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Solutions To Problems of Chapter 2

2.1. Derive the mean and variance for the binomial distribution.

Solution: For the mean value we have that

E[x] =

n
∑

k=0

kn!

(n− k)!k!
pk(1− p)n−k

=

n
∑

k=1

kn!

(n− k)!(k − 1)!
pk(1− p)n−k

= np

n
∑

k=1

(n− 1)!
(

(n− 1)− (k − 1)
)

!(k − 1)!
pk−1(1− p)(n−1)−(k−1)

= np

n−1
∑

l=0

(n− 1)!
(

(n− 1)− l
)

!l!
pl(1− p)(n−1)−l

= np(p+ 1− p)n−1 = np. (1)

For the variance we have

σ2
x =

n
∑

k=0

(k − np)2
n!

(n− k)!k!
pk(1− p)n−k

=
n

∑

k=0

k2
n!

(n− k)!k!
pk(1− p)n−k +

n
∑

k=0

(np)2
n!

(n− k)!k!
pk(1 − p)n−k −

2np
n

∑

k=0

k
n!

(n− k)!k!
pk(1− p)n−k, (2)

(3)

or

σ2
x =

n
∑

k=0

k2
n!

(n− k)!k!
pk(1− p)n−k + (np)2 − 2(np)2, (4)
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However,

n
∑

k=0

k2
(n− 1)!

(n− k)!k!
pk(1 − p)n−k =

np
n

∑

k=1

k
n!

(

(n− 1)− (k − 1)
)

!(k − 1)!
pk−1(1− p)(n−1)−(k−1) =

np

n−1
∑

l=0

(l + 1)
(n− 1)!

(

(n− 1)− l
)

!l!
pl(1− p)(n−1)−l =

np+ np(n− 1)p, (5)

which finally proves the result.

2.2. Derive the mean and the variance for the uniform distribution.

Solution: For the mean we have

µ = E[x] =

∫ b

a

1

b− a
xdx

=
1

b− a

b

2

∣

∣

∣

b

a
=

b+ a

2
. (6)

For the variance, we have

σ2
x =

1

b− a

∫ b

a

(x− µ)2dx =
1

b− a

∫ b−µ

a−µ

y2dy

=
1

b− a

y3

3

∣

∣

∣

b−µ

a−µ

=
1

12
(b− a)2. (7)

2.3. Derive the mean and covariance matrix of the multivariate Gaussian.

Solution: Without harming generality, we assume that µ = 0, in order to
simplify the discussion. We have that

1

(2π)l/2|Σ|1/2

∫ +∞

−∞

x exp
(

−
1

2
x
TΣ−1

x

)

dx, (8)

which due to the symmetry of the exponential results in E[x] = 0.

For the covariance we have that

∫ +∞

−∞

exp
(

−
1

2
x
TΣ−1

x

)

dx = (2π)l/2|Σ|1/2. (9)
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Following similar arguments as for the univariate case given in the text, we
are going yo take the the derivative on both sides with respect to matrix
Σ. Recall from linear algebra the following formulas.

∂Trace{AX−1B}

∂X
= −(X−1BAX−1)T ,

∂|Xk|

∂X
= k|Xk|X−T .

Hence, taking the derivatives of both sides in (9) with respect to Σ we
obtain,

1

2

∫ +∞

−∞

exp
(

−
1

2
x
TΣ−1

x

)

(

Σ−1
xx

TΣ−1
)T

dx =
1

2
(2π)l/2|Σ|1/2Σ−T ,

(10)
which then readily gives the result.

2.4. Show that the mean and variance of the beta distribution with parameters
a and b are given by

E[x] =
a

a+ b
,

and

σ2
x =

ab

(a+ b)2(a+ b+ 1)
.

Hint: Use the property Γ(a+ 1) = aΓ(a).

Proof: We know that

Beta(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1.

Hence

E[x] =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

xxa−1(1− x)b−1dx =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ 1 + b)
,

which, using the property Γ(a+ 1) = aΓ(a), results in

E[x] =
a

a+ b
. (11)

For the variance we have

E[(x− E[x])2] =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

(

x−
a

a+ b

)2

xa−1(1 − x)b−1dx, (12)

or

σ2
x =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

xa+1(1 − x)b−1dx

+
a2

(a+ b)2
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

xa−1(1− x)b−1dx

− 2
a

a+ b

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

xa(1− x)b−1dx, (13)
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and following a similar path as the one adopted for the mean, it is a matter
of simple algebra to show that

σ2
x =

ab

(a+ b)2(a+ b+ 1)
.

