

MATLAB: A Practical Introduction to

Programming and Problem Solving

Fourth Edition

SOLUTION MANUAL

Stormy Attaway

College of Engineering

Boston University

Matlab A Practical Introduction to Programming and Problem Solving 4th Edition Attaway Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/matlab-a-practical-introduction-to-programming-and-problem-solving-4th-edition-attaway-solutions-manual/

Chapter 1: Introduction to MATLAB

Exercises

1) Create a variable myage and store your age in it. Subtract 2 from the value of the variable.

Add 1 to the value of the variable. Observe the Workspace Window and Command History

Window as you do this.

>> myage = 20;
>> myage = myage - 2;
>> myage = myage + 1;

2) Explain the difference between these two statements:

 result = 9*2
 result = 9*2;

Both will store 18 in the variable result. In the first, MATLAB will display this in the

Command Window; in the second, it will not.

3) Use the built-in function namelengthmax to find out the maximum number of characters

that you can have in an identifier name under your version of MATLAB.

>> namelengthmax
ans =
 63

4) Create two variables to store a weight in pounds and ounces. Use who and whos to see the

variables. Use class to see the types of the variables. Clear one of them and then use who and

whos again.

>> pounds = 4;
>> ounces = 3.3;
>> who

Your variables are:

ounces pounds

>> whos
 Name Size Bytes Class Attributes

 ounces 1x1 8 double
 pounds 1x1 8 double

>> clear pounds
>> who

Your variables are:

ounces

5) Explore the format command in more detail. Use help format to find options. Experiment

with format bank to display dollar values.

>> format +
>> 12.34
ans =
+
>> -123
ans =
-
>> format bank
>> 33.4
ans =
 33.40
>> 52.435
ans =
 52.44

6) Find a format option that would result in the following output format:
>> 5/16 + 2/7

ans =
67/112

>> format rat
>> 5/16 + 2/7
ans =
 67/112

7) Think about what the results would be for the following expressions, and then type them in

to verify your answers.
25 / 5 * 5
4 + 3 ^ 2
(4 + 3) ^ 2
3 \ 12 + 5
4 – 2 * 3

>> 25/5*5
ans =
 25

>> 4 + 3 ^ 2
ans =
 13
>> (4 + 3) ^ 2
ans =
 49
>> 3 \ 12 + 5
ans =
 9
>> 4 - 2 * 3
ans =
 -2

As the world becomes more “flat”, it is increasingly important for engineers and scientists to

be able to work with colleagues in other parts of the world. Correct conversion of data from

one system of units to another (for example, from the metric system to the American system

or vice versa) is critically important.

8) Create a variable pounds to store a weight in pounds. Convert this to kilograms and assign

the result to a variable kilos. The conversion factor is 1 kilogram = 2.2 lb.

>> pounds = 30;
>> kilos = pounds / 2.2
kilos =
 13.6364

9) Create a variable ftemp to store a temperature in degrees Fahrenheit (F). Convert this to

degrees Celsius (C) and store the result in a variable ctemp. The conversion factor is C = (F –

32) * 5/9.

>> ftemp = 75;
>> ctemp = (ftemp - 32) * 5/9
ctemp =
 23.8889

10) The following assignment statements either contain at least one error, or could be

improved in some way. Assume that radius is a variable that has been initialized. First, identify

the problem, and then fix and/or improve them:

33 = number

 The variable is always on the left
 number = 33

my variable = 11.11;

 Spaces are not allowed in variable names
 my_variable = 11.11;

area = 3.14 * radius^2;

 Using pi is more accurate than 3.14
 area = pi * radius^2;

x = 2 * 3.14 * radius;

 x is not a descriptive variable name
 circumference = 2 * pi * radius;

11) Experiment with the functional form of some operators such as plus, minus, and times.

>> plus(4, 8)
ans =
 12
>> plus(3, -2)
ans =
 1
>> minus(5, 7)
ans =
 -2
>> minus(7, 5)
ans =
 2
>> times(2, 8)
ans =
 16

12) Generate a random

 real number in the range (0, 20)

rand * 20

 real number in the range (20, 50)

rand*(50-20)+20

 integer in the inclusive range from 1 to 10

randi(10)

 integer in the inclusive range from 0 to 10

randi([0, 10])

 integer in the inclusive range from 50 to 100

randi([50, 100])

13) Get into a new Command Window, and type rand to get a random real number. Make a

note of the number. Then, exit MATLAB and repeat this, again making a note of the random

number; it should be the same as before. Finally, exit MATLAB and again get into a new

Command Window. This time, change the seed before generating a random number; it should

be different.

