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CHAPTER 2 
 

SOLUTIONS TO PROBLEMS 
 

2.1 (i) Income, age, and family background (such as number of siblings) are just a few 

possibilities.  It seems that each of these could be correlated with years of education.  (Income 

and education are probably positively correlated; age and education may be negatively correlated 

because women in more recent cohorts have, on average, more education; and number of siblings 

and education are probably negatively correlated.) 

 

 (ii) Not if the factors we listed in part (i) are correlated with educ.  Because we would like to 

hold these factors fixed, they are part of the error term.  But if u is correlated with educ, then 

E(u|educ)  0, and so SLR.4 fails. 

 

2.3 (i) Let yi = GPAi, xi = ACTi, and n = 8.  Then x = 25.875, y  = 3.2125, 
1

n

i

 (xi – x )(yi – y ) = 

5.8125, and 
1

n

i

 (xi – x )2 = 56.875.  From equation (2.19), we obtain the slope as 1̂ = 

5.8125/56.875   .1022, rounded to four places after the decimal.  From (2.17), 0̂  = y  – 1̂ x

   3.2125 – (.1022)25.875   .5681.  So we can write 

 

 GPA   = .5681 + .1022 ACT 

 n = 8. 

 

The intercept does not have a useful interpretation because ACT is not close to zero for the 

population of interest.  If ACT is 5 points higher, GPA  increases by .1022(5) = .511. 

 

 (ii) The fitted values and residuals — rounded to four decimal places — are given along with 

the observation number i and GPA in the following table: 
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i GPA GPA       û  

1 2.8 2.7143 .0857 

2 3.4 3.0209 .3791 

3 3.0 3.2253 –.2253 

4 3.5 3.3275 .1725 

5 3.6 3.5319 .0681 

6 3.0 3.1231 –.1231 

7 2.7 3.1231 –.4231 

8 3.7 3.6341 .0659 

 

You can verify that the residuals, as reported in the table, sum to .0002, which is pretty close to 

zero given the inherent rounding error. 

 

 (iii) When ACT = 20, GPA= .5681 + .1022(20)   2.61.   

 

 (iv) The sum of squared residuals, 2

1

ˆ
n

i

i

u


 , is about .4347 (rounded to four decimal places), 

and the total sum of squares,
1

n

i

 (yi – y )2, is about 1.0288. So the R-squared from the regression 

is 

 

R2 = 1 – SSR/SST   1 – (.4347/1.0288)   .577. 

 

 

Therefore, about 57.7% of the variation in GPA is explained by ACT in this small sample of 

students. 

 

2.5 (i) The intercept implies that when inc = 0, cons is predicted to be negative $124.84.  This, of 

course, cannot be true, and reflects the fact that this consumption function might be a poor 

predictor of consumption at very low-income levels.  On the other hand, on an annual basis, 

$124.84 is not so far from zero. 

 

 (ii) Just plug 30,000 into the equation: cons  = –124.84 + .853(30,000) = 25,465.16 dollars. 

 

 (iii) The MPC and the APC are shown in the following graph.  Even though the intercept is 

negative, the smallest APC in the sample is positive.  The graph starts at an annual income level 

of $1,000 (in 1970 dollars). 
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2.7 (i) When we condition on inc in computing an expectation, inc  becomes a constant.  So 

E(u|inc) = E( inc  e|inc) = inc E(e|inc) = inc  0 because E(e|inc) = E(e) = 0. 

 

 (ii) Again, when we condition on inc in computing a variance, inc  becomes a constant.  So 

Var(u|inc) = Var( inc  e|inc) = ( inc )2Var(e|inc) = 2

e inc because Var(e|inc) = 2

e . 

 

 (iii) Families with low incomes do not have much discretion about spending; typically, a 

low-income family must spend on food, clothing, housing, and other necessities.  Higher-income 

people have more discretion, and some might choose more consumption while others more 

saving.  This discretion suggests wider variability in saving among higher income families. 

