MATLAB: A Practical Introduction to Programming and Problem Solving

Fourth Edition

SOLUTION MANUAL

Stormy Attaway
College of Engineering
Boston University

Chapter 1: Introduction to MATLAB

Exercises

1) Create a variable myage and store your age in it. Subtract 2 from the value of the variable. Add 1 to the value of the variable. Observe the Workspace Window and Command History Window as you do this.
```
>> myage = 20;
>> myage = myage - 2;
>> myage = myage + 1;
```

2) Explain the difference between these two statements:
```
result = 9*2
result = 9*2;
```

Both will store 18 in the variable result. In the first, MATLAB will display this in the Command Window; in the second, it will not.
3) Use the built-in function namelengthmax to find out the maximum number of characters that you can have in an identifier name under your version of MATLAB.

```
>> namelengthmax
ans =
    6 3
```

4) Create two variables to store a weight in pounds and ounces. Use who and whos to see the variables. Use class to see the types of the variables. Clear one of them and then use who and whos again.
```
>> pounds = 4;
>> ounces = 3.3;
>> who
Your variables are:
ounces pounds
>> whos
    Name Size
    Ounces 1x1 8 double
    pounds 1x1 8 double
```

```
>> clear pounds
>> who
Your variables are:
ounces
```

5) Explore the format command in more detail. Use help format to find options. Experiment with format bank to display dollar values.
```
>> format +
>> 12.34
ans =
+
>> -123
ans =
-
>> format bank
>> 33.4
ans =
    33.40
>> 52.435
ans =
52.44
```

6) Find a format option that would result in the following output format:
```
    >> \(5 / 16+2 / 7\)
    ans \(=\)
        67/112
>> format rat
>> 5/16 + \(2 / 7\)
ans =
    67/112
```

7) Think about what the results would be for the following expressions, and then type them in to verify your answers.
```
    25 / 5 * 5
    4 + 3 ^ 2
    (4+3) ^ 2
    3\12 + 5
    4 - 2 * 3
>> 25/5*5
ans =
        2 5
```

```
>> 4 + 3 ^ 2
ans=
    1 3
>> (4 + 3) ^ 2
ans =
    4 9
>> 3 \ 12 + 5
ans =
    9
>> 4 - 2 * 3
ans =
-2
```

As the world becomes more "flat", it is increasingly important for engineers and scientists to be able to work with colleagues in other parts of the world. Correct conversion of data from one system of units to another (for example, from the metric system to the American system or vice versa) is critically important.
8) Create a variable pounds to store a weight in pounds. Convert this to kilograms and assign the result to a variable kilos. The conversion factor is 1 kilogram $=2.2 \mathrm{lb}$.

```
>> pounds = 30;
>> kilos = pounds / 2.2
kilos =
    13.6364
```

9) Create a variable ftemp to store a temperature in degrees Fahrenheit (F). Convert this to degrees Celsius (C) and store the result in a variable ctemp. The conversion factor is $\mathrm{C}=(\mathrm{F}-$ 32) * 5/9.
```
>> ftemp = 75;
>> ctemp = (ftemp - 32) * 5/9
ctemp =
    23.8889
```

10) The following assignment statements either contain at least one error, or could be improved in some way. Assume that radius is a variable that has been initialized. First, identify the problem, and then fix and/or improve them:
```
33 = number
    The variable is always on the left
    number = 33
my variable = 11.11;
```

```
        Spaces are not allowed in variable names
        my_variable = 11.11;
area = 3.14 * radius^2;
    Using pi is more accurate than 3.14
    area = pi * radius^2;
x = 2 * 3.14 * radius;
x is not a descriptive variable name
circumference = 2 * pi * radius;
```

11) Experiment with the functional form of some operators such as plus, minus, and times.
```
>> plus(4, 8)
ans =
    12
>> plus(3, -2)
ans =
    1
>> minus(5, 7)
ans =
    -2
>> minus(7, 5)
ans =
    2
>> times(2, 8)
ans =
    1 6
```

12) Generate a random

- real number in the range $(0,20)$
rand * 20
- real number in the range $(20,50)$
rand* $(50-20)+20$
- integer in the inclusive range from 1 to 10
randi(10)
- integer in the inclusive range from 0 to 10

```
randi([0, 10])
```

- integer in the inclusive range from 50 to 100

```
randi([50, 100])
```

13) Get into a new Command Window, and type rand to get a random real number. Make a note of the number. Then, exit MATLAB and repeat this, again making a note of the random number; it should be the same as before. Finally, exit MATLAB and again get into a new Command Window. This time, change the seed before generating a random number; it should be different.
```
>> rand
ans =
0.8147
>> rng('shuffle')
>> rand
ans =
0.4808
```

14) What is the difference between x and ' x '?

In an expression, the first would be interpreted as the name of a variable, whereas 'x' is the character x.
15) What is the difference between 5 and ' 5 '?

