
1 Chapter 1: Financial Derivatives

Problem 1

(a) The following plots show the respective payoff diagrams at expiration:

0 2 4 6 8 10 12 14 16 18 20
−20

−15

−10

−5

0

5

10
Payoff of Short Stock and Written ATM Call

S

P
ay

of
f

 

 
Short Stock
Write Call
Combined

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8
Payoff of Put and Call at K1 and K2

S

P
ay

of
f

 

 
Put at K1
Call at K2
Combined

1

Introduction to the Mathematics of Financial Derivatives 3rd Edition Hirsa Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/introduction-to-the-mathematics-of-financial-derivatives-3rd-edition-hirsa-solutions-manual/


0 2 4 6 8 10 12 14 16 18 20
−12

−10

−8

−6

−4

−2

0

2

4

6

8
Payoff of Long Put, Short Call at K1, Long Call, Short Put at K2

S

P
ay

of
f

 

 

Long Put, Short Call at K1
Long Call, Short Put at K2
Combined

(b) The following plots show the respective payoff diagrams prior to expiration:
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Problem 2

(a) Assuming a notional amount N . A cashflow takes place every 6 months, beginning in 12
months. The following table summarizes the cashflow:
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Payoff 12 months 18 months 24 months

Floating Leg N N L12

2
N(1 + L18

2
)

Fixed Leg −N −N κ
2

−N(1 + κ
2
)

Here, κ = 5%.
(b) We can replicate the above swap using FRA’s by receiving the interest rate differential
of the swap at 18 and 24 months. Note that an FRA is a forward contract in which one
party pays a fixed interest rate in exchange for a floating rate at a specified future date.
Consequently, in order to do replicate the swap, from the perspective the fixed payer, we
would enter into two separate FRA contracts as the fixed payer at 18 and 24 months, each
with a forward rate equal to κ. In this case we will receive the 6 month Libor and be make
a fixed payment equal to κ.
(c) Assuming that interest rate caps and floors are both available, we can synthesize our
swap using interest rate options. For example, a portfolio consisting of a long interest rate
cap with a strike of κ and a long interest rate floor also struck at κ will have a payoff of
L− κ. We notice that is equivalent to the interest rate differential of the swap, so in order
to replicate the swap we must enter into these contracts at both 18 and 24 months.

Problem 3

(a) In the absence of arbitrage the futures price must be between:

St(1 + r) ≤ Ft ≤ (St + c+ s)(1 + r) (1)

If Ft > (St+ c+ s)(1+ r), then we can create an arbitrage portfolio consisting of the future,
the underlying asset, wheat as well as borrowing. The arbitrage portfolio consists of the
following:

Position Initial Payoff at t Terminal Payoff at T
Short futures 0 Ft − ST

Borrow St + c+ s +(St + c+ S) −(St + c+ s)(1 + r)
Buy wheat and pay storage, insurance costs −(St + c+ s) ST

Total 0 Ft− (St+ c+ s)(1 + r)
Since Ft − (St + c+ s)(1 + r) > 0 by assumption we have an arbitrage opportunity, and,

consequently, Ft ≤ (St + c+ s)(1 + r) in the absence of arbitrage.
However, if Ft < (St + c + s)(1 + r), an arbitrage opportunity does necessarily exist.

This is due to the fact that wheat cannot be viewed as an investment asset. Specifically, If
one sells wheat, we cannot assume that we are entitled to receive the storage and insurance
costs.

If the asset were of a financial nature or a commodity held for investment such as gold,
then this asset could be sold and storage and insurance costs could be saved. These assets
produce an exact no arbitrage price, Ft = (St + c+ s)(1 + r).