>> rand
ans =
0.8147

>> rng('shuffle')
>> rand
ans =
0.4808

14) What is the difference between x and ‘x’?

In an expression, the first would be interpreted as the name of
a variable, whereas ‘x’ is the character x.

15) What is the difference between 5 and ‘5’?

The first is the number 5, the second is the character 5.
(Note: int32(5) is 53. So, 5+1 would be 6. ‘5’+1 would be54.)

16) The combined resistance RT of three resistors R1, R2, and R3 in parallel is given by

RT =

Create variables for the three resistors and store values in each, and then calculate the

combined resistance.

>> r1 = 3;
>> r2 = 2.2;
>> r3 = 1.5;
>> rt = 1/(1/r1 + 1/r2 + 1/r3)
rt =
 0.6875

17) Explain the difference between constants and variables.

321

111

1

RRR


Constants store values that are known and do not change.
Variables are used when the value will change, or when the value
is not known to begin with (e.g., the user will provide the
value).

18) What would be the result of the following expressions?

'b' >= 'c' – 1 1

3 == 2 + 1 1

(3 == 2) + 1 1

xor(5 < 6, 8 > 4) 0

 10 > 5 > 2

 0 Evaluated from left to right: 10>5 is 1,
 then 1 > 2 is 0

 result = 3^2 - 20;
 0 <= result <= 10

 1 Evaluated left to right: 0 <= result is 0,
 then 0 <= 10 is 1

19) Create two variables x and y and store numbers in them. Write an expression that would be

true if the value of x is greater than five or if the value of y is less than ten, but not if both of

those are true.

>> x = 3;
>> y = 12;
>> xor(x > 5, y < 10)
ans =
 0

20) Use the equality operator to verify that 3*10^5 is equal to 3e5.

>> 3*10^5 == 3e5
ans =
 1

21) In the ASCII character encoding, the letters of the alphabet are in order: ‘a’ comes before ‘b’

and also ‘A’ comes before ‘B’. However, which comes first - lower or uppercase letters?

>> int32('a')
ans =
 97
>> int32('A')
ans =
 65

The upper case letters

22) Are there equivalents to intmin and intmax for real number types? Use help to find out.

>> realmin
ans =
 2.2251e-308
>> realmin('double')
ans =
 2.2251e-308
>> realmin('single')
ans =
 1.1755e-38
>> realmax
ans =
 1.7977e+308

23) Use intmin and intmax to determine the range of values that can be stored in the types

uint32 and uint64.

>> intmin('uint32')
ans =
 0
>> intmax('uint32')
ans =
 4294967295
>> intmin('uint64')
ans =
 0
>> intmax('uint64')
ans =
 18446744073709551615

24) Use the cast function to cast a variable to be the same type as another variable.

>> vara = uint16(3 + 5)
vara =
 8
>> varb = 4*5;

>> class(varb)
ans =
double
>> varb = cast(varb, 'like', vara)
varb =
 20
>> class(varb)
ans =
uint16

25) Use help elfun or experiment to answer the following questions:

 Is fix(3.5) the same as floor(3.5)?

>> fix(3.5)
ans =
 3
>> floor(3.5)
ans =
 3

 Is fix(3.4) the same as fix(-3.4)?

>> fix(3.4)
ans =
 3
>> fix(-3.4)
ans =
 -3

 Is fix(3.2) the same as floor(3.2)?

>> fix(3.2)
ans =
 3
>> floor(3.2)
ans =
 3

 Is fix(-3.2) the same as floor(-3.2)?

>> fix(-3.2)
ans =
 -3
>> floor(-3.2)
ans =
 -4

 Is fix(-3.2) the same as ceil(-3.2)?

>> fix(-3.2)
ans =
 -3
>> ceil(-3.2)
ans =
 -3

26) For what range of values is the function round equivalent to the function floor?

 For positive numbers: when the decimal part is less than .5

 For negative numbers: when the decimal part is greater than or equal to .5

For what range of values is the function round equivalent to the function ceil?

 For positive numbers: when the decimal part is greater than or equal to .5

 For negative numbers: when the decimal part is less than .5

27) Use help to determine the difference between the rem and mod functions.

>> help rem
 rem Remainder after division.
 rem(x,y) is x - n.*y where n = fix(x./y) if y ~= 0.
 By convention:
 rem(x,0) is NaN.
 rem(x,x), for x~=0, is 0.
 rem(x,y), for x~=y and y~=0, has the same sign as x.

rem(x,y) and MOD(x,y) are equal if x and y have the same sign,
butdiffer by y if x and y have different signs.