The first is the number 5, the second is the character 5. (Note: int32(5) is 53. So, 5+1 would be 6. '5'+1 would be54.)
16) The combined resistance R_{T} of three resistors R_{1}, R_{2}, and R_{3} in parallel is given by

$$
\mathrm{R}_{\mathrm{T}}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
$$

Create variables for the three resistors and store values in each, and then calculate the combined resistance.

```
>> r1 = 3;
>> r2 = 2.2;
>> r3 = 1.5;
>> rt = 1/(1/r1 + 1/r2 + 1/r3)
rt =
    0.6875
```

17) Explain the difference between constants and variables.
```
Constants store values that are known and do not change.
Variables are used when the value will change, or when the value
is not known to begin with (e.g., the user will provide the
value).
```

18) What would be the result of the following expressions?
```
'b' >= 'c' - 1 1
3 == 2 + 1 1
(3 == 2) + 1 1
xor(5 < 6, 8 > 4) 0
10 > 5 > 2
0 Evaluated from left to right: 10>5 is 1,
    then 1 > 2 is 0
result = 3^2 - 20;
0 <= result <= 10
    1 Evaluated left to right: 0 <= result is 0,
    then 0 <= 10 is 1
```

19) Create two variables x and y and store numbers in them. Write an expression that would be true if the value of x is greater than five or if the value of y is less than ten, but not if both of those are true.
```
>> x = 3;
>> y = 12;
>> xor(x > 5, y < 10)
ans =
    0
```

20) Use the equality operator to verify that $3^{*} 10^{\wedge} 5$ is equal to 3 e 5 .
```
>> 3*10^5 == 3e5
ans =
    1
```

21) In the ASCII character encoding, the letters of the alphabet are in order: ' a ' comes before ' b ' and also ' A ' comes before ' B '. However, which comes first - lower or uppercase letters?
```
>> int32('a')
ans =
    97
>> int32('A')
ans =
The upper case letters
22) Are there equivalents to intmin and intmax for real number types? Use help to find out.
```

>> realmin
ans =
2.2251e-308
>> realmin('double')
ans =
2.2251e-308
>> realmin('single')
ans =
1.1755e-38
>> realmax
ans =
1.7977e+308

```
23) Use intmin and intmax to determine the range of values that can be stored in the types uint32 and uint64.
```

>> intmin('uint32')
ans =
0
>> intmax('uint32')
ans =
4294967295
>> intmin('uint64')
ans =
>> intmax('uint64')
ans =
18446744073709551615

```
24) Use the cast function to cast a variable to be the same type as another variable.
```

>> vara = uint16(3 + 5)
vara =
8
>> varb = 4*5;

```
```

>> class(varb)
ans =
double
>> varb = cast(varb, 'like', vara)
varb =
20
>> class(varb)
ans =
uint16

```
25) Use help elfun or experiment to answer the following questions:
- Is fix(3.5) the same as floor(3.5)?
```

>> fix(3.5)
ans =
3
>> floor(3.5)
ans =
3

```
- Is fix(3.4) the same as fix(-3.4)?
```

>> fix(3.4)
ans =
3
>> fix(-3.4)
ans =
-3

```
- Is fix(3.2) the same as floor(3.2)?
```

>> fix(3.2)
ans =
3
>> floor(3.2)
ans =
3

```
- Is fix(-3.2) the same as floor(-3.2)?
```

>> fix(-3.2)
ans =
-3
>> floor(-3.2)
ans =
-4

```
- Is fix(-3.2) the same as ceil(-3.2)?
```

>> fix(-3.2)
ans =
-3
>> ceil(-3.2)
ans =
-3

```
26) For what range of values is the function round equivalent to the function floor? For positive numbers: when the decimal part is less than . 5 For negative numbers: when the decimal part is greater than or equal to . 5

For what range of values is the function round equivalent to the function ceil? For positive numbers: when the decimal part is greater than or equal to .5 For negative numbers: when the decimal part is less than . 5
27) Use help to determine the difference between the rem and mod functions.
```

>> help rem
rem Remainder after division.
rem(x,y) is x - n.* y where n = fix(x./y) if y ~= 0.
By convention:
rem(x,0) is NaN.
rem(x,x), for }x~=0, is 0
rem(x,y), for }x~=y and y~=0, has the same sign as x.
rem(x,y) and MOD(x,y) are equal if x and y have the same sign,
butdiffer by y if x and y have different signs.
>> help mod
mod Modulus after division.
mod(x,y) is x - n.*y where n = floor(x./y) if y ~= 0.
By convention:
mod (x,0) is x.
mod(x,x) is 0.
mod}(x,y), for x~=y and y~=0, has the same sign as y

```
28) Find MATLAB expressions for the following
```

 \sqrt{}{19}
 sqrt(19)
    ```
```

 3 1.2
 3^1.2
tan (\pi)
tan(pi)

```
29) Using only the integers 2 and 3, write as many expressions as you can that result in 9. Try to come up with at least 10 different expressions (e.g., don't just change the order). Be creative! Make sure that you write them as MATLAB expressions. Use operators and/or builtin functions.
```

3^2
2^3 + (3 - 2)
3 * 3
3^3-3* 3*2
2^3 + abs(2-3)
2^3 + sign(3)
3/2*2*3
2\3*2*3
sqrt(3^(2+2))
nthroot(3^(2+2),2)