However, returning to the case of wheat, if we consider the case when St(1 + r) > Ft we
do have an arbitrage opportunity.
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Position Initial Payoff at t Terminal Payoff at T
Buy futures 0 ST − Ft

Invest St −St +St(1 + r)
Sell wheat +St −ST

Total 0 St(1 + r)− Ft

Since St(1 + r)− Ft > 0 by assumption, we have found an arbitrage opportunity. Thus,
combining the two equations we obtain (??).
(b) To check if Ft is arbitrage free at $1500 we need to see if it is within the bounds obtained
in part (a). That is:

St(1 + r) ≤ Ft ≤ (St + c+ s)(1 + r) (2)

Plugging in the appropriate values, we get:

1470(1 + 1.05) ≤ 1500 ≤ (1470 + 100/4 + 150/4)(1 + 0.05) (3)

This violates the above inequality, as 1470(1.05) = 1, 543.50 > 1500. In order to construct
the a ppropriate arbitrage strategy, we would follow the second strategy outlined in part (a).
(c) The profit p is equal to:

p = 1, 543.50− 1, 500 = $43.50.

Problem 4

(a) As all markets are liquid and there are no transaction costs or dividends, the forward
price is uniquely determined by lack of arbitrage. That is:

Ft = St(1 + r)(T − t) = 1.05St = $105 (4)

Here, we note that the delivery, in years, is equal to: T − t = 1.
(b) If the futures price is equal to 101, we can create an arbitrage portfolio in the following
manner:

Position Initial Payoff at t Terminal Payoff at T
Long forward 0 ST − $101
Short stock +$100 -$ST

Invest at risk - free rate -$I00 +$105
Total $0 $4

As the initial investment is 0 and the payoff is always positive we have found an arbitrage
portfolio.

Alternatively, we can include the traded options to find another arbitrage portfolio in the
following way:

Position Initial Payoff at t Terminal Payoff at T
Short stock +$l00 −ST

Long Call -$3.0 max(ST − 100, 0)
Short Put +$3.5 min(ST − 100, 0)
Invest PV(100) at risk - free rate - 100

1.05
$100

Total $5.26 $0
In this case, we can see that we receive a positive premium initially, and always have a

terminal payoff of zero. Therefore, this is also an arbitrage opportunity.
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Problem 5

(a) An investor expecting high upcoming volatility could profit by buying a combination of
a call and a put. If the strike of the call and the put is the same, this is called a straddle
position. If the strike of the put is less than the strike of the call, then this strategy is called
a strangle. The payoff diagrams for the straddle and strangle, respectively, are as follows:
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(b) An investor expecting low upcoming volatility could profit by selling 2 at-the-money calls
and buying calls at K − ǫ and K + ǫ respectively. This strategy is often referred to as a
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butterfly. The resulting payoff diagram would be:
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(c) An investor expecting a potential rare event negatively affecting the stock price, could
express this position cheaply by buying a deep out-of-the-money put. The payoff diagram
for this strategy would be:
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Problem 6

A spread position is entered by buying and selling equal number of options of the same class
on the same underlying security but with different strike prices. If a spread is designed to
profit from a rise in the price of the underlying security, it is a bull spread. To be more
specific, a bull call spread is constructed by buying a call option with a low exercise price
(K), and selling another call option with a higher exercise price. For example, take an
arbitrary stock X currently priced at $100. Assume that the price of a call option with strike
100 is 3, and the price of a call option with strike 115 is 1. Then the payoff function of a
portfolio consisting of longing a call with strike 100 and shorting a call with strike 115 at
expiration is:
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1 K1=100;

2 K2=115;

3 S=100:1:120

4 payoff= max(S-K1 ,0)-max(S-K2 ,0);

5 plot(S,payoff)
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2 Chapter 2: A Primer on the Arbitrage Theorem

Problem 1

(a) In the risk-neutral martingale measure, we know that E(St+∆) = (1 + r∆)St. Writing
out the expectation in both states, we have:

(1 + r∆)St = uP ∗ + d(1− P ∗) (5)

Solving for P ∗ we get:

P ∗ = (1+r∆)St−d
u−d

(6)

= 280(1+0.05(0.25))−260
320−260

(7)

= 0.3917 (8)

(b)

Ct =
1

1+r∆
EP ∗

[Ct+∆] (9)

= 1
1+r∆

EP ∗
[(St+∆ −K)+] (10)