>> help mod
 mod Modulus after division.
 mod(x,y) is x - n.*y where n = floor(x./y) if y ~= 0.

 By convention:
 mod(x,0) is x.
 mod(x,x) is 0.
 mod(x,y), for x~=y and y~=0, has the same sign as y.

28) Find MATLAB expressions for the following

sqrt(19)

19

3^1.2

tan()

tan(pi)

29) Using only the integers 2 and 3, write as many expressions as you can that result in 9. Try

to come up with at least 10 different expressions (e.g., don’t just change the order). Be

creative! Make sure that you write them as MATLAB expressions. Use operators and/or built-

in functions.

3 ^ 2

2 ^ 3 + (3 - 2)

3 * 3

3 ^ 3 - 3 * 3 * 2

2^3 + abs(2-3)

2^3 + sign(3)

3/2*2*3

2\3*2*3

sqrt(3^(2+2))

nthroot(3^(2+2),2)

30) A vector can be represented by its rectangular coordinates x and y or by its polar

coordinates r and . Theta is measured in radians. The relationship between them is given by

the equations:

x = r * cos()
y = r * sin()

Assign values for the polar coordinates to variables r and theta. Then, using these values,

assign the corresponding rectangular coordinates to variables x and y.

>> r = 5;
>> theta = 0.5;
>> x = r * cos(theta)

2.13

x =
 4.3879
>> y = r * sin(theta)
y =
 2.3971

31) In special relativity, the Lorentz factor is a number that describes the effect of speed on

various physical properties when the speed is significant relative to the speed of light.

Mathematically, the Lorentz factor is given as:

Use 3  108 m/s for the speed of light, c. Create variables for c and the speed v and from them a

variable lorentz for the Lorentz factor.

>> c = 3e8;
>> v = 2.9e8;
>> lorentz = 1 / sqrt(1 - v^2/c^2)
lorentz =
 3.9057

32) A company manufactures a part for which there is a desired weight. There is a tolerance of

N percent, meaning that the range between minus and plus N% of the desired weight is

acceptable. Create a variable that stores a weight, and another variable for N (for example, set

it to two). Create variables that store the minimum and maximum values in the acceptable

range of weights for this part.

>> weight = 12.3;
>> N = 2;
>> min = weight - weight*0.01*N
min =
 12.0540
>> max = weight + weight*0.01*N
max =
 12.5460

33) An environmental engineer has determined that the cost C of a containment tank will be

based on the radius r of the tank:

 C =

Create a variable for the radius, and then for the cost.

2

2

1

1

 


v

c

32430

r
 428r

>> format bank
>> radius = 11;
>> cost = 32430/radius + 428*pi*radius
cost =
 17738.80

34) A chemical plant releases an amount A of pollutant into a stream. The maximum

concentration C of the pollutant at a point which is a distance x from the plant is:

 C =

Create variables for the values of A and x, and then for C. Assume that the distance x is in

meters. Experiment with different values for x.

>> A = 30000;
>> x = 100;
>> C = A/x * sqrt(2/(pi*exp(1)))
C =
 145.18
>> x = 1000;
>> C = A/x * sqrt(2/(pi*exp(1)))
C =
 14.52
>> x = 20000;
>> C = A/x * sqrt(2/(pi*exp(1)))
C =
 0.73

35) The geometric mean g of n numbers xi is defined as the nth root of the product of xi:

 g =

(This is useful, for example, in finding the average rate of return for an investment which is

something you’d do in engineering economics). If an investment returns 15% the first year,

50% the second, and 30% the third year, the average rate of return would be

(1.15*1.50*1.30)⅓.) Compute this.

>> x1 = 1.15;
>> x2 = 1.5;
>> x3 = 1.3;
>> gmean = nthroot(x1*x2*x3, 3)
gmean =
 1.31

36) Use the deg2rad function to convert 180 degrees to radians.