```
30) A vector can be represented by its rectangular coordinates \(x\) and \(y\) or by its polar coordinates \(r\) and \(\theta\). Theta is measured in radians. The relationship between them is given by the equations:
```

x = r * cos(0)
y = r * sin(0)

```

Assign values for the polar coordinates to variables \(r\) and theta. Then, using these values, assign the corresponding rectangular coordinates to variables \(x\) and \(y\).
```

>> r = 5;
>> theta = 0.5;
>> x = r * cos(theta)

```
```

x =
4.3879
>> y = r * sin(theta)
y =
2.3971

```
31) In special relativity, the Lorentz factor is a number that describes the effect of speed on various physical properties when the speed is significant relative to the speed of light. Mathematically, the Lorentz factor is given as:
\[
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\]

Use \(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\) for the speed of light, \(c\). Create variables for \(c\) and the speed \(v\) and from them a variable lorentz for the Lorentz factor.
```

>> c = 3e8;
>>v = 2.9e8;
>> lorentz = 1 / sqrt(1 - v^2/C^2)
lorentz =
3.9057

```
32) A company manufactures a part for which there is a desired weight. There is a tolerance of N percent, meaning that the range between minus and plus \(\mathrm{N} \%\) of the desired weight is acceptable. Create a variable that stores a weight, and another variable for N (for example, set it to two). Create variables that store the minimum and maximum values in the acceptable range of weights for this part.
```

>> weight = 12.3;
>> N = 2;
>> min = weight - weight*0.01*N
min =
12.0540
>> max = weight + weight*0.01*N
max =
12.5460

```
33) An environmental engineer has determined that the cost \(C\) of a containment tank will be based on the radius \(r\) of the tank:
\[
\mathrm{C}=\frac{32430}{r}+428 \pi r
\]

Create a variable for the radius, and then for the cost.
```

>> format bank
>> radius = 11;
>> cost = 32430/radius + 428*pi*radius
cost =
17738.80

```
34) A chemical plant releases an amount \(A\) of pollutant into a stream. The maximum concentration C of the pollutant at a point which is a distance x from the plant is:
\[
\mathrm{C}=\frac{A}{x} \sqrt{\frac{2}{\Pi e}}
\]

Create variables for the values of \(A\) and \(x\), and then for \(C\). Assume that the distance \(x\) is in meters. Experiment with different values for \(x\).
```

>> A = 30000;
>> x = 100;
>> C = A/x * sqrt(2/(pi*exp(1)))
C =
145.18
>> x = 1000;
>> C = A/x * sqrt(2/(pi*exp(1)))
C =
14.52
>> x = 20000;
>> C = A/x * sqrt(2/(pi*exp(1)))
C =
0.73

```
35) The geometric mean \(g\) of \(n\) numbers \(x_{i}\) is defined as the \(n^{\text {th }}\) root of the product of \(x_{i}\) :
\[
\mathrm{g}=\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}}
\]
(This is useful, for example, in finding the average rate of return for an investment which is something you'd do in engineering economics). If an investment returns \(15 \%\) the first year, \(50 \%\) the second, and \(30 \%\) the third year, the average rate of return would be (1.15*1.50*1.30) 1/3. ) Compute this.
```

>> x1 = 1.15;
>> x2 = 1.5;
>> x3 = 1.3;
>> gmean = nthroot(x1*x2*x3, 3)
gmean =
1.31

```
36) Use the deg2rad function to convert 180 degrees to radians.
```

>> deg2rad(180)
ans =
3.1416
>>

```

\section*{Chapter 2: Vectors and Matrices}

\section*{Exercises}
1) If a variable has the dimensions \(3 \times 4\), could it be considered to be (bold all that apply): a matrix a row vector a column vector
a scalar
2) If a variable has the dimensions \(1 \times 5\), could it be considered to be (bold all that apply): a matrix
a row vector
a column vector
a scalar
3) If a variable has the dimensions \(5 \times 1\), could it be considered to be (bold all that apply): a matrix
a row vector
a column vector
a scalar
4) If a variable has the dimensions \(1 \times 1\), could it be considered to be (bold all that apply): a matrix
a row vector
a column vector
a scalar
5) Using the colon operator, create the following row vectors
```

 2
 3
 4
 5
 6
7
$1.10001 .3000 \quad 1.5000 \quad 1.7000$
$\begin{array}{llll}8 & 6 & 4 & 2\end{array}$
>> 2:7
ans =

```
```

 2
 >> 1.1:0.2:1.7
ans =
1.1000 1.3000 1.5000 1.7000
>> 8:-2:2
ans =
8 6 4 2

```
6) Using a built-in function, create a vector vec which consists of 20 equally spaced points in the range from -pi to +pi.
```

vec = linspace(0,2*pi,50);

