}{100 \times 10^{-6}}=310 \times 10^{6} \mathrm{~Pa} \quad \sigma_{B D}=310 \mathrm{MPa}
$$

(b) Maximum of deflection of point C.

$$
\delta_{B D}=\frac{F_{B D} L_{B D}}{E A}=\frac{\left(31.0 \times 10^{3}\right)(2)}{\left(200 \times 10^{9}\right)\left(100 \times 10^{-6}\right)}=3.1 \times 10^{-3} \mathrm{~m}
$$

From (1), $\quad \delta_{C}=\delta_{C E}=2 \delta_{B D}=6.2 \times 10^{-3} \mathrm{~m}$ $6.20 \mathrm{~mm} \downarrow$

Unloading. $Q^{\prime}=50 \times 10^{3} \mathrm{~N}, \delta_{C E}^{\prime}=\delta_{C}^{\prime}$
From (1),

$$
\delta_{B D}^{\prime}=\frac{1}{2} \delta_{C}^{\prime}
$$

Elastic $F_{B D}^{\prime \prime}=\frac{E A \delta_{B D}^{\prime}}{L_{B D}}=\frac{\left(200 \times 10^{9}\right)\left(100 \times 10^{-6}\right)\left(\frac{1}{2} \delta_{C}^{\prime}\right)}{2}=5 \times 10^{6} \delta_{C}^{\prime}$

$$
F_{C E}^{\prime}=\frac{E A \delta_{C E}^{\prime}}{L_{C E}}=\frac{\left(200 \times 10^{9}\right)\left(100 \times 10^{-6}\right)\left(\delta_{C}^{\prime}\right)}{2}=10 \times 10^{6} \delta_{C}^{\prime}
$$

From (2),

$$
Q^{\prime}=F_{C E}^{\prime}+\frac{1}{2} F_{B D}^{\prime}=12.5 \times 10^{6} \delta_{C}^{\prime}
$$

Equating expressions for $Q^{\prime}, \quad 12.5 \times 10^{6} \delta_{C}^{\prime}=50 \times 10^{3}$

$$
\delta_{C}^{\prime}=4 \times 10^{-3} \mathrm{~m}
$$

(c) Final displacement.

$$
\delta_{C}=\left(\delta_{C}\right)_{m}-\delta_{C}^{\prime}=6.2 \times 10^{-3}-4 \times 10^{-3}=2.2 \times 10^{-3} \mathrm{~m}
$$

PROBLEM 2.111

Two tempered-steel bars, each $\frac{3}{16}$ in. thick, are bonded to a $\frac{1}{2}$-in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with $E=29 \times 10^{6} \mathrm{psi}$ and with yield strengths equal to 100 ksi and 50 ksi , respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value $\delta_{m}=0.04 \mathrm{in}$. and then decreased back to zero. Determine (a) the maximum value of $P,(b)$ the maximum stress in the tempered-steel bars, (c) the permanent set after the load is removed.

SOLUTION

For the mild steel, $A_{1}=\left(\frac{1}{2}\right)(2)=1.00 \mathrm{in}^{2} \quad \delta_{Y 1}=\frac{L \sigma_{Y 1}}{E}=\frac{(14)\left(50 \times 10^{3}\right)}{29 \times 10^{6}}=0.024138 \mathrm{in}$.
For the tempered steel, $A_{2}=2\left(\frac{3}{16}\right)(2)=0.75 \mathrm{in}^{2} \quad \delta_{Y 2}=\frac{L \sigma_{Y 2}}{E}=\frac{(14)\left(100 \times 10^{3}\right)}{29 \times 10^{3}}=0.048276 \mathrm{in}$.
Total area: $A=A_{1}+A_{2}=1.75 \mathrm{in}^{2}$
$\delta_{Y 1}<\delta_{m}<\delta_{Y 2}$. The mild steel yields. Tempered steel is elastic.
(a) Forces: $P_{1}=A_{1} \sigma_{Y 1}=(1.00)\left(50 \times 10^{3}\right)=50 \times 10^{3} \mathrm{lb}$

$$
P_{2}=\frac{E A_{2} \delta_{m}}{L}=\frac{\left(29 \times 10^{3}\right)(0.75)(0.04)}{14}=62.14 \times 10^{3} \mathrm{lb}
$$

$$
P=P_{1}+P_{2}=112.14 \times 10^{3} \mathrm{lb}=112.1 \mathrm{kips}
$$

(b) Stresses: $\sigma_{1}=\frac{P_{1}}{A_{1}}=\sigma_{Y 1}=50 \times 10^{3} \mathrm{psi}=50 \mathrm{ksi}$

$$
\sigma_{2}=\frac{P_{2}}{A_{2}}=\frac{62.14 \times 10^{3}}{0.75}=82.86 \times 10^{3} \mathrm{psi}=82.86 \mathrm{ksi}
$$

82.86 ksi

Unloading: $\quad \delta^{\prime}=\frac{P L}{E A}=\frac{\left(112.14 \times 10^{3}\right)(14)}{\left(29 \times 10^{6}\right)(1.75)}=0.03094 \mathrm{in}$.
(c) Permanent set: $\delta_{p}=\delta_{m}-\delta^{\prime}=0.04-0.03094=0.00906$ in.
0.00906 in.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.112

For the composite bar of Prob. 2.111, if P is gradually increased from zero to 98 kips and then decreased back to zero, determine (a) the maximum deformation of the bar, (b) the maximum stress in the tempered-steel bars, (c) the permanent set after the load is removed.

PROBLEM 2.111 Two tempered-steel bars, each $\frac{3}{16}$ in. thick, are bonded to a $\frac{1}{2}$-in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with $E=29 \times 10^{6} \mathrm{psi}$ and with yield strengths equal to 100 ksi and 50 ksi , respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value $\delta_{m}=0.04 \mathrm{in}$. and then decreased back to zero. Determine (a) the maximum value of $P,(b)$ the maximum stress in the tempered-steel bars, (c) the permanent set after the load is removed.

SOLUTION

Areas: Mild steel:

$$
A_{1}=\left(\frac{1}{2}\right)(2)=1.00 \mathrm{in}^{2}
$$

Tempered steel:

$$
A_{2}=2\left(\frac{3}{16}\right)(2)=0.75 \mathrm{in}^{2}
$$

Total:

$$
A=A_{1}+A_{2}=1.75 \mathrm{in}^{2}
$$

Total force to yield the mild steel:

$$
\sigma_{Y 1}=\frac{P_{Y}}{A} \quad \therefore \quad P_{Y}=A \sigma_{Y 1}=(1.75)\left(50 \times 10^{3}\right)=87.50 \times 10^{3} \mathrm{lb}
$$

$P>P_{Y}$, therefore, mild steel yields.
Let $P_{1}=$ force carried by mild steel.
$P_{2}=$ force carried by tempered steel.

$$
\begin{aligned}
& P_{1}=A_{1} \sigma_{1}=(1.00)\left(50 \times 10^{3}\right)=50 \times 10^{3} \mathrm{lb} \\
& P_{1}+P_{2}=P, \quad P_{2}=P-P_{1}=98 \times 10^{3}-50 \times 10^{3}=48 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

(a) $\delta_{m}=\frac{P_{2} L}{E A_{2}}=\frac{\left(48 \times 10^{3}\right)(14)}{\left(29 \times 10^{6}\right)(0.75)}$
0.0309 in.
(b) $\quad \sigma_{2}=\frac{P_{2}}{A_{2}}=\frac{48 \times 10^{3}}{0.75}=64 \times 10^{3} \mathrm{psi}$
64.0 ksi

Unloading: $\quad \delta^{\prime}=\frac{P L}{E A}=\frac{\left(98 \times 10^{3}\right)(14)}{\left(29 \times 10^{6}\right)(1.75)}=0.02703 \mathrm{in}$.
(c) $\quad \delta_{P}=\delta_{m}-\delta^{\prime}=0.03090-0.02703=0.003870 \mathrm{in}$.
0.00387 in.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Statics: $\quad \Sigma M_{C}=0: 0.640\left(Q-P_{B E}\right)-2.64 P_{A D}=0$
Deformation: $\quad \delta_{A}=2.64 \theta, \delta_{B}=a \theta=0.640 \theta$

Elastic analysis:

$$
\begin{aligned}
A & =(37.5)(6)=225 \mathrm{~mm}^{2}=225 \times 10^{-6} \mathrm{~m}^{2} \\
P_{A D} & =\frac{E A}{L_{A D}} \delta_{A}=\frac{\left(200 \times 10^{9}\right)\left(225 \times 10^{-6}\right)}{1.7} \delta_{A}=26.47 \times 10^{6} \delta_{A} \\
& =\left(26.47 \times 10^{6}\right)(2.64 \theta)=69.88 \times 10^{6} \theta \\
\sigma_{A D} & =\frac{P_{A D}}{A}=310.6 \times 10^{9} \theta \\
P_{B E} & =\frac{E A}{L_{B E}} \delta_{B}=\frac{\left(200 \times 10^{9}\right)\left(225 \times 10^{-6}\right)}{1.0} \delta_{B}=45 \times 10^{6} \delta_{B} \\
& =\left(45 \times 10^{6}\right)(0.640 \theta)=28.80 \times 10^{6} \theta \\
\sigma_{B E} & =\frac{P_{B E}}{A}=128 \times 10^{9} \theta
\end{aligned}
$$

From statics, $Q=P_{B E}+\frac{2.64}{0.640} P_{A D}=P_{B E}+4.125 P_{A D}$

$$
=\left[28.80 \times 10^{6}+(4.125)\left(69.88 \times 10^{6}\right)\right] \theta=317.06 \times 10^{6} \theta
$$

θ_{Y} at yielding of link $A D$:

$$
\begin{aligned}
\sigma_{A D} & =\sigma_{Y}=250 \times 10^{6}=310.6 \times 10^{9} \theta \\
\theta_{Y} & =804.89 \times 10^{-6} \\
Q_{Y} & =\left(317.06 \times 10^{6}\right)\left(804.89 \times 10^{-6}\right)=255.2 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.113 (Continued)

(a) Since $Q=260 \times 10^{3}>Q_{Y}$, link $A D$ yields. $\quad \sigma_{A D}=250 \mathrm{MPa}$

$$
P_{A D}=A \sigma_{Y}=\left(225 \times 10^{-6}\right)\left(250 \times 10^{-6}\right)=56.25 \times 10^{3} \mathrm{~N}
$$

From statics, $P_{B E}=Q-4.125 P_{A D}=260 \times 10^{3}-(4.125)\left(56.25 \times 10^{3}\right)$

$$
\begin{aligned}
& P_{B E}=27.97 \times 10^{3} \mathrm{~N} \\
& \sigma_{B E}=\frac{P_{B E}}{A}=\frac{27.97 \times 10^{3}}{225 \times 10^{-6}}=124.3 \times 10^{6} \mathrm{~Pa} \quad \sigma_{B E}=124.3 \mathrm{MPa}
\end{aligned}
$$

(b) $\delta_{B}=\frac{P_{B E} L_{B E}}{E A}=\frac{\left(27.97 \times 10^{3}\right)(1.0)}{\left(200 \times 10^{9}\right)\left(225 \times 10^{-6}\right)}=621.53 \times 10^{-6} \mathrm{~m} \quad \delta_{B}=0.622 \mathrm{~mm} \downarrow$

PROBLEM 2.114

Solve Prob. 2.113, knowing that $a=1.76 \mathrm{~m}$ and that the magnitude of the force \mathbf{Q} applied at B is gradually increased from zero to 135 kN .