= 1
1+r∆

(320− 280)P ∗ − 0(1− P ∗) (11)

Solving for Ct we get:
Ct = 15.47 (12)

(c) In order to normalize by St, we consider the following equations for our two assets:

1 = (1 + r∆)φu + (1 + r∆)φd (13)

St = Su
t+∆φu + Sd

t+∆φd (14)

In order to normalize, we divide the second equation by St:

1 = (1 + r∆)φu + (1 + r∆)φd (15)

1 =
Su
t+∆

St
φu +

Sd
t+∆

St
φd (16)

Next, substituting the values of r, ∆ and S, we have:

1 = 1.0125φu + 1.0125φd (17)

1 = 320
280
φu +

260
280
φd (18)

Solving the system of equations, we can see that φu = 0.3868 and φd = 0.6008.
Having φu and φd, we can then solve for the new normalized probabilities:

pu = (1 + r∆)φu (19)

= 1.0125(0.3868) = 0.3917 (20)

pd = (1 + r∆)φd (21)

= 1.0125(0.6008) = 0.6083 (22)
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It should be noted that these probabilities are the same as those computed in part a.
(d) As the discounted stock price is a martingale under the risk - neutral measure calculated
by the St normalization, the martingale condition is as follows:

E(
St

1 + r∆
|It) = 1

1+r∆
{puSu

t+∆ + pdSd
t+∆} (23)

= 1
1.0125

{0.3917(320) + 0.6083(260)} (24)

= 280 (25)

= St (26)

(e) As noted earlier, the probabilities in part c are equal to those obtained in part a. There-
fore, the call price remains unchanged, that is:

Ct = 15.47 (27)

(f) No, an option’s price is dependent on the martingale measure, or set of risk neutral
probabilities chosen. As an example, if we increase the price in the up state, then the risk
neutral probabilites would change, as would the value of the option. An option’s price,
however, is independent of the numeraire or normalization used to compute the risk neutral
probabilities.
(g) Both probability measures are constructed such that the asset is a martingale using a
particular normalization. As a result, the option price is the same. As stated above, the
option price is independent of the normalization used to compute the martingale measure.
(h) The risk premium incorporated in the call price will satisfy:

(1 + r + risk premium) = Etrue[
C(t+ 1)

C(t)
] (28)

This risk premium may be extremely difficult to calculate and is generally not used in the
real world. That is, computing the probabilities under the true or empirical measure may be
impossible. However, the choice of the risk neutral measure instead of the empirical measure
overcomes this potential problem. In markets where a risk neutral probability measure does
not exist, such as incomplete markets, then we may need to estimate the risk premium and
use the empirical measure.

Problem 2

(a) The system of equations that governs asset A, B and C is:





124 71
83 61
92 160



×
[

φ1

φ2

]

=





A0 = 100
B0 = 70
C0 = 180



 (29)

Solving this system of equations, yield:

[

φ1

φ2

]

=

[

0.1945
1.0072

]

(30)
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Next, remembering that a system is arbitrage free if there exists a solution for φ1, φ2,
such that:

1.) φ1 > 0, φ2 > 0
2.) φ1 + φ2 =

1
1+r∆

Since condition 1 is satisfied as φ1 and φ2 are positive, and r is not specified, we conclude
that the system would be arbitrage free should r be chosen to satisfy condition 2. If r is
chosen differently, however, then the system would not be arbitrage-free.
(b) If there is no solution to the system of equations such that φ1 > 0 and φ2 > 0 then
there is at least one negative state price. In this case, one would buy the asset which has a
non-positive price and be assured of a positive payoff in the future.
(c) There are infinitely many choices of φ1 and φ2 such that the system is arbitrage free. For
example, in the case where φ1 = φ2 =

1
2
, we would have:





A0

B0

C0



 =





97.5
72.0
126.0



 (31)

(d) The future’s price is set such that the value of the contract, F0, is worth zero today, that
is:

0 = φ1

1+r∆
(83−K) + (1− φ1

1+r∆
)(61−K) (32)

0 = p(83−K) + (1− p)(61−K) (33)

Solving for K assuming for simplicity that r = 0, yields:

K = 22φ1 + 61 (34)

In the case where φ1 = φ2 =
1
2
as before, we get K = 72.