A

x

2

e

n
n
xxxx ...321

>> deg2rad(180)
ans =
 3.1416
>>

Chapter 2: Vectors and Matrices

Exercises

1) If a variable has the dimensions 3 x 4, could it be considered to be (bold all that apply):

a matrix

a row vector

a column vector

a scalar

2) If a variable has the dimensions 1 x 5, could it be considered to be (bold all that apply):

a matrix

a row vector

a column vector

a scalar

3) If a variable has the dimensions 5 x 1, could it be considered to be (bold all that apply):

a matrix

a row vector

a column vector

a scalar

4) If a variable has the dimensions 1 x 1, could it be considered to be (bold all that apply):

a matrix

a row vector

a column vector

a scalar

5) Using the colon operator, create the following row vectors

 2 3 4 5 6 7

1.1000 1.3000 1.5000 1.7000

 8 6 4 2

>> 2:7
ans =

 2 3 4 5 6 7
>> 1.1:0.2:1.7
ans =
 1.1000 1.3000 1.5000 1.7000
>> 8:-2:2
ans =
 8 6 4 2

6) Using a built-in function, create a vector vec which consists of 20 equally spaced points in the

range from –pi to +pi.

vec = linspace(0,2*pi,50);

7) Write an expression using linspace that will result in the same as 2: 0.2: 3

linspace(2,3,6)

8) Using the colon operator and also the linspace function, create the following row vectors:

 -5 -4 -3 -2 -1

 5 7 9

 8 6 4

>> -5:-1
ans =
 -5 -4 -3 -2 -1
>> linspace(-5,-1,5)
ans =
 -5 -4 -3 -2 -1
>> 5:2:9
ans =
 5 7 9
>> linspace(5,9,3)
ans =
 5 7 9
>> 8:-2:4
ans =
 8 6 4
>> linspace(8,4,3)
ans =
 8 6 4

9) How many elements would be in the vectors created by the following expressions?

 linspace(3,2000)

 100 (always, by default)

 logspace(3,2000)

 50 (always, by default – although these numbers
 would get very large quickly; most would be
 represented as Inf)

10) Create a variable myend which stores a random integer in the inclusive range from 5 to 9.

Using the colon operator, create a vector that iterates from 1 to myend in steps of 3.

>>myend = randi([5, 9])
myend =
 8
>> vec = 1:3:myend
vec =
 1 4 7

11) Using the colon operator and the transpose operator, create a column vector myvec that

has the values -1 to 1 in steps of 0.5.

>> rowVec = -1: 0.5: 1;
>> rowVec'
ans =
 -1.0000
 -0.5000
 0
 0.5000
 1.0000

12) Write an expression that refers to only the elements that have odd-numbered subscripts in

a vector, regardless of the length of the vector. Test your expression on vectors that have both

an odd and even number of elements.

>> vec = 1:8;
>> vec(1:2:end)
ans =
 1 3 5 7

>> vec = 4:12
vec =
 4 5 6 7 8 9 10 11 12
>> vec(1:2:end)
ans =
 4 6 8 10 12

13) Generate a 2 x 4 matrix variable mat. Replace the first row with 1:4. Replace the third

column (you decide with which values).

>> mat = [2:5; 1 4 11 3]
mat =
 2 3 4 5
 1 4 11 3
>> mat(1,:) = 1:4
mat =
 1 2 3 4
 1 4 11 3
>> mat(:,3) = [4;3]
mat =
 1 2 4 4
 1 4 3 3

14) Generate a 2 x 4 matrix variable mat. Verify that the number of elements is the product of

the number of rows and columns.

>> mat = randi(20,2,4)
mat =
 1 19 17 9
 13 15 20 16
>> [r c] = size(mat);
>> numel(mat) == r * c
ans =
 1

15) Which would you normally use for a matrix: length or size? Why?

Definitely size, because it tells you both the number of rows and columns.

16) When would you use length vs. size for a vector?

If you want to know the number of elements, you’d use length. If you want to figure

out whether it’s a row or column vector, you’d use size.

17) Generate a 2 x 3 matrix of random

 real numbers, each in the range (0, 1)

>> rand(2,3)
ans =
 0.0215 0.7369 0.7125
 0.7208 0.4168 0.1865

 real numbers, each in the range (0, 10)

>> rand(2,3)*10
ans =

 8.0863 2.2456 8.3067
 2.9409 4.0221 5.0677

 integers, each in the inclusive range from 5 to 20

>> randi([5, 20],2,3)
ans =
 18 17 5
 11 11 7

18) Create a variable rows that is a random integer in the inclusive range from 1 to 5. Create a

variable cols that is a random integer in the inclusive range from 1 to 5. Create a matrix of all

zeros with the dimensions given by the values of rows and cols.

>> rows = randi([1,5])
rows =
 3
>> cols = randi([1,5])
cols =
 2
>> zeros(rows,cols)
ans =
 0 0
 0 0
 0 0

19) Create a matrix variable mat. Find as many expressions as you can that would refer to the

last element in the matrix, without assuming that you know how many elements or rows or

columns it has (i.e., make your expressions general).