 

2.9 (i) We follow the hint, noting that 1c y  = 1c y  (the sample average of 
1 ic y  is c1 times the 

sample average of yi) and 2c x  = 
2c x .  When we regress c1yi on c2xi (including an intercept), we 

use equation (2.19) to obtain the slope: 

 

inc
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From (2.17), we obtain the intercept as 0  = (c1 y ) – 1 (c2 x ) = (c1 y ) – [(c1/c2) 1̂ ](c2 x ) = c1(

y  – 1̂ x ) = c1 0̂ ) because the intercept from regressing yi on xi is ( y  – 1̂ x ). 

 

 (ii) We use the same approach from part (i) along with the fact that 1( )c y  = c1 + y  and 

2( )c x  = c2 + x .  Therefore,  1 1( ) ( )ic y c y    = (c1 + yi) – (c1 + y ) = yi – y  and (c2 + xi) – 

2( )c x  = xi – x .  So c1 and c2 entirely drop out of the slope formula for the regression of (c1 + 

yi) on (c2 + xi), and 1  = 1̂ .  The intercept is 0  = 1( )c y  – 1 2( )c x  = (c1 + y ) – 1̂ (c2 + x

) = ( 1
ˆy x ) + c1 – c2 1̂  = 0̂  + c1 – c2 1̂ , which is what we wanted to show. 

 

 (iii) We can simply apply part (ii) because 1 1log( ) log( ) log( )i ic y c y  .  In other words, 

replace c1 with log(c1), replace yi with log(yi), and set c2 = 0. 

 

 (iv) Again, we can apply part (ii) with c1 = 0 and replacing c2 with log(c2) and xi with log(xi).  

If 0 1
ˆ ˆ and    are the original intercept and slope, then 1 1

ˆ   and 0 0 2 1
ˆ ˆlog( )c    . 

 

2.11 (i) We would want to randomly assign the number of hours in the preparation course so that 

hours is independent of other factors that affect performance on the SAT. Then, we would 

collect information on SAT score for each student in the experiment, yielding a data set 

{( , ) : 1,..., }i isat hours i n , where n is the number of students we can afford to have in the study.  

From equation (2.7), we should try to get as much variation in ihours  as is feasible. 

 

 (ii) Here are three factors:  innate ability, family income, and general health on the day of the 

exam.  If we think students with higher native intelligence think they do not need to prepare for 

the SAT, then ability and hours will be negatively correlated.  Family income would probably be 

positively correlated with hours, because higher income families can more easily afford 

preparation courses.  Ruling out chronic health problems, health on the day of the exam should 

be roughly uncorrelated with hours spent in a preparation course. 

 

 (iii) If preparation courses are effective, 1  should be positive; other factors equal, an 

increase in hours should increase sat. 
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 (iv) The intercept,
0 , has a useful interpretation in this example: because E(u) = 0, 

0  is the 

average SAT score for students in the population with hours = 0. 

 

SOLUTIONS TO COMPUTER EXERCISES 

 

C2.1 (i) The average prate is about 87.36, and the average mrate is about .732. 

 

 (ii) The estimated equation is 

 

 prate = 83.08 + 5.86 mrate 

 n = 1,534,  R2 = .075. 

 

 (iii)  The intercept implies that, even if mrate = 0, the predicted participation rate is 83.08 

percent.  The coefficient on mrate implies that a one-dollar increase in the match rate – a fairly 

large increase – is estimated to increase prate by 5.86 percentage points.  This assumes, of 

course, that this change prate is possible (if, say, prate is already at 98, this interpretation makes 

no sense). 

 

 (iv)  If we plug mrate = 3.5 into the equation we get ˆprate = 83.08 + 5.86(3.5) = 103.59.  