```
7) Write an expression using linspace that will result in the same as 2: 0.2: 3
```

linspace(2,3,6)

```
8) Using the colon operator and also the linspace function, create the following row vectors:
\begin{tabular}{|c|c|c|c|c|}
\hline -5 & -4 & -3 & -2 & -1 \\
\hline 5 & 7 & 9 & & \\
\hline 8 & 6 & 4 & & \\
\hline \multicolumn{5}{|l|}{>> -5:-1} \\
\hline \multicolumn{5}{|l|}{ans} \\
\hline -5 & -4 & -3 & -2 & -1 \\
\hline \multicolumn{5}{|l|}{>> linspace ( \(-5,-1,5)\)} \\
\hline \multicolumn{5}{|l|}{ans =} \\
\hline -5 & -4 & -3 & -2 & -1 \\
\hline \multicolumn{5}{|l|}{>> 5:2:9} \\
\hline \multicolumn{5}{|l|}{ans =} \\
\hline 5 & 7 & & & \\
\hline \multicolumn{5}{|l|}{>> linspace (5, 9, 3)} \\
\hline \multicolumn{5}{|l|}{ans =} \\
\hline 5 & 7 & 9 & & \\
\hline \multicolumn{5}{|l|}{>> 8:-2:4} \\
\hline \multicolumn{5}{|l|}{ans \(=\)} \\
\hline 8 & 6 & & & \\
\hline \multicolumn{5}{|l|}{>> linspace (8, 4, 3)} \\
\hline \multicolumn{5}{|l|}{ans =} \\
\hline 8 & 6 & 4 & & \\
\hline
\end{tabular}
9) How many elements would be in the vectors created by the following expressions?
linspace (3,2000)
```

 1 0 0 ~ (a l w a y s , ~ b y ~ d e f a u l t)
 logspace(3,2000)
5 0 ~ (a l w a y s , ~ b y ~ d e f a u l t ~ - ~ a l t h o u g h ~ t h e s e ~ n u m b e r s
would get very large quickly; most would be
represented as Inf)

```
10) Create a variable myend which stores a random integer in the inclusive range from 5 to 9. Using the colon operator, create a vector that iterates from 1 to myend in steps of 3.
```

>>myend = randi([5, 9])
myend =
8
>> vec = 1:3:myend
vec =
1 4

```
11) Using the colon operator and the transpose operator, create a column vector myvec that has the values -1 to 1 in steps of 0.5 .
```

>> rowVec = -1: 0.5: 1;
>> rowVec'
ans=
-1.0000
-0.5000
0
0.5000
1.0000

```
12) Write an expression that refers to only the elements that have odd-numbered subscripts in a vector, regardless of the length of the vector. Test your expression on vectors that have both an odd and even number of elements.
```

>> vec = 1:8;
>> vec(1:2:end)
ans =
1 3
>> vec = 4:12
vec =
4 [llllllll
>> vec(1:2:end)
ans =
4 6

```
13) Generate a \(2 \times 4\) matrix variable mat. Replace the first row with \(1: 4\). Replace the third column (you decide with which values).
```

>> mat = [2:5; 1 4 11 3]
mat =
2 3
1 4 4 11 3
>> mat(1,:) = 1:4
mat =
1
>> mat (:,3) = [4;3]
mat =

| 1 | 2 | 4 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 4 | 3 | 3 |

```
14) Generate a \(2 \times 4\) matrix variable mat. Verify that the number of elements is the product of the number of rows and columns.
```

>> mat = randi (20,2,4)
mat =
1 19 17 9
13 15 20 16
>> [r c] = size(mat);
>> numel(mat) == r * c
ans =
1

```
15) Which would you normally use for a matrix: length or size? Why?

Definitely size, because it tells you both the number of rows and columns.
16) When would you use length vs. size for a vector?

If you want to know the number of elements, you'd use length. If you want to figure out whether it's a row or column vector, you'd use size.
17) Generate a \(2 \times 3\) matrix of random
- real numbers, each in the range \((0,1)\)
```

>> rand (2,3)
ans =
0.0215 0.7369 0.7125
0.7208 0.4168 0.1865

```
- real numbers, each in the range \((0,10)\)
```

>> rand (2,3)*10
ans =

```
```

8.0863 2.2456 8.3067
2.9409 4.0221 5.0677

```
- integers, each in the inclusive range from 5 to 20
```

>> randi([5, 20],2,3)
ans =
18 17 5
11 11 7

```
18) Create a variable rows that is a random integer in the inclusive range from 1 to 5 . Create a variable cols that is a random integer in the inclusive range from 1 to 5 . Create a matrix of all zeros with the dimensions given by the values of rows and cols.
```

>> rows = randi([1,5])
rows =
3
>> cols = randi([1,5])
cols=
2
>> zeros(rows,cols)
ans =
0
0
0