PROBLEM 2.113 The rigid bar $A B C$ is supported by two links, $A D$ and $B E$, of uniform $37.5 \times 6-\mathrm{mm}$ rectangular cross section and made of a mild steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$. The magnitude of the force \mathbf{Q} applied at B is gradually increased from zero to 260 kN . Knowing that $a=0.640 \mathrm{~m}$, determine (a) the value of the normal stress in each link, (b) the maximum deflection of point B.

SOLUTION

Statics: $\quad \Sigma M_{C}=0: 1.76\left(Q-P_{B E}\right)-2.64 P_{A D}=0$
Deformation: $\quad \delta_{A}=2.64 \theta, \delta_{B}=1.76 \theta$
Elastic Analysis:

$$
\begin{aligned}
A & =(37.5)(6)=225 \mathrm{~mm}^{2}=225 \times 10^{-6} \mathrm{~m}^{2} \\
P_{A D} & =\frac{E A}{L_{A D}} \delta_{A}=\frac{\left(200 \times 10^{9}\right)\left(225 \times 10^{-6}\right)}{1.7} \delta_{A}=26.47 \times 10^{6} \delta_{A} \\
& =\left(26.47 \times 10^{6}\right)(2.64 \theta)=69.88 \times 10^{6} \theta \\
\sigma_{A D} & =\frac{P_{A D}}{A}=310.6 \times 10^{9} \theta \\
P_{B E} & =\frac{E A}{L_{B E}} \delta_{B}=\frac{\left(200 \times 10^{9}\right)\left(225 \times 10^{-6}\right)}{1.0} \delta_{B}=45 \times 10^{6} \delta_{B} \\
& =\left(45 \times 10^{6}\right)(1.76 \theta)=79.2 \times 10^{6} \theta \\
\sigma_{B E} & =\frac{P_{B E}}{A}=352 \times 10^{9} \theta
\end{aligned}
$$

PROBLEM 2.114 (Continued)

From statics, $P_{A D}=\frac{1}{1.500}\left(Q-P_{B E}\right)=52.5 \times 10^{3} \mathrm{~N}$

$$
\sigma_{A D}=\frac{P_{A D}}{A}=\frac{52.5 \times 10^{3}}{225 \times 10^{-6}}=233.3 \times 10^{6} \quad \sigma_{A D}=233 \mathrm{MPa}
$$

From elastic analysis of $A D, \quad \theta=\frac{P_{A D}}{69.88 \times 10^{6}}=751.29 \times 10^{-3} \mathrm{rad}$
(b)

$$
\delta_{B}=1.76 \theta=1.322 \times 10^{-3} \mathrm{~m}
$$

$$
\delta_{B}=1.322 \mathrm{~mm} \downarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.115*

Solve Prob. 2.113, assuming that the magnitude of the force \mathbf{Q} applied at B is gradually increased from zero to 260 kN and then decreased back to zero. Knowing that $a=0.640 \mathrm{~m}$, determine (a) the residual stress in each link, (b) the final deflection of point B. Assume that the links are braced so that they can carry compressive forces without buckling.

PROBLEM 2.113 The rigid bar $A B C$ is supported by two links, $A D$ and $B E$, of uniform $37.5 \times 6-\mathrm{mm}$ rectangular cross section and made of a mild steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$. The magnitude of the force \mathbf{Q} applied at B is gradually increased from zero to 260 kN . Knowing that $a=0.640 \mathrm{~m}$, determine (a) the value of the normal stress in each link, (b) the maximum deflection of point B.

SOLUTION

See solution to Problem 2.113 for the normal stresses in each link and the deflection of Point B after loading.

$$
\begin{aligned}
\sigma_{A D} & =250 \times 10^{6} \mathrm{~Pa} \\
\sigma_{B E} & =124.3 \times 10^{6} \mathrm{~Pa} \\
\delta_{B} & =621.53 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

The elastic analysis given in the solution to Problem 2.113 applies to the unloading.

$$
\begin{aligned}
Q^{\prime} & =317.06 \times 10^{6} \theta^{\prime} \\
Q^{\prime} & =\frac{Q}{317.06 \times 10^{6}}=\frac{260 \times 10^{3}}{317.06 \times 10^{6}}=820.03 \times 10^{-6} \\
\sigma_{A D}^{\prime} & =310.6 \times 10^{9} \theta=\left(310.6 \times 10^{9}\right)\left(820.03 \times 10^{-6}\right)=254.70 \times 10^{6} \mathrm{~Pa} \\
\sigma_{B E}^{\prime} & =128 \times 10^{9} \theta=\left(128 \times 10^{9}\right)\left(820.03 \times 10^{-6}\right)=104.96 \times 10^{6} \mathrm{~Pa} \\
\delta_{B}^{\prime} & =0.640 \theta^{\prime}=524.82 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

(a) Residual stresses.

$$
\begin{array}{ll}
\sigma_{A D, \text { res }}=\sigma_{A D}-\sigma_{A D}^{\prime}=250 \times 10^{6}-254.70 \times 10^{-6}=-4.70 \times 10^{6} \mathrm{~Pa} & =-4.70 \mathrm{MPa} \\
\sigma_{B E, \text { res }}=\sigma_{B E}-\sigma_{B E}^{\prime}=124.3 \times 10^{6}-104.96 \times 10^{6}=19.34 \times 10^{6} \mathrm{~Pa} & =19.34 \mathrm{MPa} \\
\delta_{B, P}=\delta_{B}-\delta_{B}^{\prime}=621.53 \times 10^{-6}-524.82 \times 10^{-6}=96.71 \times 10^{-6} \mathrm{~m} & =0.0967 \mathrm{~mm} \downarrow \tag{b}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.116

A uniform steel rod of cross-sectional area A is attached to rigid supports and is unstressed at a temperature of $45^{\circ} \mathrm{F}$. The steel is assumed to be elastoplastic with $\sigma_{Y}=36 \mathrm{ksi}$ and $E=29 \times 10^{6} \mathrm{psi}$. Knowing that $\alpha=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}$, determine the stress in the bar (a) when the temperature is raised to $320^{\circ} \mathrm{F}$, (b) after the temperature has returned to $45^{\circ} \mathrm{F}$.

SOLUTION

Let P be the compressive force in the rod.
Determine temperature change to cause yielding.

$$
\begin{aligned}
\delta & =-\frac{P L}{A E}+L \alpha(\Delta T)=-\frac{\sigma_{Y} L}{E}+L \alpha(\Delta T)_{Y}=0 \\
(\Delta T)_{Y} & =\frac{\sigma_{Y}}{E \alpha}=\frac{36 \times 10^{3}}{\left(29 \times 10^{6}\right)\left(6.5 \times 10^{-6}\right)}=190.98^{\circ} \mathrm{F}
\end{aligned}
$$

But $\Delta T=320-45=275^{\circ} \mathrm{F}>\left(\Delta T_{Y}\right)$
(a) Yielding occurs.
$\sigma=-\sigma_{Y}=-36.0 \mathrm{ksi}$
Cooling: $\quad(\Delta \mathrm{T})^{\prime}=275^{\circ} \mathrm{F}$

$$
\begin{aligned}
\delta^{\prime} & =\delta_{P}^{\prime}=\delta_{T}^{\prime}=-\frac{P^{\prime} L}{A E}+L \alpha(\Delta T)^{\prime}=0 \\
\sigma^{\prime} & =\frac{P^{\prime}}{A}=-E \alpha(\Delta T)^{\prime} \\
& =-\left(29 \times 10^{6}\right)\left(6.5 \times 10^{-6}\right)(275)=-51.8375 \times 10^{3} \mathrm{psi}
\end{aligned}
$$

(b) Residual stress:

$$
\sigma_{\mathrm{res}}=-\sigma_{Y}-\sigma^{\prime}=-36 \times 10^{3}+51.8375 \times 10^{3}=15.84 \times 10 \mathrm{psi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.117

The steel $\operatorname{rod} A B C$ is attached to rigid supports and is unstressed at a temperature of $25^{\circ} \mathrm{C}$. The steel is assumed elastoplastic, with $E=200 \mathrm{GPa}$ and $\sigma_{y}=250 \mathrm{MPa}$. The temperature of both portions of the rod is then raised to $150^{\circ} \mathrm{C}$. Knowing that $\alpha=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, determine (a) the stress in both portions of the rod, (b) the deflection of point C.