2.5. Show that the normalizing constant in the beta distribution with param-
eters a, b is given by

Γ(a+ b)

Γ(a)Γ(b)
.

Proof: The beta distribution is given by

Beta(x|a, b) = Cxa−1(1− x)b−1, 0 ≤ x ≤ 1. (14)

Hence

C−1 =

∫ 1

0

xa−1(1− x)b−1dx. (15)

Let

x = sin2 θ ⇒ dx = 2 sin θ cos θdθ. (16)

Hence

C−1 = 2

∫ π

2

0

(sin θ)2a−1(cos θ)2b−1dθ. (17)

Recall the definition of the gamma function

Γ(a) =

∫

∞

0

xa−1e−xdx,

and set

x = y2 ⇒ dx = 2ydy,

hence

Γ(a) = 2

∫

∞

0

y2a−1e−y2

dy. (18)

Thus

Γ(a)Γ(b) = 4

∫

∞

0

∫

∞

0

x2a−1y2b−1e−(x2+y2)dxdy. (19)

Let

x = r sin θ, y = r cos θ ⇒ dxdy = rdrdθ.

Hence

Γ(a)Γ(b) = 4

∫ π

2

0

∫

∞

0

r2(a+b)−1e−r2(sin θ)2a−1(cos θ)2a−1drdθ. (20)
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where integration over θ is in the interval
[

0, π
2

]

to guarantee that x re-
mains non-negative. From (20) we have

Γ(a)Γ(b) =

(

2

∫

∞

0

r2(a+b)−1e−r2dr

)

(

2

∫ π

2

0

(sin θ)2a−1(cos θ)2b−1dθ

)

= Γ(a+ b)C−1,

which proves the claim.

2.6. Show that the mean and variance of the gamma pdf

Gamma(x|a, b) =
ba

Γ(a)
xa−1e−bx, a, b, x > 0.

are given by

E[x] =
a

b
,

σ2
x =

a

b2
.

Proof: We have that

E[x] =
ba

Γ(a)

∫

∞

0

xae−bxdx.

Set bx = y. Then

E[x] =
ba

Γ(a)

1

ba+1

∫

∞

0

yae−ydy

=
1

bΓ(a)
Γ(a+ 1) =

aΓ(a)

bΓ(a)
=

a

b
.

For the variance, the following is valid

σ2
x = E[(x−

a

b
)2] =

ba

Γ(a)

{

∫

∞

0

xa+1e−bxdx

+
a2

b2

∫

∞

0

xa−1e−bxdx− 2

∫

∞

0

xae−bxdx
}

,

and following a similar path as before we obtain

σ2
x =

a

b2
.
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2.7. Show that the mean and variance of a Dirichlet pdf with K variables,
xk, k = 1, 2, . . . ,K and parameters ak, k = 1, 2, . . . ,K, are given by

E[xk] =
ak
a
, k = 1, 2, . . . ,K

σ2
k =

ak(a− ak)

a2(1 + a)
, k = 1, 2, . . . ,K,

cov[xixj ] = −
aiaj

a2(1 + a)
, i 6= j,

where a =
∑K

k=1 ak.

Solution: Without harm of generality, we will derive the mean for xK .
The others are derived similarly. To this end, we have

p(x1, x2, . . . , xK−1) = C

K−1
∏

k=1

xak−1
k

(

1−

K−1
∑

k=1

xk

)aK−1

where

C =
Γ(a1 + a2 + . . .+ aK)

Γ(a1)Γ(a2) . . .Γ(aK)
.