```
19) Create a matrix variable mat. Find as many expressions as you can that would refer to the last element in the matrix, without assuming that you know how many elements or rows or columns it has (i.e., make your expressions general).
```

>> mat = [12:15; 6:-1:3]
mat =
12 13 14 15
6 5 4
>> mat(end,end)
ans =
3
>> mat(end)
ans =
3
>> [r c] = size(mat);
>> mat(r,c)
ans =
3

```
20) Create a vector variable vec. Find as many expressions as you can that would refer to the last element in the vector, without assuming that you know how many elements it has (i.e., make your expressions general).
```

>> vec = 1:2:9
vec =
1 3
>> vec(end)
ans =
9
>> vec(numel(vec))
ans =
9
>> vec(length(vec))
ans =
9
>> v = fliplr(vec);
>> v(1)
ans =
9

```
21) Create a \(2 \times 3\) matrix variable mat. Pass this matrix variable to each of the following functions and make sure you understand the result: flip, fliplr, flipud, and rot90. In how many different ways can you reshape it?
```

>> mat = randi([1,20], 2,3)
mat =
16 5 8
15 18 1
>> flip(mat)
ans=
15 18 1
16 5 8
>>fliplr(mat)
ans =
8 5 16
1 18 15
>> flipud(mat)
ans=
15 18 1
16 5 8
>> rot90(mat)
ans=
8 1
5 18
16 15

```
```

>> rot90(rot90(mat))
ans =
1 18 15
8 5 16
>> reshape (mat, 3, 2)
ans =
16 18
15 8
5 1
>> reshape(mat, 1, 6)
ans =
16 15 5 5 18 8 1
>> reshape (mat, 6,1)
ans =
1 6
1 5
5
18
8
1

```
22) What is the difference between fliplr(mat) and mat = fliplr(mat)?

The first stores the result in ans so mat is not changed; the second changes mat.
23) Use reshape to reshape the row vector 1:4 into a \(2 \times 2\) matrix; store this in a variable named mat. Next, make \(2 \times 3\) copies of mat using both repelem and repmat.
```

>> mat = reshape(1:4,2,2)
mat =
1 3
2 4
>> repelem(mat,2,3)
ans=

| 1 | 1 | 1 | 3 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 3 | 3 |
| 2 | 2 | 2 | 4 | 4 | 4 |
| 2 | 2 | 2 | 4 | 4 | 4 |

>> repmat(mat,2,3)
ans =

| 1 | 3 | 1 | 3 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 2 | 4 | 2 | 4 |
| 1 | 3 | 1 | 3 | 1 | 3 |
| 2 | 4 | 2 | 4 | 2 | 4 |

```
24) Create a \(3 \times 5\) matrix of random real numbers. Delete the third row.
```

>> mat = rand(3,5)
mat =

| 0.5226 | 0.9797 | 0.8757 | 0.0118 | 0.2987 |
| :--- | :--- | :--- | :--- | :--- |
| 0.8801 | 0.2714 | 0.7373 | 0.8939 | 0.6614 |

>> mat(3,:) = []
mat =

```
\(\begin{array}{lllll}0.5226 & 0.9797 & 0.8757 & 0.0118 & 0.2987\end{array}\)
\(\begin{array}{lllll}0.8801 & 0.2714 & 0.7373 & 0.8939 & 0.6614\end{array}\)
25) Given the matrix:
```

>> mat = randi([1 20], 3,5)
mat =

| 6 | 17 | 7 | 13 | 17 |
| ---: | ---: | ---: | ---: | ---: |
| 17 | 5 | 4 | 10 | 12 |
| 6 | 19 | 6 | 8 | 11 |

```

Why wouldn't this work:
```

mat(2:3, 1:3) = ones(2)
Because the left and right sides are not the same dimensions.

```
26) Create a three-dimensional matrix with dimensions \(2 \times 4 \times 3\) in which the first "layer" is all 0 s , the second is all 1 s and the third is all 5 s . Use size to verify the dimensions.
```

>> mat3d = zeros(2,4,3);
>> mat3d(:,:,2) = 1;
>> mat3d(:,:,3) = 5;
>> mat3d
mat3d(:,:,1) =
0 0 0 0
0 0 0 0
mat3d(:,:,2) =

| 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 |

mat3d(:,:,3) =
5 %

```
27) Create a vector \(x\) which consists of 20 equally spaced points in the range from \(-\pi\) to \(+\pi\). Create a y vector which is \(\boldsymbol{\operatorname { s i n }}(\mathbf{x})\).
```

>> x = linspace(-pi,pi,20);
>> y = sin(x);

```
28) Create a \(3 \times 5\) matrix of random integers, each in the inclusive range from -5 to 5 . Get the sign of every element.
```

>> mat = randi([-5,5], 3,5)
mat =

| 5 | 4 | 1 | -1 | -5 |
| ---: | ---: | ---: | ---: | ---: |
| 4 | 4 | -1 | -3 | 0 |
| 5 | -2 | 1 | 0 | 4 |

>> sign(mat)
ans =

| 1 | 1 | 1 | -1 | -1 |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | -1 | -1 | 0 |

