Instructor's Manual for:

Introductory Statistics for the Behavioral Sciences, 7th Ed. by J. Welkowitz, B. H. Cohen, and R. B. Lea

Answers to All Exercises

Chapter 1

1. (a) $X=195 \quad X^{2}=2801 \quad(X)^{2}=38,025$
(b) $\quad X=138 \quad X^{2}=1512 \quad(X)^{2}=19,044$
(c) $\quad X=70 \quad X^{2}=550 \quad(X)^{2}=4,900$
(d) $\quad X=55 \quad X^{2}=685 \quad(\quad X)^{2}=3,025$
2. (a) $\sum X+\sum Y$ or $\sum(X+Y)$
(b) $\Sigma G+\sum P^{2}$ or $\Sigma\left(G+P^{2}\right)$
(c) $\Sigma X^{2} \quad 6 \Sigma \mathrm{X} Y+4(\Sigma X)^{2}+2 \sum Y^{2}$
3. (a) $X=10 \quad(X)^{2}=100 \quad(X+Y)=40$

$$
\begin{array}{lll}
Y=30 & (Y)^{2}=900 \quad X & Y=20 \\
X^{2}=30 & (X \quad Y)=20 & X Y=73 \\
Y^{2}=206 & X+Y=40 & X
\end{array}
$$

(b) Rule 1: $40=10+30$

Rule 2: $-20=10-30$
Rule 3: 73300
Rule 4: $30 \quad 100 ; 206 \quad 900$
(c) $\quad(X+k)=10+20=30 ; \quad X+k=10+4=14 ;$ Sum of new scores $=30$
(d) $\quad\left(\begin{array}{ll}Y & k\end{array}\right)=30 \quad 15=15 ; \quad Y \quad k=30 \quad 3=27$; Sum of new scores $=15$
(e) $\quad(k X)=2 \quad 10=20 ;$ Sum of new scores $=20$
4. Data set 1: $N=5$

$$
\begin{aligned}
& X=7 ; \quad X^{2}=15 ;(X)^{2}=49 ; \quad X Y=23 ; \quad(X+Y)=18 \\
& Y=11 ; \quad Y^{2}=39 ;\left(\begin{array}{rl}
Y
\end{array}\right)^{2}=121 ; \quad X \quad Y=77 ; \quad\left(\begin{array}{ll}
X & Y
\end{array}\right)=4 \\
& \left(\begin{array}{ll}
X & 3.2
\end{array}\right)=7 \quad 3.2=22.4 ; \quad\left(\begin{array}{ll}
Y & 7
\end{array}\right)=11 \quad 5(7)=24 \\
& (X+1.8)=7+5(1.8)=16 ; \quad\left(\begin{array}{l}
Y
\end{array}\right)=11 / 4=2.75
\end{aligned}
$$

Data set 2: $\quad N=8$

$$
\begin{aligned}
& X=36.39 ; \quad X^{2}=253.04 ;(X)^{2}=1324.23 ; \quad X Y=86.2 ; \quad(X+Y)=56.46 \\
& Y=20.07 ; \quad Y^{2}=76.74 ;(\quad Y)^{2}=402.80 ; \quad X \quad Y=730.35 ; \quad\left(\begin{array}{ll}
X & Y)=16.32 \\
\sum(X * 3.2)=36.39 * 3.2=116.45 ; \sum(Y-7)=20.07-8(7)=-35.93 ;
\end{array}\right. \\
& \Sigma(X+1.8)=36.39+8(1.8)=50.79 ; \sum(Y / 4)=20.07 / 4=5.02
\end{aligned}
$$

5. Data set 3: $N=14$

$$
\begin{aligned}
& \sum X=1,176 ; \sum X^{2}=100,288 ;\left(\sum X\right)^{2}=1,382,976 ; \sum X Y=96,426 ; \quad(X+Y)=2,305 \\
& \sum Y=1,129 ; \sum Y^{2}=93,343 ;\left(\sum Y\right)^{2}=1,274,641 ; \sum X \sum Y=1,327,704 ; \quad\left(\begin{array}{ll}
X & Y
\end{array}\right)=47
\end{aligned}
$$

1.

	Turck		Kirk		Dupre	
Score	f	$c f$	f	$c f$	f	$c f$
20	1	15	0	15		
19	0	14	0	15		
18	1	14	0	15		
17	2	13	1	15		
16	1	11	0	14		
15	1	10	0	14		
14	1	9	1	14		
13	2	8	0	13		
12	0	6	3	13		
11	2	6	2	10	1	10
10	1	4	0	8	1	9
9	1	3	1	8	2	8
8	0	2	2	7	0	6
7	0	2	2	5	1	6
6	1	2	1	3	1	5
5	1	1	0	2	2	4
4			0	2	2	2
3			1	2	0	0
2			0	1	0	0
1			1	1	0	0

2.

	Turck		Kirk	
Score	f	$c f$	f	$c f$
$19-20$	1	15	0	15
$17-18$	3	14	1	15
$15-16$	2	11	0	14
$13-14$	3	9	1	14
$11-12$	2	6	5	13
$9-10$	2	4	1	8
$7-8$	0	2	4	7
$5-6$	2	2	1	3
$3-4$	0	0	1	2
$1-2$	0	0	1	1

3. The Histogram is approximately symmetrical, and bimodal in shape.
4. The Turck polygon skews to the left, the Kirk polygon skews to the right, and both appear bimodal.
5.

Stems (Intervals)	Leaves (Observations)
$3-5$	5
$6-8$	6
$9-11$	9011
$12-14$	334
$15-17$	5677
$18-20$	80

6.

(1): b
(4): b
(2): a
(5): d
(3): a
(6): g
7. (a) The $c f$ corresponding to a score of 8 is $2 ; \mathrm{PR}=(2 / 15) \times 100=13.33 \%$, so the PR for 8 is about 13 .
(b) The $c f$ for a score of 12 is $6 ; \mathrm{PR}=(6 / 15) \times 100=40 \%$, so the PR for 12 is 40 .
8. (a) A score of 16 corresponds to a $c f$ of $14 ; \mathrm{PR}=14 / 15 \times 100=93.33$.
(b) A score of 7 corresponds to a $c f$ of about $4 ; \mathrm{PR} \sim 4 / 15 \times 100 \sim 27$.
9. (a) The desired $c f=(25 / 100) \times 15=3.75$, so the score at the 25 th percentile is about 10 .
(b) The desired $c f=(75 / 100) \times 15=11.25$, so the score at the 75 th percentile is about 16 .
10. (a) The 2nd decile at Kirk Hall corresponds to a $c f$ of $.2 \times 15=3$, which corresponds to a score of 6.5 (i.e., the upper real limit of the 5-6 interval).
(b) The 50 th percentile corresponds to a $c f$ of $.5 \times 15=7.5$, which corresponds to a score of 9.5 (i.e., midway through the $9-10$ interval).
(c) The 68th percentile corresponds to a $c f$ of $.68 \times 15=10$, which corresponds to a score of about 11 .