E[xK ] = C

∫ 1

0

· · ·

∫ 1

0

[

∫ 1−
∑

K−1

k=1
xk

0

xKp(x1, . . . , xK−1, xK)dxK

]

dxK−1 . . . dx1

= C

∫ 1

0

· · ·

∫ 1

0





∫ 1−
∑

K−1

k=1
xk

0

xK

K−1
∏

k=1

xak−1
k

(

1−

K−1
∑

k=1

xk

)aK−1

dxK



 dxK−1 . . . dx1

= C

∫ 1

0

· · ·

∫ 1

0

K−1
∏

k=1

xak−1
k

(

1−

K−1
∑

k=1

xk

)aK
[

∫ 1−
∑

K−1

k=1
xk

0

dxK

]

dxK−1 . . . dx1,

or

E[xK ] = C

∫ 1

0

· · ·

∫ 1

0

K−1
∏

k=1

xak−1
k

(

1−

K−1
∑

k=1

xk

)aK

dxK−1 . . . dx1

= C
Γ(a1) . . .Γ(aK + 1)

Γ(a1 + a2 + . . .+ aK + 1)

= C
aKΓ(a1) . . .Γ(aK)

(a1 + a2 + . . .+ aK)Γ(a1 + a2 + . . .+ aK)

=
aK
a

.

In the sequel, we will show that

E[xixj ] = −
aiaj

a2(a+ 1)
, i 6= j.
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We derive it for the variables xK and xK−1, since any of the variables can
be taken in place of xK and xK−1. Hence,

E[xK−1xK ] = C

∫ 1

0

· · ·

∫ 1

0

[

∫ 1−
∑

K−1

k=1
xk

0

(

K−2
∏

k=1

xak−1
k

)

x
aK−1

K−1 x
aK

K dxK

]

dxK−1 . . . dx1

= C

∫ 1

0

· · ·

∫ 1

0

K−2
∏

k=1

xak−1
k x

aK−1

K−1

[

∫ 1−
∑

K−1

k=1
xk

0

xaK

K dxK

]

dxK−1 . . . dx1

=
C

aK + 1

∫ 1

0

· · ·

∫ 1

0

K−2
∏

k=1

xak−1
k x

aK−1

K−1

(

1−

K−1
∑

k=1

xk

)aK+1

dxK−1 . . . dx1

=
C

aK + 1

Γ(a1) . . .Γ(aK−2)Γ(aK−1 + 1)Γ(aK + 2)

Γ(a1 + . . .+ aK−2 + aK−1 + aK + 2)

=
C

aK + 1

aKaK−1Γ(a1) . . .Γ(aK)(aK + 1)

(1 + a1 + . . .+ aK)(a1 + . . .+ aK)Γ(a1 + . . .+ aK)

or

E[xK−1xK ] =
aKaK−1

a(1 + a)
.

Thus in general,

E[xixj ] =
aiaj

a(1 + a)
.

For the covariance, we have

cov[xixj] = E
[

xi − E[xi]
]

E
[

xj − E[xj]
]

= E[xixj ]− E[xi]E[xj ],

or

cov[xixj ] =
aiaj

a(1 + a)
−

aiaj

a2

=
aiaja− aiaj(1 + a)

a2(1 + a)
= −

aiaj

a2(1 + a)
.

2.8. Show that the sample mean, using N i.i.d drawn samples, is an unbiased
estimator with variance that tends to zero asymptotically, as N −→∞.

Solution: From the definition of the sample mean we have

E[µ̂N ] =
1

N

N
∑

n=1

E[xn] =
1

N

N
∑

n=1

E[x] = E[x]. (21)



8

For the variance we have,

σ2
µ̂N

= E





(

1

N

N
∑

i=1

xi − µ

)





1

N

N
∑

j=1

xj − µ









= E





1

N2





N
∑

i=1

(xi − µ)
N
∑

j=1

(xj − µ)







 (22)

=
1

N2

N
∑

i=1

N
∑

j=1

E [(xi − µ)(xj − µ)] . (23)

However, since the samples are i.i.d. drawn, the expected value of the
product is equal to the product of the mean values, hence it is zero except
for i = j, which then results in

σ2
µ̂N

=
1

N
σ2
x,

which proves the claim.

2.9. Show that for WSS processes

r(0) ≥ |r(k)|, ∀k ∈ Z,

and that for jointly WSS processes,

ru(0)rv(0) ≥ |ruv(k)|, ∀k ∈ Z.

Solution: Both properties are shown in a similar way. So, we are going to
focus on the first one. Consider the obvious inequality,

E[|un + λun−k|
2] ≥ 0,

or

E[|un|
2] + |λ|2 E[|un−k|

2] ≥ λ∗r(k) + λr∗(k),

or

r(0) + |λ|2r(0) ≥ λ∗r(k) + λr∗(k).