This is impossible, as we can have at most a 100 percent participation rate.  This illustrates that, 

especially when dependent variables are bounded, a simple regression model can give strange 

predictions for extreme values of the independent variable.  (In the sample of 1,534 firms, only 

34 have mrate  3.5.) 

 

 (v)  mrate explains about 7.5% of the variation in prate.  This is not much and suggests that 

many other factors influence 401(k) plan participation rates. 

 

C2.3 (i) The estimated equation is  

 

 sleep = 3,586.4 – .151 totwrk 

 n = 706,  R2 = .103. 

 

The intercept implies that the estimated amount of sleep per week for someone who does not 

work is 3,586.4 minutes, or about 59.77 hours.  This comes to about 8.5 hours per night. 

 

 (ii) If someone works two more hours per week, then totwrk = 120 (because totwrk is 

measured in minutes), and so sleep = –.151(120) = –18.12 minutes.  This is only a few minutes 

a night.  If someone were to work one more hour on each of five working days, sleep =  

–.151(300) = –45.3 minutes, or about five minutes a night. 

 

C2.5 (i) The constant elasticity model is a log-log model: 
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log(rd) = 
0  + 

1 log(sales) + u, 

 

where 
1  is the elasticity of rd with respect to sales. 

 

 (ii) The estimated equation is 

 

 log( )rd = –4.105 + 1.076 log(sales) 

 n = 32,   R2 = .910. 

 

The estimated elasticity of rd with respect to sales is 1.076, which is just above one.  A one 

percent increase in sales is estimated to increase rd by about 1.08%. 

 

C2.7 (i) The average gift is about 7.44 Dutch guilders. Out of 4,268 respondents, 2,561 did not 

give a gift, or about 60 percent. 

 

 (ii) The average mailings per year is about 2.05. The minimum value is .25 (which 

presumably means that someone has been on the mailing list for at least four years), and the 

maximum value is 3.5. 

 

 (iii) The estimated equation is 

 

2

2.01  2.65 

4,268,   .0138.

gift mailsyear

n R

 

 

 

 

 (iv) The slope coefficient from part (iii) means that each mailing per year is associated with – 

perhaps even “causes” – an estimated 2.65 additional guilders, on average. Therefore, if each 

mailing costs one guilder, the expected profit from each mailing is estimated to be 1.65 guilders. 

This is only the average, however. Some mailings generate no contributions, or a contribution 

less than the mailing cost; other mailings generated much more than the mailing cost. 

 

 (v) Because the smallest mailsyear in the sample is .25, the smallest predicted value of gifts 

is 2.01 + 2.65(.25)  2.67. Even if we look at the overall population, where some people have 

received no mailings, the smallest predicted value is about two. So, with this estimated equation, 

we never predict zero charitable gifts. 

 

C2.9 (i) In 1996, 1,051 counties had zero murders. Out of 2,197 counties, 31 counties had at 

least one execution and the largest number of executions is 3. 

 

(ii) The estimated equation is 
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𝑚𝑢𝑟𝑑𝑒𝑟𝑠 = 5.46 + 58.56𝑒𝑥𝑒𝑐𝑠 

𝑛 = 2197, 𝑅2 = 0.0439. 

 

(iii) The slope coefficient on execs implies that if the number of executions increases by 

one, the estimated number of murders increases largely by about 59. No, the 

estimated equation does not suggest a deterrent effect of capital punishment. 

 

(iv)  The smallest number of murders can be predicted by the equation is 5.46, that is 

about 5 murders. The residual for a county with zero executions and zero murders is 

-5.46. 

 

 

(v) This simple linear regression equation predicts that if the number of executions 

increases by one, the estimated number of murders increases largely by about 59, 

which means capital punishment does not have a deterrent effect on murders — 

capital punishment is not discouraging people from doing murders. The sign and 

magnitude of the estimate +58.56 make us suspect that the error term u and the 

independent variable execs are correlated. Therefore, the regression model is not well 

suited for prediction.  
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