Chapter 1: What is Statistics?

1.1
a. Population: all tires manufactured by the company for the specific year. Objective: to estimate the proportion of tires with unsafe tread.
b. Population: all adult residents of the particular state. Objective: to estimate the proportion who favor a unicameral legislature.
c. Population: times until recurrence for all people who have had a particular disease.

Objective: to estimate the true average time until recurrence.
d. Population: lifetime measurements for all resistors of this type. Objective: to estimate the true mean lifetime (in hours).
e. Population: all generation X age US citizens (specifically, assign a ' 1 ' to those who want to start their own business and a ' 0 ' to those who do not, so that the population is the set of 1 's and 0 's). Objective: to estimate the proportion of generation X age US citizens who want to start their own business.
f. Population: all healthy adults in the US. Objective: to estimate the true mean body temperature
g. Population: single family dwelling units in the city. Objective: to estimate the true mean water consumption

1.2 a. This histogram is above.
b. Yes, it is quite windy there.
c. $11 / 45$, or approx. 24.4%
d. it is not especially windy in the overall sample.

1.3 The histogram is above.

Histogram of stocks

1.4 a. The histogram is above.
b. $18 / 40=45 \%$
c. $29 / 40=72.5 \%$
1.5 a. The categories with the largest grouping of students are 2.45 to 2.65 and 2.65 to 2.85 . (both have 7 students).
b. $7 / 30$
c. $7 / 30+3 / 30+3 / 30+3 / 30=16 / 30$
1.6 a. The modal category is 2 (quarts of milk). About 36% (9 people) of the 25 are in this category.
b. $.2+.12+.04=.36$
c. Note that 8% purchased 0 while 4% purchased 5 . Thus, $1-.08-.04=.88$ purchased between 1 and 4 quarts.
1.7 a. There is a possibility of bimodality in the distribution.
b. There is a dip in heights at 68 inches.
c. If all of the students are roughly the same age, the bimodality could be a result of the men/women distributions.

1.8 a. The histogram is above.
b. The data appears to be bimodal. Llanederyn and Caldicot have lower sample values than the other two.
1.9 a. Note that $9.7=12-2.3$ and $14.3=12+2.3$. So, $(9.7,14.3)$ should contain approximately 68% of the values.
b. Note that $7.4=12-2(2.3)$ and $16.6=12+2(2.3)$. So, $(7.4,16.6)$ should contain approximately 95% of the values.
c. From parts (a) and (b) above, $95 \%-68 \%=27 \%$ lie in both (14.3. 16.6) and (7.4, 9.7). By symmetry, 13.5% should lie in $(14.3,16.6)$ so that $68 \%+13.5 \%=81.5 \%$ are in $(9.7$, 16.6)
d. Since 5.1 and 18.9 represent three standard deviations away from the mean, the proportion outside of these limits is approximately 0 .
1.10 a. $14-17=-3$.
b. Since 68% lie within one standard deviation of the mean, 32% should lie outside. By symmetry, 16% should lie below one standard deviation from the mean.
c. If normally distributed, approximately 16% of people would spend less than -3 hours on the internet. Since this doesn't make sense, the population is not normal.
1.11 a. $\sum_{i=1}^{n} c=c+c+\ldots+c=n c$.
b. $\sum_{i=1}^{n} c y_{i}=c\left(y_{1}+\ldots+y_{n}\right)=c \sum_{i=1}^{n} y_{i}$
c. $\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)=x_{1}+y_{1}+x_{2}+y_{2}+\ldots+x_{n}+y_{n}=\left(x_{1}+x_{2}+\ldots+x_{n}\right)+\left(y_{1}+y_{2}+\ldots+y_{n}\right)$

Using the above, the numerator of s^{2} is $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}{ }^{2}-2 y_{i} \bar{y}+\bar{y}^{2}\right)=\sum_{i=1}^{n} y_{i}{ }^{2}-$ $2 \bar{y} \sum_{i=1}^{n} y_{i}+n \bar{y}^{2}$ Since $n \bar{y}=\sum_{i=1}^{n} y_{i}$, we have $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} y_{i}{ }^{2}-n \bar{y}^{2}$. Let $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ to get the result.
1.12 Using the data, $\sum_{i=1}^{6} y_{i}=14$ and $\sum_{i=1}^{6} y_{i}{ }^{2}=40$. So, $s^{2}=\left(40-14^{2} / 6\right) / 5=1.47$. So, $s=1.21$.
1.13 a. With $\sum_{i=1}^{45} y_{i}=440.6$ and $\sum_{i=1}^{45} y_{i}{ }^{2}=5067.38$, we have that $\bar{y}=9.79$ and $s=4.14$.
b.