```
29) Find the sum \(3+5+7+9+11\).
```

>> sum(3:2:11)
ans =
3 5

```
30) Find the sum of the first \(n\) terms of the harmonic series where \(n\) is an integer variable greater than one.
\[
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\square
\]
```

>> n = 4;
>> sum(1./(1:n))
ans =
2.0833

```
31) Find the following sum by first creating vectors for the numerators and denominators:
```

 \frac{3}{1}+\frac{5}{2}+\frac{7}{3}+\frac{9}{4}
 >> num = 3:2:9
num =
3 5 7
>> denom = 1:4
denom =

```
```

 1 2 3 4
 >> fracs = num ./ denom
fracs =
3.0000 2.5000 2.3333 2.2500
>> sum(fracs)
ans =
10.0833

```
32) Create a matrix and find the product of each row and column using prod.
```

>> mat = randi([1, 30], 2,3)
mat =
11 24 16
5 10 5
>> prod(mat)
ans =
55 240 80
>> prod(mat,2)
ans =
4 2 2 4
250

```
33) Create a \(1 \times 6\) vector of random integers, each in the inclusive range from 1 to 20. Use built-in functions to find the minimum and maximum values in the vector. Also create a vector of cumulative sums using cumsum.
```

vec = randi([1,20], 1,6)
min(vec)
max(vec)
cvec = cumsum(vec)

```
34) Write a relational expression for a vector variable that will verify that the last value in a vector created by cumsum is the same as the result returned by sum.
```

>> vec = 2:3:17
vec =
2 5 5 8 11 14 17
>> cv = cumsum(vec)
Cv =
2 4 15 15 26 40 57
>> sum(vec) == cv(end)
ans =
1

```
35) Create a vector of five random integers, each in the inclusive range from -10 to 10. Perform each of the following:
```

>> vec = randi([-10, 10], 1,5)

```
- subtract 3 from each element
```

>> vec-3

```
- count how many are positive
```

>> sum(vec > 0)

```
- get the cumulative minimum
36) Create a \(3 \times 5\) matrix. Perform each of the following:
```

>> mat = randi([-10 10], 3,5)

```
- Find the maximum value in each column.
\(\gg \max (m a t)\)
- Find the maximum value in each row.
```

>> max(mat, [], 2)
>> max(mat')

```
- Find the maximum value in the entire matrix.
```

>> max(max(mat))

```
- Find the cumulative maxima.
```

>> cummax(mat)

```
37) Find two ways to create a \(3 \times 5\) matrix of all 100s (Hint: use ones and zeros).
```

ones (3,5)*100
zeros(3,5)+100

```
38) Given the two matrices:
\(\left[\begin{array}{ccc}\mathrm{A} \\ 1 & 2 & 3 \\ 4 & -1 & 6\end{array}\right]\left[\begin{array}{ccc}\mathrm{B} & \mathrm{B} \\ 2 & 4 & 1 \\ 1 & 3 & 0\end{array}\right]\)

Perform the following operations:
\(A+B\)
\[
\left[\begin{array}{lll}
3 & 6 & 4 \\
5 & 2 & 6
\end{array}\right]
\]

A - B
\[
\left[\begin{array}{ccc}
-1 & -2 & 2 \\
3 & -4 & 6
\end{array}\right]
\]
A.* B
\[
\left[\begin{array}{ccc}
2 & 8 & 3 \\
4 & -3 & 0
\end{array}\right]
\]
39) The built-in function clock returns a vector that contains 6 elements: the first three are the current date (year, month, day) and the last three represent the current time in hours, minutes, and seconds. The seconds is a real number, but all others are integers. Store the result from clock in a variable called myc. Then, store the first three elements from this variable in a variable today and the last three elements in a variable now. Use the fix function on the vector variable now to get just the integer part of the current time.
```

>> myc = clock
myc =
1.0e+03 *
2.0130 0.0010 0.0080 0.0120 0.0060 0.0014
>> today = myc(1:3)
today =
2013 1
8
>> now = myc(4:end)

```
```

now =
12.0000 6.0000 1.4268
>> fix(now)
ans =
12 6 1

```
40) A vector \(v\) stores for several employees of the Green Fuel Cells Corporation their hours worked one week followed for each by the hourly pay rate. For example, if the variable stores
```

>> v
v =
33.0000 10.5000 40.0000 18.0000 20.0000 7.5000

```
that means the first employee worked 33 hours at \(\$ 10.50\) per hour, the second worked 40 hours at \(\$ 18\) an hour, and so on. Write code that will separate this into two vectors, one that stores the hours worked and another that stores the hourly rates. Then, use the array multiplication operator to create a vector, storing in the new vector the total pay for every employee.
```

>> hours = v(1:2:length(v))
hours =
33 40 20
>> payrate = v(2:2:length(v))
payrate =
10.5000 18.0000 7.5000
>> totpay = hours .* payrate
totpay =
346.5000 720.0000 150.0000