(e) As the put option on C expires out-of-the-money in state 2, we are only concerned with
the probability and payoff in state 1, where it expires in-the-money and will have payoff
(125 − 92). The options price will the simply be the discounted payoff multiplied by the
probability of state 1, that is:

P0 = (125− 92)φ1 = 33φ1 (35)

In the case where φ1 =
1
2
, we have P0 = 16.5.

Problem 3

(a) The following three equation linear system captures the arbitrage free requirements of
the three asset universe:





Su
t+∆ Sd

t+∆

Cu
t+∆ Cd

t+∆

1 1



×
[

φ1

φ2

]

=





St

Ct
1

1+r



 (36)

11



(b) A two period binomial tree for St is as follows:

S

Su
t+∆

Sd
t+∆

Suu
t+2∆

Sud
t+2∆

Sdu
t+2∆

Sdd
t+2∆

(c) The three systems of equations, each consisting of three assets, are as follows: Beginning
at t = 0, we have:





Su
t+∆ Sd

t+∆

Cu
t+∆ Cd

t+∆

1 1



×
[

φ1

φ2

]

=





St

Ct
1

1+r



 (37)

Next, at t = 1, starting at Su
t+∆, we have:





Suu
t+2∆ Sud

t+2∆

Cuu
t+2∆ Cud

t+2∆

1 1



×
[

φu
1

φu
2

]

=





Su
t+2∆

Cu
t+2∆
1

1+r



 (38)

Finally, at t = 1, starting at Sd
t+∆, we have:





Sdu
t+2∆ Sdd

t+2∆

Cdu
t+2∆ Cdd

t+2∆

1 1



×
[

φd
1

φd
2

]

=





Sd
t+2∆

Cd
t+2∆
1

1+r



 (39)

(d) Letting τ be the terminal time of the system. In order for the system to be consistent, all
terminal nodes must be arbitrage free. This will by necessity make the intermediate nodes
on the tree arbitrage - free.

A state price, φt, can be interpreted as the discounted risk - neutral probability of that
state occurring, φt =

pi(0,t)
B(0,t)

. Here, pi(0, t) denotes the risk - neutral probability that state i

occurs at time t conditional on some initial node. B(t) represents the discount factor until
time t, that is: B(t) = 1

(1+r)t
> 0.

Since the terminal nodes are arbitrage - free, by assumption, the values of φi(T ) satisfy
the following properties:

φi(τ) > 0 (40)

pi(0, τ) > 0 (41)
∑

φi(τ) = 1
B(τ)

(42)

We still need to show that φt also satisfies the two properties above for 0 ¡ t ¡ T and
all states i which can occur at time t. As the tree is not recombining, the number of states
depends on t. At time t, the sum extends from i = 1 to i = 2t.
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Since pi(0, τ) > 0 for all i, we know that all intermediate nodes are reachable from the
initial node. If this was not true and an intermediate node was inaccessible, pi(0, t) = 0, then
there would also exist a terminal node with pi(0, τ) = 0, which would contract the properties
above. Therefore, we assert that φi(t) > 0 for all i and for all t.

The second property requires the sum of the state prices across the number of states be
equal the discount factor for a given t. This assertion follows from

∑

pi(0, t) = 1 (43)

B(t)
∑

φi(t) = 1 (44)

Therefore, we clearly have:
∑

φi(t) =
1

B(t)
(45)

As a result, we observe that the sum of the prices across all states at a given time t is
equal to the discount factor. Consequently, all intermediate nodes are free of arbitrage and
the system of equations is internally consistent.