k	interval	frequency	Exp. frequency
1	$5.65,13.93$	44	30.6
2	$1.51,18.07$	44	42.75
3	$-2.63,22.21$	44	45

1.14 a. With $\sum_{i=1}^{25} y_{i}=80.63$ and $\sum_{i=1}^{25} y_{i}{ }^{2}=500.7459$, we have that $\bar{y}=3.23$ and $s=3.17$.
b.

k	interval	frequency	Exp. frequency
1	$0.063,6.397$	21	17
2	$-3.104,9.564$	23	23.75
3	$-6.271,12.731$	25	25

1.15 a. With $\sum_{i=1}^{40} y_{i}=175.48$ and $\sum_{i=1}^{40} y_{i}{ }^{2}=906.4118$, we have that $\bar{y}=4.39$ and $s=1.87$.
b.

k	interval	frequency	Exp. frequency
1	$2.52,6.26$	35	27.2
2	$0.65,8.13$	39	38
3	$-1.22,10$	39	40

1.16 a. Without the extreme value, $\bar{y}=4.19$ and $s=1.44$.
b. These counts compare more favorably:

k	interval	frequency	Exp. frequency
1	$2.75,5.63$	25	26.52
2	$1.31,7.07$	36	37.05
3	$-0.13,8.51$	39	39

1.17 For Ex. 1.2, range $/ 4=7.35$, while $s=4.14$. For Ex. 1.3, range $/ 4=3.04$, while $=s=3.17$. For Ex. 1.4, range $/ 4=2.32$, while $\mathrm{s}=1.87$.
1.18 The approximation is $(800-200) / 4=150$.
1.19 One standard deviation below the mean is $34-53=-19$. The empirical rule suggests that 16% of all measurements should lie one standard deviation below the mean. Since chloroform measurements cannot be negative, this population cannot be normally distributed.
1.20 Since approximately 68% will fall between $\$ 390(\$ 420-\$ 30)$ to $\$ 450(\$ 420+\$ 30)$, the proportion above $\$ 450$ is approximately 16%.
1.21 (Similar to exercise 1.20) Having a gain of more than 20 pounds represents all measurements greater than one standard deviation below the mean. By the empirical rule, the proportion above this value is approximately 84%, so the manufacturer is probably correct.
1.22 (See exercise 1.11) $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} y_{i}-n \bar{y}=\sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} y_{i}=0$.
1.23 a. (Similar to exercise 1.20) $95 \mathrm{sec}=1$ standard deviation above 75 sec , so this percentage is 16% by the empirical rule.
b. $(35 \mathrm{sec} ., 115 \mathrm{sec})$ represents an interval of 2 standard deviations about the mean, so approximately 95%
c. 2 minutes $=120 \mathrm{sec}=2.5$ standard deviations above the mean. This is unlikely.
1.24 a. $(112-78) / 4=8.5$

b. The histogram is above.
c. With $\sum_{i=1}^{20} y_{i}=1874.0$ and $\sum_{i=1}^{20} y_{i}{ }^{2}=117,328.0$, we have that $\bar{y}=93.7$ and $s=9.55$.
d.

k	interval	frequency	Exp. frequency
1	$84.1,103.2$	13	13.6
2	$74.6,112.8$	20	19
3	$65.0,122.4$	20	20

1.25 a. $(716-8) / 4=177$
b. The figure is omitted.
c. With $\sum_{i=1}^{88} y_{i}=18,550$ and $\sum_{i=1}^{88} y_{i}{ }^{2}=6,198,356$, we have that $\bar{y}=210.8$ and $s=162.17$.
d.

k	interval	frequency	Exp. frequency
1	$48.6,373$	63	59.84
2	$-113.5,535.1$	82	83.6
3	$-275.7,697.3$	87	88

