Chapter 1

Probability and Distributions

1.2.1 Part (c): $C_{1} \cap C_{2}=\{(x, y): 1<x<2,1<y<2\}$.
1.2.3 $C_{1} \cap C_{2}=\{$ mary,mray $\}$.
1.2.6 $\lim _{k \rightarrow \infty} C_{k}=\{x: 0<x<3\}$. Note: neither the number 0 nor the number 3 is in any of the sets $C_{k}, k=1,2,3, \ldots$
1.2.7 Part (b): $\lim _{k \rightarrow \infty} C_{k}=\phi$, because no point is in all the sets $C_{k}, k=1,2,3, \ldots$
1.2.9 Because $f(x)=0$ when $1 \leq x<10$,

$$
Q\left(C_{3}\right)=\int_{0}^{10} f(x) d x=\int_{0}^{1} 6 x(1-x) d x=1
$$

1.2.11 Part (c): Draw the region C carefully, noting that $x<2 / 3$ because $3 x / 2<1$. Thus

$$
Q(C)=\int_{0}^{2 / 3}\left[\int_{x / 2}^{3 x / 2} d y\right] d x=\int_{0}^{2 / 3} x d x=2 / 9
$$

1.2.14 Note that

$$
25=Q(\mathcal{C})=Q\left(C_{1}\right)+Q\left(C_{2}\right)-Q\left(C_{1} \cap C_{2}\right)=19+16-Q\left(C_{1} \cap C_{2}\right)
$$

Hence, $Q\left(C_{1} \cap C_{2}\right)=10$.
1.2.15 By studying a Venn diagram with 3 intersecting sets, it should be true that

$$
11 \geq 8+6+5-3-2-1=13
$$

It is not, and the accuracy of the report should be questioned.
1.3.3

$$
P(\mathcal{C})=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=\frac{1 / 2}{1-(1 / 2)}=1
$$

1.3.6

$$
P(\mathcal{C})=\int_{-\infty}^{\infty} e^{-|x|} d x=\int_{-\infty}^{0} e^{x} d x+\int_{0}^{\infty} e^{-x} d x=2 \neq 1
$$

We must multiply by $1 / 2$.
1.3.8

$$
P\left(C_{1}^{c} \cup C_{2}^{c}\right)=P\left[\left(C_{1} \cap C_{2}\right)^{c}\right]=P(\mathcal{C})=1
$$

because $C_{1} \cap C_{2}=\phi$ and $\phi^{c}=\mathcal{C}$.
1.3.11 The probability that he does not win a prize is

$$
\binom{990}{5} /\binom{1000}{5}
$$

1.3.13 Part (a): We must have 3 even or one even, 2 odd to have an even sum. Hence, the answer is

$$
\frac{\binom{10}{3}\binom{10}{0}}{\binom{20}{3}}+\frac{\binom{10}{1}\binom{10}{2}}{\binom{20}{3}} .
$$

1.3.14 There are 5 mutual exclusive ways this can happen: two "ones", two "twos", two "threes", two "reds", two "blues." The sum of the corresponding probabilities is

$$
\frac{\binom{2}{2}\binom{6}{0}+\binom{2}{2}\binom{6}{0}+\binom{2}{2}\binom{6}{0}+\binom{5}{2}\binom{3}{0}+\binom{3}{2}\binom{5}{0}}{\binom{8}{2}}
$$

1.3.15
(a) $1-\frac{\binom{48}{5}\binom{2}{0}}{\binom{50}{5}}$
(b) $1-\frac{\binom{48}{n}\binom{2}{0}}{\binom{50}{n}} \geq \frac{1}{2}$, Solve for n .
1.3.20 Choose an integer $n_{0}>\max \left\{a^{-1},(1-a)^{-1}\right\}$. Then $\{a\}=\cap_{n=n_{0}}^{\infty}\left(a-\frac{1}{n}, a+\frac{1}{n}\right)$. Hence by (1.3.10),

$$
P(\{a\})=\lim _{n \rightarrow \infty} P\left[\left(a-\frac{1}{n}, a+\frac{1}{n}\right)\right]=\frac{2}{n}=0 .
$$