SOLUTION

$$
\begin{array}{ll}
A_{A C}=500 \times 10^{-6} \mathrm{~m}^{2} & L_{A C}=0.150 \mathrm{~m} \\
A_{C B}=300 \times 10^{-6} \mathrm{~m}^{2} & L_{C B}=0.250 \mathrm{~m}
\end{array}
$$

Constraint:

$$
\delta_{P}+\delta_{T}=0
$$

Determine ΔT to cause yielding in portion $C B$.

$$
\begin{aligned}
& -\frac{P L_{A C}}{E A_{A C}}-\frac{P L_{C B}}{E A_{C B}}=L_{A B} \alpha(\Delta T) \\
& \Delta T=\frac{P}{L_{A B} E \alpha}\left(\frac{L_{A C}}{A_{A C}}+\frac{L_{C B}}{A_{C B}}\right)
\end{aligned}
$$

At yielding, $P=P_{Y}=A_{C B} \sigma_{Y}=\left(300 \times 10^{-6}\right)\left(2.50 \times 10^{6}\right)=75 \times 10^{3} \mathrm{~N}$

$$
\begin{aligned}
(\Delta T)_{Y} & =\frac{P_{Y}}{L_{A B} E \alpha}\left(\frac{L_{A C}}{A_{A C}}+\frac{L_{C B}}{A_{C B}}\right) \\
& =\frac{75 \times 10^{3}}{(0.400)\left(200 \times 10^{9}\right)\left(11.7 \times 10^{-6}\right)}\left(\frac{0.150}{500 \times 10^{-6}}+\frac{0.250}{300 \times 10^{-6}}\right)=90.812^{\circ} \mathrm{C}
\end{aligned}
$$

Actual $\Delta \mathrm{T}$:

$$
150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=125^{\circ} \mathrm{C}>(\Delta T)_{Y}
$$

Yielding occurs. For $\Delta T>(\Delta T)_{Y}, \quad P=P_{Y}=75 \times 10^{3} \mathrm{~N}$
(a) $\sigma_{A C}=-\frac{P_{Y}}{A_{A C}}=-\frac{75 \times 10^{3}}{500 \times 10^{-6}}=-150 \times 10^{-6} \mathrm{~Pa}$

$$
\sigma_{C B}=-\frac{P_{Y}}{A_{C B}}=-\sigma_{Y}
$$

$$
\begin{gathered}
\sigma_{A C}=-150.0 \mathrm{MPa} \\
\sigma_{C B}=-250 \mathrm{MPa}
\end{gathered}
$$

(b) For $\Delta T>(\Delta T)_{Y}$, portion $A C$ remains elastic.

$$
\begin{aligned}
\delta_{C / A} & =-\frac{P_{Y} L_{A C}}{E A_{A C}}+L_{A C} \alpha(\Delta T) \\
& =-\frac{\left(75 \times 10^{3}\right)(0.150)}{\left(200 \times 10^{9}\right)\left(500 \times 10^{-6}\right)}+(0.150)\left(11.7 \times 10^{-6}\right)(125)=106.9 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

Since Point A is stationary, $\delta_{C}=\delta_{C / A}=106.9 \times 10^{-6} \mathrm{~m}$

$$
\delta_{C}=0.1069 \mathrm{~mm} \rightarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.118*

Solve Prob. 2.117, assuming that the temperature of the rod is raised to $150^{\circ} \mathrm{C}$ and then returned to $25^{\circ} \mathrm{C}$.

PROBLEM 2.117 The steel rod $A B C$ is attached to rigid supports and is unstressed at a temperature of $25^{\circ} \mathrm{C}$. The steel is assumed elastoplastic, with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$. The temperature of both portions of the rod is then raised to $150^{\circ} \mathrm{C}$. Knowing that $\alpha=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, determine (a) the stress in both portions of the rod, (b) the deflection of point C.

SOLUTION

$$
A_{A C}=500 \times 10^{-6} \mathrm{~m}^{2} \quad L_{A C}=0.150 \mathrm{~m} \quad A_{C B}=300 \times 10^{-6} \mathrm{~m}^{2} \quad L_{C B}=0.250 \mathrm{~m}
$$

Constraint: $\quad \delta_{P}+\delta_{T}=0$
Determine ΔT to cause yielding in portion $C B$.

$$
\begin{aligned}
-\frac{P L_{A C}}{E A_{A C}}-\frac{P L_{C B}}{E A_{C B}} & =L_{A B} \alpha(\Delta T) \\
\Delta T & =\frac{P}{L_{A B} E \alpha}\left(\frac{L_{A C}}{A_{A C}}+\frac{L_{C B}}{A_{C B}}\right)
\end{aligned}
$$

At yielding, $P=P_{Y}=A_{C B} \sigma_{Y}=\left(300 \times 10^{-6}\right)\left(250 \times 10^{6}\right)=75 \times 10^{3} \mathrm{~N}$

$$
\begin{aligned}
(\Delta T)_{Y} & =\frac{P_{Y}}{L_{A B} E \alpha}\left(\frac{L_{A C}}{A_{A C}}+\frac{L_{C B}}{A_{C B}}\right)=\frac{75 \times 10^{3}}{(0.400)\left(200 \times 10^{9}\right)\left(11.7 \times 10^{-6}\right)}\left(\frac{0.150}{500 \times 10^{-6}}+\frac{0.250}{300 \times 10^{-6}}\right) \\
& =90.812^{\circ} \mathrm{C}
\end{aligned}
$$

Actual ΔT : $150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=125^{\circ} \mathrm{C}>(\Delta T)_{Y}$
Yielding occurs. For $\Delta T>(\Delta T)_{Y}, \quad P=P_{Y}=75 \times 10^{3} \mathrm{~N}$

Cooling:
$(\Delta T)^{\prime}=125^{\circ} \mathrm{C} \quad P^{\prime}=\frac{E L_{A B} \alpha(\Delta T)^{\prime}}{\left(\frac{L_{A C}}{A_{A C}}+\frac{L_{C B}}{A_{C B}}\right)}=\frac{\left(200 \times 10^{9}\right)(0.400)\left(11.7 \times 10^{-6}\right)(125)}{\frac{0.150}{500 \times 10^{-6}}+\frac{0.250}{300 \times 10^{-6}}}=103.235 \times 10^{3} \mathrm{~N}$
Residual force: $P_{\text {res }}=P^{\prime}-P_{Y}=103.235 \times 10^{3}-75 \times 10^{3}=28.235 \times 10^{3} \mathrm{~N} \quad$ (tension)

PROBLEM 2.118* (Continued)

(a) Residual stresses.

$$
\begin{array}{rll}
\sigma_{A C}=\frac{P_{\text {res }}}{A_{A C}}=\frac{28.235 \times 10^{3}}{500 \times 10^{-6}} & \sigma_{A C}=56.5 \mathrm{MPa} \\
\sigma_{C B}=\frac{P_{\text {res }}}{A_{C B}}=\frac{28.235 \times 10^{3}}{300 \times 10^{-6}} & \sigma_{C B}=9.41 \mathrm{MPa}
\end{array}
$$

(b) Permanent deflection of point $C . \quad \delta_{C}=\frac{P_{\mathrm{res}} L_{A C}}{E A_{A C}} \quad \delta_{C}=0.0424 \mathrm{~mm} \rightarrow$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.119*

For the composite bar of Prob. 2.111, determine the residual stresses in the tempered-steel bars if P is gradually increased from zero to 98 kips and then decreased back to zero.

PROBLEM 2.111 Two tempered-steel bars, each $\frac{3}{16}$ in. thick, are bonded to a $\frac{1}{2}$-in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with $E=29 \times 10^{6}$ psi and with yield strengths equal to 100 ksi and 50 ksi , respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value $\delta_{m}=0.04 \mathrm{in}$. and then decreased back to zero. Determine (a) the maximum value of $P,(b)$ the maximum stress in the tempered-steel bars, (c) the permanent set after the load is removed.

SOLUTION

Areas
Mild steel: $\quad A_{1}=\left(\frac{1}{2}\right)(2)=1.00 \mathrm{in}^{2}$
Tempered steel: $\quad A_{2}=(2)\left(\frac{3}{16}\right)(2)=0.75 \mathrm{in}^{2}$
Total: $\quad A=A_{1}+A_{2}=1.75 \mathrm{in}^{2}$
Total force to yield the mild steel: $\quad \sigma_{Y 1}=\frac{P_{Y}}{A} \quad \therefore \quad P_{Y}=A \sigma_{Y 1}=(1.75)\left(50 \times 10^{3}\right)=87.50 \times 10^{3} \mathrm{lb}$ $P>P_{Y}$; therefore, mild steel yields.

Let $\quad P_{1}=$ force carried by mild steel
$P_{2}=$ force carried by tempered steel
$P_{1}=A_{1} \sigma_{Y 1}=(1.00)\left(50 \times 10^{3}\right)=50 \times 10^{3} \mathrm{lb}$
$P_{1}+P_{2}=P, \quad P_{2}=P-P_{1}=98 \times 10^{3}-50 \times 10^{3}=48 \times 10^{3} \mathrm{lb}$

$$
\sigma_{2}=\frac{P_{2}}{A_{2}}=\frac{48 \times 10^{3}}{0.75}=64 \times 10^{3} \mathrm{psi}
$$

Unloading. $\quad \sigma^{\prime}=\frac{P}{A}=\frac{98 \times 10^{3}}{1.75}=56 \times 10^{3} \mathrm{psi}$

$\underline{\text { Residual stresses. }}$

Mild steel:

$$
\sigma_{1, \text { res }}=\sigma_{1}-\sigma^{\prime}=50 \times 10^{3}-56 \times 10^{3}=-6 \times 10^{-3} \mathrm{psi}=-6 \mathrm{ksi}
$$

Tempered steel:

$$
\sigma_{2, \mathrm{res}}=\sigma_{2}-\sigma_{1}=64 \times 10^{3}-56 \times 10^{3}=8 \times 10^{3} \mathrm{psi}
$$

PROBLEM 2.120*

For the composite bar in Prob. 2.111, determine the residual stresses in the tempered-steel bars if P is gradually increased from zero until the deformation of the bar reaches a maximum value $\delta_{m}=0.04 \mathrm{in}$. and is then decreased back to zero.

PROBLEM 2.111 Two tempered-steel bars, each $\frac{3}{16} \mathrm{in}$. thick, are bonded to a $\frac{1}{2}$-in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with $E=29 \times 10^{6}$ psi and with yield strengths equal to 100 ksi and 50 ksi , respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value $\delta_{m}=0.04 \mathrm{in}$. and then decreased back to zero. Determine (a) the maximum value of P, (b) the maximum stress in the tempered-steel bars, (c) the permanent set after the load is removed.