1.26 For Ex. $1.12,3 / 1.21=2.48$. For Ex. $1.24,34 / 9.55=3.56$. For Ex. $1.25,708 / 162.17=$ 4.37. The ratio increases as the sample size increases.
1.27 $(64,80)$ is one standard deviation about the mean, so 68% of 340 or approx. 231 scores. $(56,88)$ is two standard deviations about the mean, so 95% of 340 or 323 scores.
1.28 (Similar to 1.23) $13 \mathrm{mg} / \mathrm{L}$ is one standard deviation below the mean, so 16%.
1.29 If the empirical rule is assumed, approximately 95% of all bearing should lie in (2.98, 3.02) - this interval represents two standard deviations about the mean. So, approximately 5% will lie outside of this interval.
1.30 If $\mu=0$ and $\sigma=1.2$, we expect 34% to be between 0 and $0+1.2=1.2$. Also, approximately $95 \% / 2=47.5 \%$ will lie between 0 and 2.4. So, $47.5 \%-34 \%=13.5 \%$ should lie between 1.2 and 2.4.
1.31 Assuming normality, approximately 95% will lie between 40 and 80 (the standard deviation is 10). The percent below 40 is approximately 2.5% which is relatively unlikely.
1.32 For a sample of size n, let n^{\prime} denote the number of measurements that fall outside the interval $\bar{y} \pm k s$, so that $\left(n-n^{\prime}\right) / n$ is the fraction that falls inside the interval. To show this fraction is greater than or equal to $1-1 / k^{2}$, note that

$$
(n-1) s^{2}=\sum_{i \in A}\left(y_{i}-\bar{y}\right)^{2}+\sum_{i \in b}\left(y_{i}-\bar{y}\right)^{2},(\text { both sums must be positive })
$$

where $A=\left\{i:\left|y_{i}-\bar{y}\right| \geq k s\right\}$ and $B=\left\{i:\left|y_{i}-\bar{y}\right|<k s\right\}$. We have that
$\sum_{i \in A}\left(y_{i}-\bar{y}\right)^{2} \geq \sum_{i \in A} k^{2} s^{2}=n^{\prime} k^{2} s^{2}$, since if i is in $A,\left|y_{i}-\bar{y}\right| \geq k s$ and there are n^{\prime} elements in
A. Thus, we have that $s^{2} \geq k^{2} s^{2} n^{\prime} /(n-1)$, or $1 \geq k^{2} n^{\prime} /(n-1) \geq k^{2} n^{\prime} / n$. Thus, $1 / k^{2} \geq n^{\prime} / n$ or $\left(n-n^{\prime}\right) / n \geq 1-1 / k^{2}$.
1.33 With $k=2$, at least $1-1 / 4=75 \%$ should lie within 2 standard deviations of the mean. The interval is $(0.5,10.5)$.
1.34 The point 13 is $13-5.5=7.5$ units above the mean, or $7.5 / 2.5=3$ standard deviations above the mean. By Tchebysheff's theorem, at least $1-1 / 3^{2}=8 / 9$ will lie within 3 standard deviations of the mean. Thus, at most $1 / 9$ of the values will exceed 13.
1.35 a. $(172-108) / 4=16$
b. With $\sum_{i=1}^{15} y_{i}=2041$ and $\sum_{i=1}^{15} y_{i}{ }^{2}=281,807$ we have that $\bar{y}=136.1$ and $s=17.1$
c. $a=136.1-2(17.1)=101.9, b=136.1+2(17.1)=170.3$.
d. There are 14 observations contained in this interval, and $14 / 15=93.3 \% .75 \%$ is a lower bound.

1.36 a. The histogram is above.
b. With $\sum_{i=1}^{100} y_{i}=66$ and $\sum_{i=1}^{100} y_{i}{ }^{2}=234$ we have that $\bar{y}=0.66$ and $s=1.39$.
c. Within two standard deviations: 95, within three standard deviations: 96. The calculations agree with Tchebysheff's theorem.
1.37 Since the lead readings must be non negative, 0 (the smallest possible value) is only 0.33 standard deviations from the mean. This indicates that the distribution is skewed.
1.38 By Tchebysheff's theorem, at least $3 / 4=75 \%$ lie between $(0,140)$, at least $8 / 9$ lie between $(0,193)$, and at least $15 / 16$ lie between $(0,246)$. The lower bounds are all truncated a 0 since the measurement cannot be negative.