>> mat = [12:15; 6:-1:3]
mat =
 12 13 14 15
 6 5 4 3
>> mat(end,end)
ans =
 3
>> mat(end)
ans =
 3
>> [r c] = size(mat);
>> mat(r,c)
ans =
 3

20) Create a vector variable vec. Find as many expressions as you can that would refer to the

last element in the vector, without assuming that you know how many elements it has (i.e.,

make your expressions general).

>> vec = 1:2:9
vec =
 1 3 5 7 9
>> vec(end)
ans =
 9
>> vec(numel(vec))
ans =
 9
>> vec(length(vec))
ans =
 9
>> v = fliplr(vec);
>> v(1)
ans =
 9

21) Create a 2 x 3 matrix variable mat. Pass this matrix variable to each of the following

functions and make sure you understand the result: flip, fliplr, flipud, and rot90. In how many

different ways can you reshape it?

>> mat = randi([1,20], 2,3)
mat =
 16 5 8
 15 18 1
>> flip(mat)
ans =
 15 18 1
 16 5 8
>>fliplr(mat)
ans =
 8 5 16
 1 18 15
>> flipud(mat)
ans =
 15 18 1
 16 5 8
>> rot90(mat)
ans =
 8 1
 5 18
 16 15

>> rot90(rot90(mat))
ans =
 1 18 15
 8 5 16
>> reshape(mat,3,2)
ans =
 16 18
 15 8
 5 1
>> reshape(mat,1,6)
ans =
 16 15 5 18 8 1
>> reshape(mat,6,1)
ans =
 16
 15
 5
 18
 8
 1

22) What is the difference between fliplr(mat) and mat = fliplr(mat)?

The first stores the result in ans so mat is not changed; the second changes mat.

23) Use reshape to reshape the row vector 1:4 into a 2x2 matrix; store this in a variable named

mat. Next, make 2x3 copies of mat using both repelem and repmat.

>> mat = reshape(1:4,2,2)
mat =
 1 3
 2 4
>> repelem(mat,2,3)
ans =
 1 1 1 3 3 3
 1 1 1 3 3 3
 2 2 2 4 4 4
 2 2 2 4 4 4
>> repmat(mat,2,3)
ans =
 1 3 1 3 1 3
 2 4 2 4 2 4
 1 3 1 3 1 3
 2 4 2 4 2 4

24) Create a 3 x 5 matrix of random real numbers. Delete the third row.

>> mat = rand(3,5)
mat =
 0.5226 0.9797 0.8757 0.0118 0.2987
 0.8801 0.2714 0.7373 0.8939 0.6614
 0.1730 0.2523 0.1365 0.1991 0.2844

>> mat(3,:) = []
mat =
 0.5226 0.9797 0.8757 0.0118 0.2987
 0.8801 0.2714 0.7373 0.8939 0.6614

25) Given the matrix:
>> mat = randi([1 20], 3,5)
mat =
 6 17 7 13 17
 17 5 4 10 12
 6 19 6 8 11

Why wouldn’t this work:

mat(2:3, 1:3) = ones(2)

Because the left and right sides are not the same dimensions.

26) Create a three-dimensional matrix with dimensions 2 x 4 x 3 in which the first “layer” is all

0s, the second is all 1s and the third is all 5s. Use size to verify the dimensions.

>> mat3d = zeros(2,4,3);
>> mat3d(:,:,2) = 1;
>> mat3d(:,:,3) = 5;
>> mat3d
mat3d(:,:,1) =
 0 0 0 0
 0 0 0 0
mat3d(:,:,2) =
 1 1 1 1
 1 1 1 1
mat3d(:,:,3) =
 5 5 5 5
 5 5 5 5

27) Create a vector x which consists of 20 equally spaced points in the range from – to +.

Create a y vector which is sin(x).

>> x = linspace(-pi,pi,20);
>> y = sin(x);

28) Create a 3 x 5 matrix of random integers, each in the inclusive range from -5 to 5. Get the

sign of every element.

>> mat = randi([-5,5], 3,5)
mat =
 5 4 1 -1 -5
 4 4 -1 -3 0
 5 -2 1 0 4
>> sign(mat)
ans =
 1 1 1 -1 -1
 1 1 -1 -1 0
 1 -1 1 0 1

29) Find the sum 3+5+7+9+11.

>> sum(3:2:11)
ans =
 35

30) Find the sum of the first n terms of the harmonic series where n is an integer variable

greater than one.