SOLUTION

For the mild steel,

$$
A_{1}=\left(\frac{1}{2}\right)(2)=1.00 \mathrm{in}^{2} \quad \delta_{Y 1}=\frac{L \delta_{Y 1}}{E}=\frac{(14)\left(50 \times 10^{3}\right)}{29 \times 10^{6}}=0.024138 \mathrm{in} .
$$

For the tempered steel, $A_{2}=2\left(\frac{3}{16}\right)(2)=0.75$ in $^{2} \quad \delta_{Y 2}=\frac{L \delta_{Y 2}}{E}=\frac{(14)\left(100 \times 10^{3}\right)}{29 \times 10^{6}}=0.048276$ in.
Total area:

$$
\begin{aligned}
& A=A_{1}+A_{2}=1.75 \mathrm{in}^{2} \\
& \delta_{Y 1}<\delta_{m}<\delta_{Y 2}
\end{aligned}
$$

The mild steel yields. Tempered steel is elastic.
Forces:

$$
\begin{aligned}
& P_{1}=A_{1} \delta_{Y 1}=(1.00)\left(50 \times 10^{3}\right)=50 \times 10^{3} \mathrm{lb} \\
& P_{2}=\frac{E A_{2} \delta_{m}}{L}=\frac{\left(29 \times 10^{6}\right)(0.75)(0.04)}{14}=62.14 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

Stresses: $\quad \sigma_{1}=\frac{P_{1}}{A_{1}}=\delta_{Y 1}=50 \times 10^{3}$ psi $\quad \sigma_{2}=\frac{P_{2}}{A_{2}}=\frac{62.14 \times 10^{3}}{0.75}=82.86 \times 10^{3} \mathrm{psi}$

Unloading:

$$
\sigma^{\prime}=\frac{P}{A}=\frac{112.14}{1.75}=64.08 \times 10^{3} \mathrm{psi}
$$

Residual stresses. $\sigma_{1, \text { res }}=\sigma_{1}-\sigma^{\prime}=50 \times 10^{3}-64.08 \times 10^{3}=-14.08 \times 10^{3} \mathrm{psi}=-14.08 \mathrm{ksi}$

$$
\sigma_{2, \text { res }}=\sigma_{2}-\sigma^{\prime}=82.86 \times 10^{3}-64.08 \times 10^{3}=18.78 \times 10^{3} \mathrm{psi}=18.78 \mathrm{ksi}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.121*

Narrow bars of aluminum are bonded to the two sides of a thick steel plate as shown. Initially, at $T_{1}=70^{\circ} \mathrm{F}$, all stresses are zero. Knowing that the temperature will be slowly raised to T_{2} and then reduced to T_{1}, determine (a) the highest temperature T_{2} that does not result in residual stresses, (b) the temperature T_{2} that will result in a residual stress in the aluminum equal to 58 ksi . Assume $\alpha_{a}=12.8 \times 10^{-6} /{ }^{\circ} \mathrm{F}$ for the aluminum and $\alpha_{s}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}$ for the steel. Further assume that the aluminum is elastoplastic, with $E=10.9 \times 10^{6}$ psi and $\sigma_{Y}=58 \mathrm{ksi}$. (Hint: Neglect the small stresses in the plate.)

SOLUTION

Determine temperature change to cause yielding.

$$
\begin{aligned}
\delta & =\frac{P L}{E A}+L \alpha_{a}(\Delta T)_{Y}=L \alpha_{s}(\Delta T)_{Y} \\
\frac{P}{A} & =\sigma=-E\left(\alpha_{a}-\alpha_{s}\right)(\Delta T)_{Y}=-\sigma_{Y} \\
(\Delta T)_{Y} & =\frac{\sigma_{Y}}{E\left(\alpha_{a}-\alpha_{s}\right)}=\frac{58 \times 10^{3}}{\left(10.9 \times 10^{6}\right)(12.8-6.5)\left(10^{-6}\right)}=844.62^{\circ} \mathrm{F}
\end{aligned}
$$

(a) $T_{2 Y}=T_{1}+(\Delta T)_{Y}=70+844.62=915^{\circ} \mathrm{F}$ $915^{\circ} \mathrm{F}$

After yielding,

$$
\delta=\frac{\sigma_{Y} L}{E}+L \alpha_{a}(\Delta T)=L \alpha_{s}(\Delta T)
$$

Cooling:

$$
\delta^{\prime}=\frac{P^{\prime} L}{A E}+L \alpha_{a}(\Delta T)^{\prime}=L \alpha_{s}(\Delta T)^{\prime}
$$

The residual stress is

$$
\sigma_{\mathrm{res}}=\sigma_{Y}-\frac{P^{\prime}}{A}=\sigma_{Y}-E\left(\alpha_{a}-\alpha_{s}\right)(\Delta T)
$$

Set $\quad \sigma_{\text {res }}=-\sigma_{Y}$

$$
-\sigma_{Y}=\sigma_{Y}-E\left(\alpha_{a}-\alpha_{s}\right)(\Delta T)
$$

$$
\Delta T=\frac{2 \sigma_{Y}}{E\left(\alpha_{a}-\alpha_{s}\right)}=\frac{(2)\left(58 \times 10^{3}\right)}{\left(10.9 \times 10^{6}\right)(12.8-6.5)\left(10^{-6}\right)}=1689^{\circ} \mathrm{F}
$$

(b) $T_{2}=T_{1}+\Delta T=70+1689=1759^{\circ} \mathrm{F}$
$1759^{\circ} \mathrm{F}$
If $T_{2}>1759^{\circ} \mathrm{F}$, the aluminum bar will most likely yield in compression.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.122*

Bar $A B$ has a cross-sectional area of $1200 \mathrm{~mm}^{2}$ and is made of a steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$. Knowing that the force \mathbf{F} increases from 0 to 520 kN and then decreases to zero, determine (a) the permanent deflection of point C, (b) the residual stress in the bar.

SOLUTION

$$
A=1200 \mathrm{~mm}^{2}=1200 \times 10^{-6} \mathrm{~m}^{2}
$$

Force to yield portion $A C$:

$$
\begin{aligned}
P_{A C} & =A \sigma_{Y}=\left(1200 \times 10^{-6}\right)\left(250 \times 10^{6}\right) \\
& =300 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

For equilibrium, $F+P_{C B}-P_{A C}=0$.

$$
\begin{aligned}
P_{C B} & =P_{A C}-F=300 \times 10^{3}-520 \times 10^{3} \\
& =-220 \times 10^{3} \mathrm{~N} \\
\delta_{C} & =-\frac{P_{C B} L_{C B}}{E A}=\frac{\left(220 \times 10^{3}\right)(0.440-0.120)}{\left(200 \times 10^{9}\right)\left(1200 \times 10^{-6}\right)} \\
& =0.29333 \times 10^{-3} \mathrm{~m} \\
\sigma_{C B} & =\frac{P_{C B}}{A}=\frac{220 \times 10^{3}}{1200 \times 10^{-6}} \\
& =-183.333 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Unloading:

$$
\begin{aligned}
\delta_{C}^{\prime}= & \frac{P_{A C}^{\prime} L_{A C}}{E A}=-\frac{P_{C B}^{\prime} L_{C B}}{E A}=\frac{\left(F-P_{A C}^{\prime}\right) L_{C B}}{E A} \\
& P_{A C}^{\prime}\left(\frac{L_{A C}}{E A}+\frac{L_{B C}}{E A}\right)=\frac{F L_{C B}}{E A} \\
P_{A C}^{\prime}= & \frac{F L_{C B}}{L_{A C}+L_{C B}}=\frac{\left(520 \times 10^{3}\right)(0.440-0.120)}{0.440}=378.18 \times 10^{3} \mathrm{~N} \\
P_{C B}^{\prime}= & P_{A C}^{\prime}-F=378.18 \times 10^{3}-520 \times 10^{3}=-141.820 \times 10^{3} \mathrm{~N} \\
\sigma_{A C}^{\prime}= & \frac{P_{A C}^{\prime}}{A}=\frac{378.18 \times 10^{3}}{1200 \times 10^{-6}}=315.150 \times 10^{6} \mathrm{~Pa} \\
\sigma_{B C}^{\prime}= & \frac{P_{B C}^{\prime}}{A}=-\frac{141.820 \times 10^{3}}{1200 \times 10^{-6}}=-118.183 \times 10^{6} \mathrm{~Pa} \\
\delta_{C}^{\prime}= & \frac{\left(378.18 \times 10^{3}\right)(0.120)}{\left(200 \times 10^{9}\right)\left(1200 \times 10^{-6}\right)}=0.189090 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

(a) $\quad \delta_{C, p}=\delta_{C}-\delta_{C}^{\prime}=0.29333 \times 10^{-3}-0.189090 \times 10^{-3}=0.104240 \times 10^{-3} \mathrm{~m}$
$=0.1042 \mathrm{~mm}$
(b) $\sigma_{A C \text {, res }}=\sigma_{Y}-\sigma_{A C}^{\prime}=250 \times 10^{6}-315.150 \times 10^{6}=-65.150 \times 10^{6} \mathrm{~Pa}$ $=-65.2 \mathrm{MPa}$

$$
\sigma_{C B, \text { res }}=\sigma_{C B}-\sigma_{C B}^{\prime}=-183.333 \times 10^{6}+118.183 \times 10^{6}=-65.150 \times 10^{6} \mathrm{~Pa} \quad=-65.2 \mathrm{MPa}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.123*

Solve Prob. 2.122, assuming that $a=180 \mathrm{~mm}$.
PROBLEM 2.122 Bar $A B$ has a cross-sectional area of $1200 \mathrm{~mm}^{2}$ and is made of a steel that is assumed to be elastoplastic with $E=200 \mathrm{GPa}$ and $\sigma_{Y}=250 \mathrm{MPa}$. Knowing that the force \mathbf{F} increases from 0 to 520 kN and then decreases to zero, determine (a) the permanent deflection of point $C,(b)$ the residual stress in the bar.