Problem 4

(a) In order to find the annualized volatility, we can use the given probability of an up
movement. That is, we know that the multiplicative up movement should approximate the
up move in the case of lognormal volatility, as shown below:

uS = Seσ
√
∆ (46)

Substituting ∆ = 1
12

we can solve for σ:

σ =
log(u)√

∆
= 0.48 (47)

(b) The following tree shows the 4 period binomial tree for the option in general. We note
that u and d are specified such that the tree is recombining.
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S

dS

uS

u2S

S

d2S

u3S

uS

dS

d3S

d4S

d2S

S

u2S

u4S

For example, if we set S0 = 50 we get:

50

43.48

57.50

66.13

50

37.80

76.04

57.50

43.48

32.88

28.59

37.80

50

66.13

87.45
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If we consider a call with a strike of K = 50, we get the following tree for the call price:

5.6

9.82

1.76

16.54

3.69

0

26.25

7.71

0

0

0

0

0

16.13

37.45

(c) The arbitrage price of the call at time t = 0 is the value on the initial node in the above
call tree, that is C0 = $5.60.

Problem 5

(a) First, we need to compute the up and down multipliers such that we match the given
volatility, keeping mind that each time period is one month. This gives:

u = e0.3
√

1
12 = 1.09 (48)

Conversely, d = 1
u
= 0.917.

Next, we consider the tree for the stock, which is:

102

93.54

111.23

121.30

102

85.78

132.26

111.23

93.54

78.66
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Given that K = 120, the tree for the call option becomes:

1.53

0

3.06

6.135

0

0

12.26

0

0

0

This can be found by iterating backward through the tree, beginning at option expiration.
In order to construct a portfolio that replicates the option, we do the following at each

time step:
Time 0
Position Portfolio Value
Borrow at the risk - free rate -$16.113
Long 0.173 shares $17.646
Total Value $1.53

Time 1 At t = 1, if the price move was down, the portfolio becomes worthless and no
action is required until expiration. If the price move was up, the portfolio value increases
to $3.06. In order to continue replicating the option we need to adjust the portfolio in the
following way:

Position Portfolio Value
Borrow at the risk - free rate -$32.279
Long 0.3178 shares $35.348
Total Value $3.06

Time 2 At t = 2, if the price move was down, again the portfolio becomes worthless and
no action is required until expiration. If the price move was up, the portfolio value increases
to $6.135. In order to continue replicating the option we need to re-balance in the following
way:

Position Portfolio Value
Borrow at the risk - free rate -$-64.5754
Long 0.583 shares $70.7116
Total Value $6.135

Time 3 At t = 3, if the price move was down, the portfolio is zero matching the payoff
of the option. If the price move was up, the portfolio value increases to $12.26, which also
matches the options payoff. Therefore, we have replicated the options payoff in all states
with a dynamic hedging strategy.
(b) The portfolio constructed above replicates the payoff of the option in every future state.
As a result, lack of arbitrage requires that the price of the option matches the price of the
replicating portfolio. Therefore, the price of the call must equal the initial value of the
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replicating portfolio, $1.53.
(c) To hedge the position one must follow the steps detailed in part a, the only distinction
being that each position should be multiplied by 100 to hedge the portfolio of 100 calls. For
example, at t = 0 we would:

Position Portfolio Value
Borrow at the risk - free rate -$1611.33
Long 17.3 shares $1764.6
Total Value $153.27

Continuing along the tree as in part a, we can build our dynamic hedge.
(d) If the call traded at $5, we would sell the call and buy the replicating portfolio for the
cost of $1.53. As the payoff’s are the same, this would result in a risk-free profit of $3.47.

Problem 6

(a) If µ = r, then the discounted expected value of St+∆ must be equal to St. That is:

Ep[St+∆|St] = St(1 + r) (49)

Further, we know that:
St+∆ = St + rSt + σStǫt (50)

Since ǫ takes on only values of 1 and -1, we can re-write this as:

Ep[St+∆|St] = St + rSt + St{σp− σ(1− p)} (51)

Plugging in the right hand side of (??) we get:

St(1 + r) = St + rSt + St{σp− σ(1− p)} (52)

0 = σp− σ(1− p) (53)

2σp = σ (54)

Therefore, p = 1
2
.