>> n = 4;
>> sum(1./(1:n))
ans =
 2.0833

31) Find the following sum by first creating vectors for the numerators and denominators:

>> num = 3:2:9
num =
 3 5 7 9
>> denom = 1:4
denom =

1
1

2


1

3


1

4


1

5
�

3

1


5

2


7

3


9

4

 1 2 3 4
>> fracs = num ./ denom
fracs =
 3.0000 2.5000 2.3333 2.2500
>> sum(fracs)
ans =
 10.0833

32) Create a matrix and find the product of each row and column using prod.

>> mat = randi([1, 30], 2,3)
mat =
 11 24 16
 5 10 5

>> prod(mat)
ans =
 55 240 80

>> prod(mat,2)
ans =
 4224
 250

33) Create a 1 x 6 vector of random integers, each in the inclusive range from 1 to 20. Use

built-in functions to find the minimum and maximum values in the vector. Also create a vector

of cumulative sums using cumsum.

vec = randi([1,20], 1,6)
min(vec)
max(vec)
cvec = cumsum(vec)

34) Write a relational expression for a vector variable that will verify that the last value in a

vector created by cumsum is the same as the result returned by sum.

>> vec = 2:3:17
vec =
 2 5 8 11 14 17
>> cv = cumsum(vec)
cv =
 2 7 15 26 40 57
>> sum(vec) == cv(end)
ans =
 1

35) Create a vector of five random integers, each in the inclusive range from -10 to 10. Perform

each of the following:

>> vec = randi([-10, 10], 1,5)

 subtract 3 from each element

>> vec-3

 count how many are positive

>> sum(vec > 0)

 get the cumulative minimum

36) Create a 3 x 5 matrix. Perform each of the following:

>> mat = randi([-10 10], 3,5)

 Find the maximum value in each column.

>> max(mat)

 Find the maximum value in each row.

>> max(mat, [], 2)
>> max(mat')

 Find the maximum value in the entire matrix.

>> max(max(mat))

 Find the cumulative maxima.

>> cummax(mat)

37) Find two ways to create a 3 x 5 matrix of all 100s (Hint: use ones and zeros).

ones(3,5)*100

zeros(3,5)+100

38) Given the two matrices:

 A B

1 2 3

4 1 6

é

ë
ê

ù

û
ú

2 4 1

1 3 0

é

ë
ê

ù

û
ú

Perform the following operations:

A + B

3 6 4

5 2 6

é

ë
ê

ù

û
ú

A – B

1 2 2

3 4 6

é

ë
ê

ù

û
ú

A .* B

2 8 3

4 3 0

é

ë
ê

ù

û
ú

39) The built-in function clock returns a vector that contains 6 elements: the first three are the

current date (year, month, day) and the last three represent the current time in hours, minutes,

and seconds. The seconds is a real number, but all others are integers. Store the result from

clock in a variable called myc. Then, store the first three elements from this variable in a

variable today and the last three elements in a variable now. Use the fix function on the vector

variable now to get just the integer part of the current time.

>> myc = clock
myc =
 1.0e+03 *
 2.0130 0.0010 0.0080 0.0120 0.0060 0.0014
>> today = myc(1:3)
today =
 2013 1 8
>> now = myc(4:end)

now =
 12.0000 6.0000 1.4268
>> fix(now)
ans =
 12 6 1

40) A vector v stores for several employees of the Green Fuel Cells Corporation their hours

worked one week followed for each by the hourly pay rate. For example, if the variable stores
>> v

v =
33.0000 10.5000 40.0000 18.0000 20.0000 7.5000

that means the first employee worked 33 hours at $10.50 per hour, the second worked 40

hours at $18 an hour, and so on. Write code that will separate this into two vectors, one that

stores the hours worked and another that stores the hourly rates. Then, use the array

multiplication operator to create a vector, storing in the new vector the total pay for every

employee.

>> hours = v(1:2:length(v))
hours =
 33 40 20

>> payrate = v(2:2:length(v))
payrate =
 10.5000 18.0000 7.5000

>> totpay = hours .* payrate
totpay =
 346.5000 720.0000 150.0000

41) A company is calibrating some measuring instrumentation and has measured the radius and

height of one cylinder 10 separate times; they are in vector variables r and h. Find the volume

from each trial, which is given by Πr2h. Also use logical indexing first to make sure that all

measurements were valid (> 0).

>> r = [5.501 5.5 5.499 5.498 5.5 5.5 5.52 5.51 5.5 5.48];
>> h = [11.11 11.1 11.1 11.12 11.09 11.11 11.11 11.1 11.08 11.11];
>> all(r>0 & h>0)
ans =
 1
>> vol = pi * r.^2 .* h

42) For the following matrices A, B, and C:

 A = B = C =

ú
û

ù
ê
ë

é

23

41

ú
ú
ú

û

ù

ê
ê
ê

ë

é

063

651

312

ú
û

ù
ê
ë

é

214

523

 Give the result of 3*A.