SOLUTION

$$
A=1200 \mathrm{~mm}^{2}=1200 \times 10^{-6} \mathrm{~m}^{2}
$$

Force to yield portion $A C: \quad P_{A C}=A \sigma_{Y}=\left(1200 \times 10^{-6}\right)\left(250 \times 10^{6}\right)$

$$
=300 \times 10^{3} \mathrm{~N}
$$

For equilibrium, $F+P_{C B}-P_{A C}=0$.

$$
\begin{aligned}
P_{C B} & =P_{A C}-F=300 \times 10^{3}-520 \times 10^{3} \\
& =-220 \times 10^{3} \mathrm{~N} \\
\delta_{C} & =-\frac{P_{C B} L_{C B}}{E A}=\frac{\left(220 \times 10^{3}\right)(0.440-0.180)}{\left(200 \times 10^{9}\right)\left(1200 \times 10^{-6}\right)} \\
& =0.23833 \times 10^{-3} \mathrm{~m} \\
\sigma_{C B} & =\frac{P_{C B}}{A}=-\frac{220 \times 10^{3}}{1200 \times 10^{-6}} \\
& =-183.333 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

PROBLEM 2.123* (Continued)

Unloading:

$$
\begin{aligned}
\delta_{C}^{\prime} & =\frac{P_{A C}^{\prime} L_{A C}}{E A}=-\frac{P_{C B}^{\prime} L_{C B}}{E A}=\frac{\left(F-P_{A C}^{\prime}\right) L_{C B}}{E A} \\
& =P_{A C}^{\prime}\left(\frac{L_{A C}}{E A}+\frac{L_{B C}}{E A}\right)=\frac{F L_{C B}}{E A} \\
P_{A C}^{\prime} & =\frac{F L_{C B}}{L_{A C}+L_{C B}}=\frac{\left(520 \times 10^{3}\right)(0.440-0.180)}{0.440}=307.27 \times 10^{3} \mathrm{~N} \\
P_{C B}^{\prime} & =P_{A C}^{\prime}-F=307.27 \times 10^{3}-520 \times 10^{3}=-212.73 \times 10^{3} \mathrm{~N} \\
\delta_{C}^{\prime} & =\frac{\left(307.27 \times 10^{3}\right)(0.180)}{\left(200 \times 10^{9}\right)\left(1200 \times 10^{-6}\right)}=0.23045 \times 10^{-3} \mathrm{~m} \\
\sigma_{A C}^{\prime} & =\frac{P_{A C}^{\prime}}{A}=\frac{307.27 \times 10^{3}}{1200 \times 10^{-6}}=256.058 \times 10^{6} \mathrm{~Pa} \\
\sigma_{C B}^{\prime} & =\frac{P_{C B}^{\prime}}{A}=\frac{-212.73 \times 10^{3}}{1200 \times 10^{-6}}=-177.275 \times 10^{6} \mathrm{~Pa}
\end{aligned}
$$

(a) $\delta_{C, p}=\delta_{C}-\delta_{C}^{\prime}=0.23833 \times 10^{-3}-0.23045 \times 10^{-3}=0.00788 \times 10^{-3} \mathrm{~m}$

$$
\sigma_{C B, \text { res }}=\sigma_{C B}-\sigma_{C B}^{\prime}=-183.333 \times 10^{6}+177.275 \times 10^{6}=-6.0580 \times 10^{6} \mathrm{~Pa}
$$

$$
\begin{aligned}
= & 0.00788 \mathrm{~mm} \\
& =-6.06 \mathrm{MPa} \\
& =-6.06 \mathrm{MPa}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.124

The uniform wire $A B C$, of unstretched length $2 l$, is attached to the supports shown and a vertical load \mathbf{P} is applied at the midpoint B. Denoting by A the cross-sectional area of the wire and by E the modulus of elasticity, show that, for $\delta \ll l$, the deflection at the midpoint B is

$$
\delta=l \sqrt[3]{\frac{P}{A E}}
$$

SOLUTION

Use approximation.

$$
\sin \theta \approx \tan \theta \approx \frac{\delta}{l}
$$

Statics: $\quad+\uparrow_{\Sigma F_{Y}=0: \quad 2 P_{A B} \sin \theta-P=0}$

$$
P_{A B}=\frac{P}{2 \sin \theta} \approx \frac{P l}{2 \delta}
$$

Elongation: $\quad \delta_{A B}=\frac{P_{A B} l}{A E}=\frac{P l^{2}}{2 A E \delta}$

Deflection:

From the right triangle,

$$
\begin{aligned}
\left(l+\delta_{A B}\right)^{2} & =l^{2}+\delta^{2} \\
\delta^{2} & =l^{2}+2 l \delta_{A B}+\delta_{A B}^{2}-y^{2} \\
& =2 l \delta_{A B}\left(1+\frac{1}{2} \frac{\delta_{A B}}{l}\right) \approx 2 l \delta_{A B} \\
& \approx \frac{P l^{3}}{A E \delta} \\
\delta^{3} & \approx \frac{P l^{3}}{A E} \quad \therefore \quad \delta \approx l \sqrt[3]{\frac{P}{A E}}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.125

The aluminum $\operatorname{rod} A B C\left(E=10.1 \times 10^{6} \mathrm{psi}\right)$, which consists of two cylindrical portions $A B$ and $B C$, is to be replaced with a cylindrical steel $\operatorname{rod} D E\left(E=29 \times 10^{6} \mathrm{psi}\right)$ of the same overall length. Determine the minimum required diameter d of the steel rod if its vertical deformation is not to exceed the deformation of the aluminum rod under the same load and if the allowable stress in the steel rod is not to exceed 24 ksi .

SOLUTION

Deformation of aluminum rod.

$$
\begin{aligned}
\delta_{A} & =\frac{P L_{A B}}{A_{A B} E}+\frac{P L_{B C}}{A_{B C} E} \\
& =\frac{P}{E}\left(\frac{L_{A B}}{A_{A B}}+\frac{L_{B C}}{A_{B C}}\right) \\
& =\frac{28 \times 10^{3}}{10.1 \times 10^{6}}\left(\frac{12}{\frac{\pi}{4}(1.5)^{2}}+\frac{18}{\frac{\pi}{4}(2.25)^{2}}\right) \\
& =0.031376 \mathrm{in} .
\end{aligned}
$$

Steel rod.
$\delta=0.031376 \mathrm{in}$.

$$
\begin{aligned}
& \delta=\frac{P L}{E A} \quad \therefore \quad A=\frac{P L}{E \delta}=\frac{\left(28 \times 10^{3}\right)(30)}{\left(29 \times 10^{6}\right)(0.031376)}=0.92317 \mathrm{in}^{2} \\
& \sigma=\frac{P}{A} \quad \therefore \quad A=\frac{P}{\sigma}=\frac{28 \times 10^{3}}{24 \times 10^{3}}=1.16667 \mathrm{in}^{2}
\end{aligned}
$$

Required area is the larger value. $\quad A=1.16667 \mathrm{in}^{2}$

Diameter:

$$
d=\sqrt{\frac{4 A}{\pi}}=\sqrt{\frac{(4)(1.16667)}{\pi}} \quad d=1.219 \mathrm{in}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Portion $A B$:

$$
\begin{aligned}
P_{A B} & =40 \times 10^{3} \mathrm{lb} \\
L_{A B} & =40 \mathrm{in} . \\
d & =2 \mathrm{in} . \\
A_{A B} & =\frac{\pi}{4} d^{2}=\frac{\pi}{4}(2)^{2}=3.1416 \mathrm{in}^{2} \\
E_{A B} & =29 \times 10^{6} \mathrm{psi} \\
\delta_{A B} & =\frac{P_{A B} L_{A B}}{E_{A B} A_{A B}}=\frac{\left(40 \times 10^{3}\right)(40)}{\left(29 \times 10^{6}\right)(3.1416)}=17.5619 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

Portion $B C: \quad P_{B C}=-20 \times 10^{3} \mathrm{lb}$

$$
L_{B C}=30 \mathrm{in} .
$$

$$
d=3 \mathrm{in} .
$$

$$
A_{B C}=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(3)^{2}=7.0686 \mathrm{in}^{2}
$$

$$
E_{B C}=15 \times 10^{6} \mathrm{psi}
$$

$$
\delta_{B C}=\frac{P_{B C} L_{B C}}{E_{B C} A_{B C}}=\frac{\left(-20 \times 10^{3}\right)(30)}{\left(15 \times 10^{6}\right)(7.0686)}=-5.6588 \times 10^{-3} \mathrm{in} .
$$

(a) $\delta=\delta_{A B}+\delta_{B C}=17.5619 \times 10^{-6}-5.6588 \times 10^{-6}$
(b) $\delta_{B}=-\delta_{B C}$
$\delta=11.90 \times 10^{-3} \mathrm{in} . \downarrow$
$\delta_{B}=5.66 \times 10^{-3} \mathrm{in} . \uparrow$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use.
Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

Brass strip:

$$
E=105 \mathrm{GPa}
$$

$$
\alpha=20 \times 10^{-6} /{ }^{\circ} \mathrm{C}
$$

PROBLEM 2.127

The brass strip $A B$ has been attached to a fixed support at A and rests on a rough support at B. Knowing that the coefficient of friction is 0.60 between the strip and the support at B, determine the decrease in temperature for which slipping will impend.

SOLUTION

Brass strip:

$$
\begin{aligned}
& E=105 \mathrm{GPa} \\
& \alpha=20 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
+\uparrow \Sigma F_{y} & =0: \quad N-W=0 \quad N=W \\
\xrightarrow{+} \Sigma F_{x} & =0: \quad P-\mu N=0 \quad P=\mu W=\mu m g \\
\delta & =-\frac{P L}{E A}+L \alpha(\Delta T)=0 \quad \Delta T=\frac{P}{E A \alpha}=\frac{\mu m g}{E A \alpha}
\end{aligned}
$$

Data: $\quad \mu=0.60$

$$
\begin{aligned}
A & =(20)(3)=60 \mathrm{~mm}^{2}=60 \times 10^{-6} \mathrm{~m}^{2} \\
m & =100 \mathrm{~kg} \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
E & =105 \times 10^{9} \mathrm{~Pa} \\
\Delta T & =\frac{(0.60)(100)(9.81)}{\left(105 \times 10^{9}\right)\left(60 \times 10^{-6}\right)\left(20 \times 10^{6}\right)}
\end{aligned}
$$

$$
\Delta T=4.67^{\circ} \mathrm{C}
$$

PROBLEM 2.128

The specimen shown is made from a 1 -in.-diameter cylindrical steel rod with two 1.5 -in.-outer-diameter sleeves bonded to the rod as shown. Knowing that $E=29 \times 10^{6}$ psi, determine (a) the load \mathbf{P} so that the total deformation is 0.002 in., (b) the corresponding deformation of the central portion $B C$.