This is true for any λ, thus it will be true for λ = r(k)
r(0) . Substituting, we

obtain

r(0) ≥
|r(k)|2

r(0)
,

which proves the claim.

Similar steps are adopted in order to prove the property for the cross-
correlation.
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2.10. Show that the autocorrelation of the output of a linear system, with im-
pulse response, wn, n ∈ Z, is related to the autocorrelation of the input
process, via,

rd(k) = ru(k) ∗ wk ∗ w
∗

−k.

Solution: We have that

rd(k) = E[dnd
∗

n−k] = E





∑

i

w∗i un−i

∑

j

wju
∗

n−k−j





=
∑

i

∑

j

w∗iwj E[un−iu
∗

n−k−j ]

=
∑

j

wj

∑

i

w∗i r(k + j − i). (24)

Set

h(n) := wn ∗ ru(n). (25)

Then we can write,

rd(k) =
∑

j

wjh(k + j) =
∑

j

wjh
(

− ((−k)− j)
)

= w∗
−k ∗ h(−(−k))

= w∗
−k ∗ wk ∗ ru(k),

which proves the claim.

2.11. Show that

lnx ≤ x− 1.

Solution: Define the function

f(x) = x− 1− lnx.

then

f ′(x) = 1−
1

x
, and f ′′(x) =

1

x2
.

Thus x = 1 is a minimum, i.e.,

f(x) ≥ f(1) = 1− 1− 0 = 0.

or

lnx ≤ x− 1.

2.12. Show that

I(x; y) ≥ 0.
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Hint: Use the inequality of Problem 2.11.

Solution: By the respective definition, we have that

−I(x; y) = −
∑

x

∑

y

P (x, y) log
P (x|y)

P (x)

= log e
∑

x

∑

y

P (x; y) ln
P (x)

P (x|y)
,

where we have used only terms where P (x, y) 6= 0. Taking into account
the inequality, we have that

−I(x; y) ≤ log e
∑

x

∑

y

P (x, y)

{

P (x)

P (x|y)
− 1

}

=

log e
∑

x

∑

y

{P (x)P (y)− P (x, y)} .

Note that the summation over the terms in the brackets is equal to zero,
which proves the claim.

Note that if the random variables are independent, then P (x) = P (x|y)
and I(x; y) = 0.

2.13. Show that if ai, bi, i = 1, 2, . . . ,M are positive numbers, such as

M
∑

i=1

ai = 1, and
M
∑

i=1

bi ≤ 1,

then

−

M
∑

i=1

ai ln ai ≤ −

M
∑

i=1

ai ln bi.

Solution: Recalling the inequality from Problem 2.11, that

ln
bi
ai
≤

bi
ai
− 1,

or
M
∑

i=1

ai ln
bi
ai
≤

M
∑

i=1

(bi − ai) ≤ 0,

which proves the claim and where the assumptions concerning ai and bi
have been taken into account .

2.14. Show that the maximum value of the entropy of a random variable occurs
if all possible outcomes are equiprobable.
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Solution Let pi, i = 1, 2, . . . ,M be the corresponding probabilities of
the M possible events. According to the inequality in Problem 2.13 form
bi = 1/M , we have,

−
M
∑

i=1

pi ln pi ≤
M
∑

i=1

pi lnM,

or

−

M
∑

i=1

pi ln pi ≤ lnM.

Thus the maximum value of the entropy is lnM , which is achieved if all
probabilities are equal to 1/M .

2.15. Show that from all the pdfs which describe a random variable in an inter-
val [a, b] the uniform one maximizes the entropy.

Solution: The Lagrangian of the constrained optimization task is

L(p(·), λ) = −

∫ +∞

−∞

p(x) ln p(x)dx + λ
(

∫ +∞

−∞

p(x)dx − 1
)

.

According to the calculus of variations (for the unfamiliar reader, treat
p(x) as a variable and take derivatives under the integrals as usual) we
take the derivative and set it equal to zero, resulting in

ln p(x) = λ− 1.

Plugging it in the constrain equation, and performing the integration re-
sults in

p(x) =
1

b− a
,

which proves the claim.
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