(b) No, if p = 1
3
then the discounted stock price is not a martingale as we found in part a

that this only occurred when p = 1
2
.

This can be verified by plugging in p = 1
3
into the expectation for Ep[St+∆|St] as follows:

Ep[St+∆|St] = St + rSt + St{
1

3
σ − (1− 1

3
)σ} (55)

(c) With the drift including a risk premium, the stock price no longer is a martingale under
the risk - neutral measure. Hence p represents the physical, empirical, statistical, or true
measure. Correspondingly, ǫ would represent the volatility under the same physical measure.
(d) We can only determine the value of p under the physical measure using statistical tech-
niques. It cannot be calculated using a replication argument as in the case of the risk-neutral
measure. Instead, we would need to infer probabilities from observed stock prices.
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Problem 7

(a) We want to choose ∆ so that there are 5 evenly spaced time intervals. Since there are

200 days in the interval, we have: ∆ =
200
5

365
, or 40 days.

(b) We want annualized volatility to equal 12%. Therefore:

u = e0.12
√

40
365 (56)

= 1.0405 (57)

We would then set d = 1
u
= 0.9611.

(c) The implied probability of an up move can be computed as:

p = 1+r∆−d
u−d

(58)

= 1+0.0066−0.9611
1.0405−0.9611

(59)

= 0.5727 (60)

(d) The tree for the stock prices can be found by multiplying by u and d, at each of the 5
time steps. This leads to the following tree:

100

104.0525

96.1054

108.2692

100

92.3624

112.6567

104.0525

96.1054

88.7652

85.3081

92.3624

100

108.2692

117.2221

81.9857

88.7652

96.1054

104.0525

112.6567

121.9725

(e) In order to compute the call values at each node, we need to iterate backwards through
the tree. At the last time step, t = 5, the value of the option is simply the call payoff,
(S −K)+.

Then at previous time steps we can price each node using p and the values of St in the
next time period. For example, at time t = 4, for the upper most node we have:
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C = 21.9725p−12.6567(1−p)
1+r∆

(61)

= 17.8743 (62)

All additional nodes can be obtained using this methodology. This leads to the following
tree of call prices:

5.4703

2.5937

7.6793

10.5113

4.0018

0.7464

13.9570

6.0548

1.3118

0

0

0

2.3057

8.9215

17.8743

0

0

0

4.0525

12.6567

21.9725

Problem 8

First, we can find u and d in order to match the volatility on the asset.

u = eσ
√
∆ = e(0.10)(1) = 1.1052 (63)

In order to make the tree recombining, we set d = 1
u
= 0.9048.
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This gives the following tree of asset prices:

50

55.2585

45.2418

61.0701

50

40.9365

67.4929

55.2585

45.2418

37.0409

The risk-neutral probability of an up movement, pu can be computed as:

pu =
(1 + r∆)− d

u− d
=

(1.01− 0.9048)

(1.1052− 0.9048)
= 0.5249 (64)

Now we can solve the binomial tree backward by iterating backward from the digital
option expiration:

0.5215

0.759

0.2701

0.99

0.5197

0

1

1

0

0

Therefore, the price of the digital option today is $0.5215.
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Problem 9

1 S=50;

2 K=55;

3 r=0.01;

4 sigma =0.1;

5 T=3;

6 n=3;

7 delta=T/n;

8 u=exp(sigma*delta);

9 d=1/u;

10 p=((1+r*delta)-d)/(u-d);

11 S1=zeros(1,n+1);

12 C=zeros(n+1,n+1);

13 for i=1:n+1

14 S1(1,i)=S*power(u,i-1)*power(d,n+1-i);

15 end

16 for i=1:n+1

17 if(S1(1,i) >55)

18 C(n+1,i)= 1;

19 end

20 end

21 for i=n:-1:1

22 for j=1:1:i

23 C(i,j)=(C(i+1,j)*(1-p)+C(i+1,j+1)*p)*exp(-r*delta);

24 end

25 end

26 C(1,1)
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