SOLUTION

(a) $\delta=\Sigma \frac{P_{i} L_{i}}{A_{i} E_{i}}=\frac{P}{E} \Sigma \frac{L_{i}}{A_{i}}$
$P=E \delta\left(\Sigma \frac{L_{i}}{A_{i}}\right)^{-1} A_{i}=\frac{\pi}{4} d_{i}^{2}$

	L, in.	d, in.	A, in 2	L / A, in $^{-1}$
$A B$	2	1.5	1.7671	1.1318
$B C$	3	1.0	0.7854	3.8197
$C D$	2	1.5	1.7671	1.1318

$$
\begin{array}{rlrl}
P & =\left(29 \times 10^{6}\right)(0.002)(6.083)^{-1}=9.353 \times 10^{3} \mathrm{lb} & P=9.53 \mathrm{kips} \\
\text { (b) } \quad \delta_{B C} & =\frac{P L_{B C}}{A_{B C} E}=\frac{P}{E} \frac{L_{B C}}{A_{B C}}=\frac{9.535 \times 10^{3}}{29 \times 10^{6}}(3.8197) & \delta=1.254 \times 10^{-3} \mathrm{in} .
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.129

Each of the four vertical links connecting the two rigid horizontal members is made of aluminum $(E=70 \mathrm{GPa})$ and has a uniform rectangular cross section of $10 \times 40 \mathrm{~mm}$. For the loading shown, determine the deflection of (a) point $E,(b)$ point F, (c) point G.

SOLUTION

Statics. Free body $E F G$:

$$
\begin{aligned}
+\Sigma M_{F} & =0:-(400)\left(2 F_{B E}\right)-(250)(24)=0 \\
F_{B E} & =-7.5 \mathrm{kN}=-7.5 \times 10^{3} \mathrm{~N} \\
+\Sigma M_{E} & =0:(400)\left(2 F_{C F}\right)-(650)(24)=0 \\
F_{C F} & =19.5 \mathrm{kN}=19.5 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Area of one link:

$$
\begin{aligned}
A & =(10)(40)=400 \mathrm{~mm}^{2} \\
& =400 \times 10^{-6} \mathrm{~m}^{2}
\end{aligned}
$$

Length: $L=300 \mathrm{~mm}=0.300 \mathrm{~m}$
Deformations.

$$
\begin{aligned}
& \delta_{B E}=\frac{F_{B E} L}{E A}=\frac{\left(-7.5 \times 10^{3}\right)(0.300)}{\left(70 \times 10^{9}\right)\left(400 \times 10^{-6}\right)}=-80.357 \times 10^{-6} \mathrm{~m} \\
& \delta_{C F}=\frac{F_{C F} L}{E A}=\frac{\left(19.5 \times 10^{3}\right)(0.300)}{\left(70 \times 10^{9}\right)\left(400 \times 10^{-6}\right)}=208.93 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.129 (Continued)

(a) Deflection of Point $E . \quad \delta_{E}=\left|\delta_{B F}\right|$

$$
\delta_{E}=80.4 \mu \mathrm{~m} \uparrow
$$

(b) Deflection of Point $F . \quad \delta_{F}=\delta_{C F}$

$$
\delta_{F}=209 \mu \mathrm{~m} \downarrow
$$

Geometry change.

Let θ be the small change in slope angle.

$$
\theta=\frac{\delta_{E}+\delta_{F}}{L_{E F}}=\frac{80.357 \times 10^{-6}+208.93 \times 10^{-6}}{0.400}=723.22 \times 10^{-6} \text { radians }
$$

(c) Deflection of Point G. $\delta_{G}=\delta_{F}+L_{F G} \theta$

$$
\begin{array}{rlr}
\delta_{G} & =\delta_{F}+L_{F G} \theta=208.93 \times 10^{-6}+(0.250)\left(723.22 \times 10^{-6}\right) \\
& =389.73 \times 10^{-6} \mathrm{~m} & \delta_{G}=390 \mu \mathrm{~m} \downarrow
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.130

A $4-\mathrm{ft}$ concrete post is reinforced with four steel bars, each with a $\frac{3}{4}$-in. diameter. Knowing that $E_{s}=29 \times 10^{6} \mathrm{psi}$ and $E_{c}=3.6 \times 10^{6} \mathrm{psi}$, determine the normal stresses in the steel and in the concrete when a 150 -kip axial centric force \mathbf{P} is applied to the post.

SOLUTION

$$
\begin{aligned}
& A_{s}=4\left[\frac{\pi}{4}\left(\frac{3}{4}\right)^{2}\right]=1.76715 \mathrm{in}^{2} \\
& A_{c}=8^{2}-A_{s}=62.233 \mathrm{in}^{2} \\
& \delta_{s}=\frac{P_{s} L}{A_{s} E_{s}}=\frac{P_{s}(48)}{(1.76715)\left(29 \times 10^{6}\right)}=0.93663 \times 10^{-6} P_{s} \\
& \delta_{c}=\frac{P_{c} L}{A_{c} E_{c}}=\frac{P_{c}(48)}{(62.233)\left(3.6 \times 10^{6}\right)}=0.21425 \times 10^{-6} P_{c}
\end{aligned}
$$

But $\delta_{s}=\delta_{c}: 0.93663 \times 10^{-6} P_{s}=0.21425 \times 10^{-6} P_{c}$

$$
\begin{equation*}
P_{s}=0.22875 P_{c} \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
P_{s}+P_{c}=P=150 \mathrm{kips} \tag{2}
\end{equation*}
$$

Substituting (1) into (2),

$$
1.22875 P_{c}=150 \mathrm{kips}
$$

$$
P_{c}=122.075 \mathrm{kips}
$$

From (1),

$$
P_{s}=0.22875(122.075)=27.925 \mathrm{kips}
$$

$$
\begin{array}{ll}
\sigma_{s}=-\frac{P_{s}}{A_{s}}=-\frac{27.925}{1.76715} & \sigma_{s}=-15.80 \mathrm{ksi} \\
\sigma_{c}=-\frac{P_{c}}{A_{c}}=-\frac{122.075}{62.233} & \sigma_{c}=-1.962 \mathrm{ksi}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Let θ be the rotation of bar $A B C$ as shown.

Then

$$
\delta_{B}=0.15 \theta \quad \delta_{C}=0.25 \theta
$$

But

$$
\begin{gathered}
\delta_{C}=\delta_{\text {turn }}-\frac{P_{C D} L_{C D}}{E_{C D} A_{C D}} \\
P_{C D}=\frac{E_{C D} A_{C D}}{L_{C D}}\left(\delta_{\text {turn }}-\delta_{C}\right)
\end{gathered}
$$

$$
=\frac{\left(200 \times 10^{9} \mathrm{~Pa}\right) \frac{\pi}{4}(0.016 \mathrm{~m})^{2}}{2 \mathrm{~m}}(0.0025 \mathrm{~m}-0.25 \theta)
$$

$$
=50.265 \times 10^{3}-5.0265 \times 10^{6} \theta
$$

$$
\delta_{B}=\frac{P_{B E} L_{B E}}{E_{B E} A_{B E}} \quad \text { or } \quad P_{B E}=\frac{E_{B E} A_{B E}}{L_{B E}} \delta_{B}
$$

$$
P_{B E}=\frac{\left(200 \times 10^{9} \mathrm{~Pa}\right) \frac{\pi}{4}(0.016 \mathrm{~m})^{2}}{3 \mathrm{~m}}(0.15 \theta)
$$

$$
=2.0106 \times 10^{6} \theta
$$

From free body of member $A B C$:

$$
\begin{aligned}
+) \Sigma M_{A}=0: \quad 0.15 P_{B E}-0.25 P_{C D} & =0 \\
0.15\left(2.0106 \times 10^{6} \theta\right)-0.25\left(50.265 \times 10^{3}-5.0265 \times 10^{6} \theta\right) & =0 \\
\theta & =8.0645 \times 10^{-3} \mathrm{rad}
\end{aligned}
$$

(a) $P_{C D}=50.265 \times 10^{3}-5.0265 \times 10^{6}\left(8.0645 \times 10^{-3}\right)$

$$
=9.7288 \times 10^{3} \mathrm{~N}
$$

$$
P_{C D}=9.73 \mathrm{kN}
$$

(b) $\delta_{C}=0.25 \theta=0.25\left(8.0645 \times 10^{-3}\right)$

$$
=2.0161 \times 10^{-3} \mathrm{~m}
$$

$$
\delta_{C}=2.02 \mathrm{~mm} \leftarrow
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.132

The assembly shown consists of an aluminum shell $\left(E_{a}=10.6 \times 10^{6} \mathrm{psi}\right.$, $\left.\alpha_{a}=12.9 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$ fully bonded to a steel core $\left(E_{s}=29 \times 10^{6} \mathrm{psi}\right.$, $\left.\alpha_{s}=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)$ and is unstressed. Determine (a) the largest allowable change in temperature if the stress in the aluminum shell is not to exceed $6 \mathrm{ksi},(b)$ the corresponding change in length of the assembly.

SOLUTION

Since $\alpha_{a}>\alpha_{s}$, the shell is in compression for a positive temperature rise.
Let

$$
\begin{aligned}
& \sigma_{a}=-6 \mathrm{ksi}=-6 \times 10^{3} \mathrm{psi} \\
& A_{a}=\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)=\frac{\pi}{4}\left(1.25^{2}-0.75^{2}\right)=0.78540 \mathrm{in}^{2} \\
& A_{s}=\frac{\pi}{4} d^{2}=\frac{\pi}{4}(0.75)^{2}=0.44179 \mathrm{in}^{2} \\
& P=-\sigma_{a} A_{a}=\sigma_{s} A_{s}
\end{aligned}
$$

where P is the tensile force in the steel core.

$$
\begin{aligned}
\sigma_{s} & =-\frac{\sigma_{a} A_{a}}{A_{s}}=\frac{\left(6 \times 10^{3}\right)(0.78540)}{0.44179}=10.667 \times 10^{3} \mathrm{psi} \\
\varepsilon & =\frac{\sigma_{s}}{E_{s}}+\alpha_{s}(\Delta T)=\frac{\sigma_{a}}{E_{a}}+\alpha_{a}(\Delta T) \\
\left(\alpha_{a}-\alpha_{s}\right)(\Delta T) & =\frac{\sigma_{s}}{E_{s}}-\frac{\sigma_{a}}{E_{a}} \\
\left(6.4 \times 10^{-6}\right)(\Delta T) & =\frac{10.667 \times 10^{3}}{29 \times 10^{6}}+\frac{6 \times 10^{3}}{10.6 \times 10^{6}}=0.93385 \times 10^{-3}
\end{aligned}
$$

(a) $\Delta T=145.91^{\circ} \mathrm{F}$ $\Delta T=145.9^{\circ} \mathrm{F}$
(b) $\quad \varepsilon=\frac{10.667 \times 10^{3}}{29 \times 10^{6}}+\left(6.5 \times 10^{-6}\right)(145.91)=1.3163 \times 10^{-3}$
or
$\varepsilon=\frac{-6 \times 10^{3}}{10.6 \times 10^{6}}+\left(12.9 \times 10^{-6}\right)(145.91)=1.3163 \times 10^{-3}$
$\delta=L \varepsilon=(8.0)\left(1.3163 \times 10^{-3}\right)=0.01053 \mathrm{in}$.
$\delta=0.01053 \mathrm{in}$.