```
41) A company is calibrating some measuring instrumentation and has measured the radius and height of one cylinder 10 separate times; they are in vector variables \(r\) and \(h\). Find the volume from each trial, which is given by \(\Pi r^{2} h\). Also use logical indexing first to make sure that all measurements were valid (>0).
```

>> r = [l5.501 5.5 5.499 5.498 5.5 5.5 5.52 5.51 5.5 5.48];
>> h = [11.11 11.1 11.1 11.12 11.09 11.11 11.11 11.1 11.08 11.11];
>> all(r>0 \& h>0)
ans =
1
>> vol = pi * r.^2 .* h

```
42) For the following matrices \(A, B\), and \(C\) :
\[
A=\left[\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right] \quad B=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 5 & 6 \\
3 & 6 & 0
\end{array}\right] \quad C=\left[\begin{array}{lll}
3 & 2 & 5 \\
4 & 1 & 2
\end{array}\right]
\]
- Give the result of \(3^{*} \mathrm{~A}\).
\[
\left[\begin{array}{cc}
3 & 12 \\
9 & 6
\end{array}\right]
\]
- Give the result of \(A^{*} C\).
\(\left[\begin{array}{lll}19 & 6 & 13 \\ 17 & 8 & 19\end{array}\right]\)
- Are there any other matrix multiplications that can be performed? If so, list them.
C*B
43) For the following vectors and matrices \(\mathrm{A}, \mathrm{B}\), and C :
\[
A=\left[\begin{array}{ccc}
4 & 1 & -1 \\
2 & 3 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 4
\end{array}\right] \quad C=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\]

Perform the following operations, if possible. If not, just say it can't be done!

A * B
No, inner dimensions do not agree

B * C
14
C * B
\[
\left[\begin{array}{cc}
2 & 8 \\
3 & 12
\end{array}\right]
\]
44) The matrix variable rainmat stores the total rainfall in inches for some districts for the years 2010-2013. Each row has the rainfall amounts for a given district. For example, if rainmat has the value:
```

>> rainmat
ans =
25 33 29 42

```
```

 5344 40 56
 etc.
    ```
district 1 had 25 inches in 2010, 33 in 2011, etc. Write expression(s) that will find the number of the district that had the highest total rainfall for the entire four year period.
```

>> rainmat = [25 33 29 42; 53 44 40 56];
>> large = max(max(rainmat))
large =
5 6
>> linind = find(rainmat== large)
linind =
8
>> floor(linind/4)
ans =
2

```
45) Generate a vector of 20 random integers, each in the range from 50 to 100. Create a variable evens that stores all of the even numbers from the vector, and a variable odds that stores the odd numbers.
```

>> nums = randi([50, 100], 1, 20);
>> evens = nums(rem(nums,2)==0);
>> odds = nums(rem(nums,2) ~=0);

```
46) Assume that the function diff does not exist. Write your own expression(s) to accomplish the same thing for a vector.
```

>> vec = [lllllllll
vec =
5 11 2 33 -4
>> v1 = vec(2:end);
>> v2 = vec(1:end-1);
>> v1-v2
ans =
6

```
47) Create a vector variable vec; it can have any length. Then, write assignment statements that would store the first half of the vector in one variable and the second half in another. Make sure that your assignment statements are general, and work whether vec has an even or odd number of elements (Hint: use a rounding function such as fix).
```

>> vec = 1:9;
>> fhalf = vec(1:fix(length(vec)/2))
fhalf =
1 2 3 4
>> shalf = vec(fix(length(vec)/2)+1:end)
shalf =

```

\title{
MATLAB: A Practical Introduction to Programming and Problem Solving
}

\author{
Fourth Edition
}

PRACTICE PROBLEM SOLUTIONS

Stormy Attaway
College of Engineering
Boston University

\section*{Chapter 1}

\section*{Practice 1.1}

Think about what the results would be for the following expressions, and then type them in to verify your answers:
```

>> 1\2
ans =
2
>> - 5 ^ 2
ans =
-25
>> (-5) ^ 2
ans =
25
>> 10-6/2
ans =
7
>> 5*4/2*3
ans =
3 0

```

\section*{Practice 1.2}

Generate a random
- real number in the range \((0,1)\)
```

rand

```
- real number in the range \((0,100)\)
rand*100
- real number in the range \((20,35)\)
\[
\text { rand* }(35-20)+20
\]
- integer in the inclusive range from 1 to 100
randi(100)
- integer in the inclusive range from 20 to 35
randi([20, 35])

\section*{Practice 1.3}

Think about what would be produced by the following expressions, and then type them in to verify your answers.
```

>> 3 == 5 + 2
ans =
0
>> 'b' < 'a' + 1
ans=
0
>> 10 > 5 + 2
ans =
1
>> (10 > 5) + 2
ans=
3
>> 'c' == 'd' - 1 \&\& 2 < 4
ans =
1
>> 'c' == 'd' - 1 || 2 > 4
ans =
1
>>xor('c' == 'd' - 1, 2 > 4)
ans=
1
>>xor('c' == 'd' - 1, 2 < 4)
ans =
0
>>10 > 5 > 2
ans =
0

```

\section*{Practice 1.4}
- Calculate the range of integers that can be stored in the types int16and uint16. Use intmin and intmax to verify your results.
```