 Give the result of A*C.

 Are there any other matrix multiplications that can be performed? If so, list them.

C*B

43) For the following vectors and matrices A, B, and C:

A = B = C =

Perform the following operations, if possible. If not, just say it can’t be done!

A * B

 No, inner dimensions do not agree

B * C

 14

C * B

44) The matrix variable rainmat stores the total rainfall in inches for some districts for the years

2010-2013. Each row has the rainfall amounts for a given district. For example, if rainmat has

the value:

>> rainmat
ans =
 25 33 29 42

ú
û

ù
ê
ë

é

69

123

ú
û

ù
ê
ë

é

19817

13619

ú
û

ù
ê
ë

é 

032

114  41 ú
û

ù
ê
ë

é

3

2

2 8

3 12

é

ë
ê

ù

û
ú

 53 44 40 56
 etc.

district 1 had 25 inches in 2010, 33 in 2011, etc. Write expression(s) that will find the number

of the district that had the highest total rainfall for the entire four year period.
>> rainmat = [25 33 29 42; 53 44 40 56];
>> large = max(max(rainmat))
large =
 56
>> linind = find(rainmat== large)
linind =
 8
>> floor(linind/4)
ans =
 2

45) Generate a vector of 20 random integers, each in the range from 50 to 100. Create a

variable evens that stores all of the even numbers from the vector, and a variable odds that

stores the odd numbers.
>> nums = randi([50, 100], 1, 20);
>> evens = nums(rem(nums,2)==0);
>> odds = nums(rem(nums,2)~=0);

46) Assume that the function diff does not exist. Write your own expression(s) to accomplish

the same thing for a vector.

>> vec = [5 11 2 33 -4]
vec =
 5 11 2 33 -4
>> v1 = vec(2:end);
>> v2 = vec(1:end-1);
>> v1-v2
ans =
 6 -9 31 -37

47) Create a vector variable vec; it can have any length. Then, write assignment statements

that would store the first half of the vector in one variable and the second half in another.

Make sure that your assignment statements are general, and work whether vec has an even or

odd number of elements (Hint: use a rounding function such as fix).

>> vec = 1:9;
>> fhalf = vec(1:fix(length(vec)/2))
fhalf =
 1 2 3 4
>> shalf = vec(fix(length(vec)/2)+1:end)
shalf =

MATLAB: A Practical Introduction to

Programming and Problem Solving

Fourth Edition

PRACTICE PROBLEM SOLUTIONS

Stormy Attaway

College of Engineering

Boston University

Chapter 1

Practice 1.1

Think about what the results would be for the following expressions, and then type them in to

verify your answers:

>> 1\2

ans =

 2

>> - 5 ^ 2

ans =

 -25

>> (-5) ^ 2

ans =

 25

>> 10-6/2

ans =

 7

>> 5*4/2*3

ans =

 30

Practice 1.2

Generate a random

 real number in the range (0,1)

 rand

 real number in the range (0, 100)

 rand*100

 real number in the range (20, 35)

 rand*(35-20)+20

 integer in the inclusive range from 1 to 100

 randi(100)

 integer in the inclusive range from 20 to 35

 randi([20, 35])

Practice 1.3

Think about what would be produced by the following expressions, and then type them in to

verify your answers.

>> 3 == 5 + 2

ans =

 0

>> 'b' < 'a' + 1

ans =

 0

>> 10 > 5 + 2

ans =

 1

>> (10 > 5) + 2

ans =

 3

>> 'c' == 'd' - 1 && 2 < 4

ans =

 1

>> 'c' == 'd' - 1 || 2 > 4

ans =

 1

>>xor('c' == 'd' - 1, 2 > 4)

ans =

 1

>>xor('c' == 'd' - 1, 2 < 4)

ans =

 0

>>10 > 5 > 2

ans =

 0

Practice 1.4

 Calculate the range of integers that can be stored in the types int16and uint16. Use intmin

and intmax to verify your results.

>> 2^16

ans =

 65536

>> 2^15

ans =

 32768

>>intmin('int16')

ans =

 -32768

>>intmax('int16')

ans =

 32767

>>intmin('uint16')

ans =

 0

>>intmax('uint16')

ans =

 65535

 Enter an assignment statement and view the type of the variable in the Workspace

Window. Then, change its type and view it again. View it also using whos.