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

Consider the plastic block. The shearing force carried is $P=9 \times 10^{3} \mathrm{lb}$
The area is $A=(3.5)(5.5)=19.25 \mathrm{in}^{2}$
Shearing stress: $\quad \tau=\frac{P}{A}=\frac{9 \times 10^{3}}{19.25}=467.52 \mathrm{psi}$
Shearing strain:

$$
\gamma=\frac{\tau}{G}=\frac{467.52}{55 \times 10^{3}}=0.0085006
$$

But

$$
\gamma=\frac{\delta}{h} \quad \therefore \quad \delta=h \gamma=(2.2)(0.0085006)
$$

$$
\delta=0.01870 \mathrm{in} .
$$

PROBLEM 2.134

The aluminum test specimen shown is subjected to two equal and opposite centric axial forces of magnitude P. (a) Knowing that $E=70 \mathrm{GPa}$ and $\sigma_{\text {all }}=200 \mathrm{MPa}$, determine the maximum allowable value of P and the corresponding total elongation of the specimen. (b) Solve part a, assuming that the specimen has been replaced by an aluminum bar of the same length and a uniform $60 \times 15-\mathrm{mm}$ rectangular cross section.

SOLUTION

$$
\begin{aligned}
\sigma_{\text {all }} & =200 \times 10^{6} \mathrm{~Pa} \quad E=70 \times 10^{9} \mathrm{~Pa} \\
A_{\min } & =(60 \mathrm{~mm})(15 \mathrm{~mm})=900 \mathrm{~mm}^{2}=900 \times 10^{-6} \mathrm{~m}^{2}
\end{aligned}
$$

(a) Test specimen. $D=75 \mathrm{~mm}, d=60 \mathrm{~mm}, r=6 \mathrm{~mm}$

$$
\frac{D}{d}=\frac{75}{60}=1.25 \quad \frac{r}{d}=\frac{6}{60}=0.10
$$

From Fig. 2.60b, $\quad K=1.95 \quad \sigma_{\text {max }}=K \frac{P}{A}$

$$
P=\frac{A \sigma_{\max }}{K}=\frac{\left(900 \times 10^{-6}\right)\left(200 \times 10^{6}\right)}{1.95}=92.308 \times 10^{3} \mathrm{~N} \quad P=92.3 \mathrm{kN}
$$

Wide area $A^{*}=(75 \mathrm{~mm})(15 \mathrm{~mm})=1125 \mathrm{~mm}^{2}=1.125 \times 10^{-3} \mathrm{~m}^{2}$

$$
\begin{array}{rlr}
\delta=\Sigma \frac{P_{i} L_{i}}{A_{i} E_{i}}=\frac{P}{E} \Sigma \frac{L_{i}}{A_{i}} & =\frac{92.308 \times 10^{3}}{70 \times 10^{9}}\left[\frac{0.150}{1.125 \times 10^{-3}}+\frac{0.300}{900 \times 10^{-6}}+\frac{0.150}{1.125 \times 10^{-3}}\right] & \\
& =7.91 \times 10^{-6} \mathrm{~m} & \delta=0.791 \mathrm{~mm}
\end{array}
$$

(b) Uniform bar.

$$
\begin{array}{ll}
P=A \sigma_{\text {all }}=\left(900 \times 10^{-6}\right)\left(200 \times 10^{6}\right)=180 \times 10^{3} \mathrm{~N} & P=180.0 \mathrm{kN} \\
\delta=\frac{P L}{A E}=\frac{\left(180 \times 10^{3}\right)(0.600)}{\left(900 \times 10^{-6}\right)\left(70 \times 10^{9}\right)}=1.714 \times 10^{-3} \mathrm{~m} & \delta=1.714 \mathrm{~mm}
\end{array}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.135

The uniform rod $B C$ has a cross-sectional area A and is made of a mild steel that can be assumed to be elastoplastic with a modulus of elasticity E and a yield strength σ_{Y}. Using the block-and-spring system shown, it is desired to simulate the deflection of end C of the rod as the axial force \mathbf{P} is gradually applied and removed, that is, the deflection of points C and C^{\prime} should be the same for all values of P. Denoting by μ the coefficient of friction between the block and the horizontal surface, derive an expression for (a) the required mass m of the block, (b) the required constant k of the spring.

SOLUTION

Force-deflection diagram for Point C or $\operatorname{rod} B C$.

For

$$
\begin{aligned}
P & <P_{Y}=A \sigma_{Y} \\
\delta_{C} & =\frac{P L}{E A} \quad P=\frac{E A}{L} \delta_{C} \\
P_{\max } & =P_{Y}=A \sigma_{Y}
\end{aligned}
$$

Force-deflection diagram for Point C^{\prime} of block-and-spring system.

$$
\begin{array}{lll}
+\uparrow \Sigma F_{y}=0: & N-m g=0 & N=m g \\
\xrightarrow{+} \Sigma F_{x}=0: & P-F_{f}=0 & P=F_{f}
\end{array}
$$

If block does not move, i.e., $F_{f}<\mu N=\mu m g \quad$ or $\quad P<\mu m g$,

then

$$
\delta_{c}^{\prime}=\frac{P}{K} \quad \text { or } \quad P=k \delta_{c}^{\prime}
$$

If $P=\mu m g$, then slip at $P=F_{m}=\mu m g$ occurs.
If the force P is the removed, the spring returns to its initial length.

$\begin{array}{lr}\text { (a) Equating } P_{Y} \text { and } F_{\text {max }}, & A \sigma_{Y}=\mu m g \quad m=\frac{A \sigma_{Y}}{\mu g} \\ \text { (b) Equating slopes, } & k=\frac{E A}{L}\end{array}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

SOLUTION

For each element, enter

$$
L_{i}, \quad A_{i}, \quad E_{i}
$$

Compute deformation

Update axial load

$$
P=P+P_{i}
$$

Compute for each element

$$
\begin{aligned}
\sigma_{i} & =P / A_{i} \\
\delta_{i} & =P L_{i} / A_{i} E_{i}
\end{aligned}
$$

Total deformation:
Update through n elements

$$
\delta=\delta+\delta_{i}
$$

Program Outputs

Problem 2.20

Element	Stress (MPa)	Deformation (mm)
1	19.0986	0.1091
2	-12.7324	-0.0909
Total Deformation $=$	0.0182 mm	

Problem 2.126

Element	Stress (ksi)	Deformation (in.)
1	12.7324	0.0176
2	-2.8294	-0.0057
Total Deformation $=$	0.01190 in.	

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C2
Rod $A B$ is horizontal with both ends fixed; it consists of n elements, each of which is homogeneous and of uniform cross section, and is subjected to the loading shown. The length of element i is denoted by L_{i}, its cross- sectional area by A_{i}, its modulus of elasticity by E_{i}, and the load applied to its right end by \mathbf{P}_{i}, the magnitude P_{i} of this load being assumed to be positive if \mathbf{P}_{i} is directed to the right and negative otherwise. (Note that $\left.P_{1}=0.\right)(a)$ Write a computer program which can be used to determine the reactions at A and B, the average normal stress in each element, and the deformation of each element. (b) Use this program to solve Probs. 2.41 and 2.42.

SOLUTION

We Consider the reaction at B redundant and release the rod at B
Compute δ_{B} with $R_{B}=0$
For each element, enter

$$
L_{i}, \quad A_{i}, \quad E_{i}
$$

Update axial load

$$
P=P+P_{i}
$$

Compute for each element

$$
\begin{aligned}
\sigma_{i} & =P / A_{i} \\
\delta_{i} & =P L_{i} / A_{i} E_{i}
\end{aligned}
$$

Update total deformation

$$
\delta_{B}=\delta_{B}+\delta_{i}
$$

Compute δ_{B} due to unit load at B

$$
\begin{array}{ll}
\text { Unit } & \sigma_{i}=1 / A_{i} \\
\text { Unit } & \delta_{i}=L_{i} / A_{i} E_{i}
\end{array}
$$

Update total unit deformation

$$
\text { Unit } \delta_{B}=\text { Unit } \delta_{B}+\text { Unit } \delta_{i}
$$

Superposition
For total displacement at $\quad B=0$

$$
\delta_{B}+R_{B} \quad \text { Unit } \quad \delta_{B}=0
$$

Solving:

Then:

$$
R_{B}=-\delta_{B} / \text { Unit } \delta_{B}
$$

$$
R_{A}=\Sigma P_{i}+R_{B}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C2 (Continued)

For each element

$$
\begin{array}{ll}
\sigma=\sigma_{i}+R_{B} & \text { Unit } \sigma_{i} \\
\delta=\delta_{i}+R_{B} & \text { Unit } \delta_{i}
\end{array}
$$

Program Outputs

Problem 2.41

$$
\begin{aligned}
& \mathrm{RA}=-62.809 \mathrm{kN} \\
& \mathrm{RB}=-37.191 \mathrm{kN}
\end{aligned}
$$

Element Stress (MPa) Deformation (mm)

1	-52.615	-0.05011
2	3.974	0.00378
3	2.235	0.00134
4	49.982	0.04498

Problem 2.42

$$
\begin{aligned}
& \mathrm{RA}=-45.479 \mathrm{kN} \\
& \mathrm{RB}=-54.521 \mathrm{kN}
\end{aligned}
$$

Element Stress (MPa) Deformation (mm)

1	-77.131	-0.03857
2	-20.542	-0.01027
3	-11.555	-0.01321
4	36.191	0.06204

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C3

Rod $A B$ consists of n elements, each of which is homogeneous and of uniform cross section. End A is fixed, while initially there is a gap δ_{0} between end B and the fixed vertical surface on the right. The length of element i is denoted by L_{i}, its cross-sectional area by A_{i}, its modulus of elasticity by E_{i}, and its coefficient of thermal expansion by α_{i}. After the temperature of the rod has been increased by ΔT, the gap at B is closed and the vertical surfaces exert equal and opposite forces on the rod. (a) Write a computer program which can be used to determine the magnitude of the reactions at A and B, the normal stress in each element, and the deformation of each element. (b) Use this program to solve Probs. 2.59 and 2.60.