>> 2^16
ans=
65536
>> 2^15
ans =
32768
>>intmin('int16')
ans =
-32768
>>intmax('int16')
ans =
32767
>>intmin('uint16')
ans =
0
>>intmax('uint16')
ans =
65535

```
- Enter an assignment statement and view the type of the variable in the Workspace Window. Then, change its type and view it again. View it also using whos.
```

>>clear
>>mynumber = 3*11;
>>whos
Name Size Bytes Class Attributes
mynumber 1x1 8 double
>>mynumber = int32(mynumber)
mynumber =
3 3
>>whos
Name Size Bytes Class Attributes
mynumber 1x1 4 int32

```

\section*{Practice 1.5}
- Find the numerical equivalent of the character ' \(x\) '.
- Find the character equivalent of 107.
```

>>double('x')
ans =

```
```

 120
 >>char(107)
ans =
k

```

\section*{Practice 1.6}

Use the help function to find out what the rounding functions fix, floor, ceil, and round do. Experiment with them by passing different values to the functions, including some negative, some positive, some with fractions less than 0.5 and some greater. It is very important when testing functions that you thoroughly test by trying different kinds of arguments!

\section*{Chapter 2}

Practice 2.1

Think about what would be produced by the following sequence of statements and expressions, and then type them in to verify your answers:
```

pvec = 3:2:10
pvec(2) = 15
pvec(7) = 33
pvec([2:4 7])
linspace(5,11,3)
logspace(2,4,3)
>>pvec = 3:2:10
pvec =
3 5 7 9
>>pvec(2) = 15
pvec =
3 15 7 9
>>pvec(7) = 33
pvec =
3 15 15 7 9 9 0
>>pvec([2:4 7])
ans =
15 7 9 33
>>linspace(5,11,3)
ans =

```
```

 5 8 11
 >>logspace(2, 4, 3)
ans =
100 1000 10000

```

\section*{Practice 2.2}

Think about what would be produced by the following sequence of statements and expressions, and then type them in to verify your answers.
```

 mat = [1:3; 44 9 2; 5:-1:3]
 mat (3,2)
 mat(2,:)
 size(mat)
 mat(:,4) = [8;11;33]
 numel(mat)
 v = mat (3,:)
 v(v(2))
 V(1) = []
 reshape(mat, 2, 6)
 >>mat = [1:3; 44 9 2; 5:-1:3]
mat =
1 2 3
44 9 2
5 4 3
>>mat (3,2)
ans=
4
>>mat(2,:)
ans=
44 9 2
>>size(mat)
ans=
3 3
>>mat(:,4) = [8;11;33]
mat =
1 2 3 8
44 9 2 11

```
```

 5 4 3 33
 >>numel(mat)
ans =
12
>>v = mat(3,:)
v =
5 4 3 33
>>v(v(2))
ans =
33
>>v(1) = []
v =
4 3 33
>>reshape (mat, 2, 6)
ans =
1 5 9 3
44 2 4 2
3 11

3	3	11
2	8	33

```

Practice 2.3

Create a vector variable and subtract 3 from every element in it. Create a matrix variable and divide every element by 3.
Create a matrix variable and square every element.
```

>>vec = [lllllllll
vec =
4 11 32 -5
>>vec - 3
ans =
1
>>
>>mat = randi(30,2,4)
mat =
24 4 19 8
27 27 3 16
>>mat/3
ans =
8.0000 1.3333 6.3333 2.6667
9.0000 9.0000 1.0000 5.3333
>>mat .^ 2
ans =
576 16 361 64
729 729 9 256

```

Practice 2.4

Modify the result seen in the previous Quick Question. Instead of deleting the "bad" elements, retain only the "good" ones. (Hint: Do it two ways, using find and using a logical vector with the expression vec \(>=0\) ).
```

>>vec = [l11 -5 33 2 8 -4 25]
vec =
11 -5 lllllll
>>pos = find(vec >= 0)
pos =
1
>>res = vec(pos)
res =
11 33 2
>>vec(vec>=0)
ans =
11

```

\section*{Practice 2.5}

When two matrices have the same dimensions and are square, both array and matrix multiplication can be performed on them. For the following two matrices, perform \(\mathrm{A} .{ }^{*} \mathrm{~B}, \mathrm{~A}\) * B , and \(B * A\) by hand and then verify the results in MATLAB.
\begin{tabular}{|cc}
A & \\
{\(\left[\begin{array}{ll}1 & 4 \\
3 & 3\end{array}\right]\left[\begin{array}{cc}1 & 2 \\
-1 & 0\end{array}\right]\)}
\end{tabular}
```

>>A .* B
ans =
1 8
-3 0
>> A * B
ans =
-3 2
0}
>> B * A
ans =
70
-1 -4

```

\section*{Chapter 3}

Practice 3.1```