>>clear

>>mynumber = 3*11;

>>whos

 Name Size Bytes Class Attributes

mynumber 1x1 8 double

>>mynumber = int32(mynumber)

mynumber =

 33

>>whos

 Name Size Bytes Class Attributes

mynumber 1x1 4 int32

Practice 1.5

 Find the numerical equivalent of the character 'x'.

 Find the character equivalent of 107.

>>double('x')

ans =

 120

>>char(107)

ans =

k

Practice 1.6

Use the help function to find out what the rounding functions fix, floor, ceil, and round do.

Experiment with them by passing different values to the functions, including some negative,

some positive, some with fractions less than 0.5 and some greater. It is very important when

testing functions that you thoroughly test by trying different kinds of arguments!

Chapter 2

Practice 2.1

Think about what would be produced by the following sequence of statements and expressions,

and then type them in to verify your answers:

pvec = 3:2:10

pvec(2) = 15

pvec(7) = 33

pvec([2:4 7])

linspace(5,11,3)

logspace(2,4,3)

>>pvec = 3:2:10

pvec =

 3 5 7 9

>>pvec(2) = 15

pvec =

 3 15 7 9

>>pvec(7) = 33

pvec =

 3 15 7 9 0 0 33

>>pvec([2:4 7])

ans =

 15 7 9 33

>>linspace(5,11,3)

ans =

 5 8 11

>>logspace(2, 4, 3)

ans =

 100 1000 10000

Practice 2.2

Think about what would be produced by the following sequence of statements and expressions,

and then type them in to verify your answers.

mat = [1:3; 44 9 2; 5:-1:3]

mat(3,2)

mat(2,:)

size(mat)

mat(:,4) = [8;11;33]

numel(mat)

v = mat(3,:)

v(v(2))

v(1) = []

reshape(mat,2,6)

>>mat = [1:3; 44 9 2; 5:-1:3]

mat =

 1 2 3

 44 9 2

 5 4 3

>>mat(3,2)

ans =

 4

>>mat(2,:)

ans =

 44 9 2

>>size(mat)

ans =

 3 3

>>mat(:,4) = [8;11;33]

mat =

 1 2 3 8

 44 9 2 11

 5 4 3 33

>>numel(mat)

ans =

 12

>>v = mat(3,:)

v =

 5 4 3 33

>>v(v(2))

ans =

 33

>>v(1) = []

v =

 4 3 33

>>reshape(mat,2,6)

ans =

 1 5 9 3 3 11

 44 2 4 2 8 33

Practice 2.3

Create a vector variable and subtract 3 from every element in it.

Create a matrix variable and divide every element by 3.

Create a matrix variable and square every element.

>>vec = [4 11 32 -5 0 9]

vec =

 4 11 32 -5 0 9

>>vec - 3

ans =

 1 8 29 -8 -3 6

>>

>>mat = randi(30,2,4)

mat =

 24 4 19 8

 27 27 3 16

>>mat/3

ans =

 8.0000 1.3333 6.3333 2.6667

 9.0000 9.0000 1.0000 5.3333

>>mat .^ 2

ans =

 576 16 361 64

 729 729 9 256

Practice 2.4

Modify the result seen in the previous Quick Question. Instead of deleting the “bad” elements,

retain only the “good” ones. (Hint: Do it two ways, using find and using a logical vector with

the expression vec >= 0).

>>vec = [11 -5 33 2 8 -4 25]

vec =

 11 -5 33 2 8 -4 25

>>pos = find(vec >= 0)

pos =

 1 3 4 5 7

>>res = vec(pos)

res =

 11 33 2 8 25

>>vec(vec>=0)

ans =

 11 33 2 8 25

Practice 2.5

When two matrices have the same dimensions and are square, both array and matrix

multiplication can be performed on them. For the following two matrices, perform A.*B, A*B,

and B*A by hand and then verify the results in MATLAB.

 A B

>>A .* B

ans =

 1 8

 -3 0

>> A * B

ans =

 -3 2

 0 6

>> B * A

ans =

 7 10

 -1 -4

Chapter 3

Practice 3.1

1 4

3 3

é

ë
ê

ù

û
ú

1 2

-1 0

é

ë
ê

ù

û
ú

Matlab A Practical Introduction to Programming and Problem Solving 4th Edition Attaway Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/matlab-a-practical-introduction-to-programming-and-problem-solving-4th-edition-attaway-solutions-manual/

	SM.pdf (p.1-28)
	SM2.pdf (p.29-37)