SOLUTION

We compute the displacements at B.
Assuming there is no support at B,
enter

$$
L_{i}, \quad A_{i}, \quad E_{i}, \quad \alpha_{i}
$$

Enter temperature change T. Compute for each element.

$$
\delta_{i}=\alpha_{i} L_{i} T
$$

Update total deformation.

$$
\delta_{B}=\delta_{B}+\delta_{i}
$$

Compute δ_{B} due to unit load at B.

$$
\text { Unit } \delta_{i}=L_{i} / A_{i} E_{i}
$$

Update total unit deformation.

$$
\text { Unit } \delta_{B}=\text { Unit } \delta_{B}+\text { Unit } \delta_{i}
$$

Compute reactions.

From superposition,

$$
R_{B}=\left(\delta_{B}-\delta_{0}\right) / \text { Unit } \delta_{B}
$$

Then

$$
R_{A}=-R_{B}
$$

For each element,

$$
\begin{aligned}
\sigma_{i} & =-R_{B} / A_{i} \\
\delta_{i} & =\alpha_{i} L_{i} T+R_{B} L_{i} / A_{i} E_{i}
\end{aligned}
$$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C3 (Continued)

Program Outputs

Problem 2.59.

$R=52.279$ kips		
Element	Stress (ksi)	Deformation (10*-3 in.)
1	-21.783	9.909
2	-18.671	10.091

Problem 2.60.

$$
R=232.390 \mathrm{kN}
$$

Element	Stress (MPa)	Deformation (microm)
1	-116.195	363.220
2	-290.487	136.780

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C4

Bar $A B$ has a length L and is made of two different materials of given cross-sectional area, modulus of elasticity, and yield strength. The bar is subjected as shown to a load \mathbf{P} that is gradually increased from zero until the deformation of the bar has reached a maximum value δ_{m} and then decreased back to zero. (a) Write a computer program that, for each of 25 values of δ_{m} equally spaced over a range extending from 0 to a value equal to 120% of the deformation causing both materials to yield, can be used to determine the maximum value P_{m} of the load, the maximum normal stress in each material, the permanent deformation δ_{p} of the bar, and the residual stress in each material. (b) Use this program to solve Probs. 2.111 and 2.112.

SOLUTION

Note: The following assumes

$$
\left(\sigma_{Y}\right)_{1}<\left(\sigma_{Y}\right)_{2}
$$

Displacement increment

$$
\delta_{m}=0.05\left(\sigma_{Y}\right)_{2} L / E_{2}
$$

Displacements at yielding

$$
\delta_{A}=\left(\sigma_{Y}\right)_{1} L / E_{1} \quad \delta_{B}=\left(\sigma_{Y}\right)_{2} L / E_{2}
$$

For each displacement
If $\quad \delta_{m}<\delta_{A}$:
$\sigma_{1}=\delta_{m} E_{1} / L$
$\sigma_{2}=\delta_{m} E_{2} / L$
$P_{m}=\left(\delta_{m} / L\right)\left(A_{1} E_{1}+A_{2} E_{2}\right)$
If $\quad \delta_{A}<\delta_{m}<\delta_{B}$:
$\sigma_{1}=\left(\sigma_{Y}\right)_{1}$
$\sigma_{2}=\delta_{m} E_{2} / L$
$P_{m}=A_{1} \sigma_{1}+\left(\delta_{m} / L\right) A_{2} E_{2}$

If $\quad \delta_{m}>\delta_{B}$:
$\sigma_{1}=\left(\sigma_{Y}\right)_{1}$
$\sigma_{2}=\left(\sigma_{Y}\right)_{2}$
$P_{m}=A_{1} \sigma_{1}+A_{2} \sigma_{2}$

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C4 (Continued)							
Permanent deformations, residual stresses					$P_{m \uparrow}$		
Slope of first (elastic) segment							
		Slope $=\left(A_{1} E_{1}+A_{2} E_{2}\right) / L$			1		
		$\delta_{P}=\delta_{m}-\left(P_{m} /\right.$ Slope $)$			$\left[\begin{array}{l} 11 \\ 1 \quad 1 \\ \hline \end{array}\right.$		
		$\left(\sigma_{1}\right)_{\text {res }}=\sigma_{1}-\left(E_{1} P_{m} /(L\right.$ Slope $)$)					
		$\left(\sigma_{2}\right)_{\text {res }}=\sigma^{\prime}$	- $E_{2} P_{m} /(L)$				
Program Outputs					$\stackrel{\delta_{p}}{\stackrel{ }{*}}$		
Problems 2.111 and 2.112							
DM	PM	SIGM (1)	SIGM (2)	DP	SIGR (1)	SIG (2)	
10**-3 in.	kips	ksi	ksi	10**-3in.	ksi	ksi	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2.414	8.750	5.000	5.000	0.000	0.000	0.000	
4.828	17.500	10.000	10.000	0.000	0.000	0.000	
7.241	26.250	15.000	15.000	0.000	0.000	0.000	
9.655	35.000	20.000	20.000	0.000	0.000	0.000	
12.069	43.750	25.000	25.000	0.000	0.000	0.000	
14.483	52.500	30.000	30.000	0.000	0.000	0.000	
16.897	61.250	35.000	35.000	0.000	0.000	0.000	
19.310	70.000	40.000	40.000	0.000	0.000	0.000	
21.724	78.750	45.000	45.000	0.000	0.000	0.000	
24.138	87.500	50.000	50.000	0.000	0.000	0.000	
26.552	91.250	50.000	55.000	1.379	-2.143	2.857	
28.966	95.000	50.000	60.000	2.759	-4.286	5.714	
31.379	98.750	50.000	65.000	4.138	-6.429	8.571	2.112
33.793	102.500	50.000	70.000	5.517	-8.571	11.429	
36.207	106.250	50.000	75.000	6.897	-10.714	14.286	
38.621	110.000	50.000	80.000	8.276	-12.857	17.143	
41.034	113.750	50.000	85.000	9.655	-15.000	20.000	2.111
43.448	117.500	50.000	90.000	11.034	-17.143	22.857	
45.862	121.250	50.000	95.000	12.414	-19.286	25.714	
48.276	125.000	50.000	100.000	13.793	-21.429	28.571	
50.690	125.000	50.000	100.000	16.207	-21.429	28.571	
53.103	125.000	50.000	100.000	18.621	-21.429	28.571	
55.517	125.000	50.000	100.000	21.034	-21.429	28.571	
57.931	125.000	50.000	100.000	23.448	-21.429	28.571	

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C5

The plate has a hole centered across the width. The stress concentration factor for a flat bar under axial loading with a centric hole is

$$
K=3.00-3.13\left(\frac{2 r}{D}\right)+3.66\left(\frac{2 r}{D}\right)^{2}-1.53\left(\frac{2 r}{D}\right)^{3}
$$

where r is the radius of the hole and D is the width of the bar. Write a computer program to determine the allowable load \mathbf{P} for the given values of r, D, the thickness t of the bar, and the allowable stress $\sigma_{\text {all }}$ of the material. Knowing that $t=\frac{1}{4} \mathrm{in}$., $D=3.0 \mathrm{in}$., and $\sigma_{\text {all }}=16 \mathrm{ksi}$, determine the allowable load \mathbf{P} for values of r from 0.125 in. to 0.75 in., using 0.125 in. increments.

SOLUTION

Enter

$$
r, \quad D, \quad t, \quad \sigma_{\mathrm{all}}
$$

Compute K

$$
\begin{aligned}
R D & =2.0 r / D \\
K & =3.00-3.13 R D+3.66 R D^{2}-1.53 R D^{3}
\end{aligned}
$$

Compute average stress

$$
\sigma_{\mathrm{ave}}=\sigma_{\mathrm{all}} / K
$$

Allowable load

$$
P_{\mathrm{all}}=\sigma_{\mathrm{ave}}(D-2.0 r) t
$$

Program Output

Radius (in.)	Allowable Load (kips)
0.1250	3.9802
0.2500	3.8866
0.3750	3.7154
0.5000	3.4682
0.6250	3.1523
0.7500	2.7794

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

PROBLEM 2.C6

A solid truncated cone is subjected to an axial force \mathbf{P} as shown. The exact elongation is $(P L) /\left(2 \pi c^{2} E\right)$. By replacing the cone by n circular cylinders of equal thickness, write a computer program that can be used to calculate the elongation of the truncated cone. What is the percentage error in the answer obtained from the program using (a) $n=6$, (b) $n=12$, (c) $n=60$?

SOLUTION

For

$$
\begin{aligned}
i & =1 \text { to } n: \\
L_{i} & =(i+0.5)(L / n) \\
r_{i} & =2 c-c\left(L_{i} / L\right)
\end{aligned}
$$

Area:

$$
A=\pi r_{i}^{2}
$$

Displacement:

$$
\delta=\delta+P(L / n) /(A E)
$$

Exact displacement:

$$
\delta_{\text {exact }}=P L /\left(2.0 \pi c^{2} E\right)
$$

Percentage error:

$$
\text { Percent }=100\left(\delta-\delta_{\text {exact }}\right) / \delta_{\text {exact }}
$$

Program Output

n	Approximate	Exact	Percent
6	0.15852	0.15915	-0.40083
12	0.15899	0.15915	-0.10100
60	0.15915	0.15915	-0.00405

PROPRIETARY MATERIAL. Copyright © 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part.