1.3.21 Choose n_{0} such that $0<a-\left(1 / n_{0}\right)<a<a+\left(1 / n_{0}\right)<1$. Let $A_{n}=$ $(a-(1 / n), a+(1 / n))$, for $n \geq n_{0}$. Since $\{a\}=\cap_{n=n_{0}}^{\infty} A_{n}$, we have

$$
P(\{a\})=P\left(\cap_{n=n_{0}}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)=\lim _{n \rightarrow \infty} \frac{2}{n}=0
$$

1.4.2

$$
P\left[\left(C_{1} \cap C_{2} \cap C_{3}\right) \cap C_{4}\right]=P\left[C_{4} \mid C_{1} \cap C_{2} \cap C_{3}\right] P\left(C_{1} \cap C_{2} \cap C_{3}\right),
$$

and so forth. That is, write the last factor as

$$
P\left[\left(C_{1} \cap C_{2}\right) \cap C_{3}\right]=P\left[C_{3} \mid C_{1} \cap C_{2}\right] P\left(C_{1} \cap C_{2}\right)
$$

1.4.5

$$
\frac{\left[\binom{4}{3}\binom{48}{10}+\binom{4}{4}\binom{48}{9}\right] /\binom{52}{13}}{\left[\binom{4}{2}\binom{48}{11}+\binom{4}{3}\binom{48}{10}+\binom{4}{4}\binom{48}{9}\right] /\binom{52}{13}}
$$

1.4.10

$$
P\left(C_{1} \mid C\right)=\frac{(2 / 3)(3 / 10)}{(2 / 3)(3 / 10)+(1 / 3)(8 / 10)}=\frac{3}{7}<\frac{2}{3}=P\left(C_{1}\right) .
$$

1.4.12 Part (c):

$$
\begin{aligned}
P\left(C_{1} \cup C_{2}^{c}\right) & =1-P\left[\left(C_{1} \cup C_{2}^{c}\right)^{c}\right]=1-P\left(C_{1}^{*} \cap C_{2}\right) \\
& =1-(0.4)(0.3)=0.88
\end{aligned}
$$

1.4.14 Part (d):

$$
1-(0.3)^{2}(0.1)(0.6)
$$

1.4.16 $1-P(T T)=1-(1 / 2)(1 / 2)=3 / 4$, assuming independence and that H and T are equilikely.
1.4.19 Let C be the complement of the event; i.e., C equals at most 3 draws to get the first spade.
(a) $P(C)=\frac{1}{4}+\frac{3}{4} \frac{1}{4}+\left(\frac{3}{4}\right)^{2} \frac{1}{4}$.
(b) $P(C)=\frac{1}{4}+\frac{13}{51} \frac{39}{52}+\frac{13}{50} \frac{38}{51} \frac{39}{52}$.
1.4.22 The probability that A wins is: $1 / 6+5 / 6 \times 4 / 6 \times 3 / 6+5 / 6 \times 4 / 6 \times 3 / 6 \times 2 / 6 \times 5 / 6$.
1.4.26 Let Y denote the bulb is yellow and let T_{1} and T_{2} denote bags of the first and second types, respectively.
(a)

$$
P(Y)=P\left(Y \mid T_{1}\right) P\left(T_{1}\right)+P\left(Y \mid T_{2}\right) P\left(T_{2}\right)=\frac{20}{25} .6+\frac{10}{25} .4
$$

(b)

$$
P\left(T_{1} \mid Y\right)=\frac{P\left(Y \mid T_{1}\right) P\left(T_{1}\right)}{P(Y)}
$$

1.4.30 Suppose without loss of generality that the prize is behind curtain 1. Condition on the event that the contestant switches. If the contestant chooses curtain 2 then she wins, (In this case Monte cannot choose curtain 1, so he must choose curtain 3 and, hence, the contestant switches to curtain 1). Likewise, in the case the contestant chooses curtain 3. If the contestant chooses curtain 1 , she loses. Therefore the conditional probability that she wins is $\frac{2}{3}$.
1.4.31 (1) The probability is $1-\left(\frac{5}{6}\right)^{4}$.
(2) The probability is $1-\left[\left(\frac{5}{6}\right)^{2}+\frac{10}{36}\right]^{24}$.
1.5.2 Part (a):

$$
c\left[(2 / 3)+(2 / 3)^{2}+(2 / 3)^{3}+\cdots\right]=\frac{c(2 / 3)}{1-(2 / 3)}=2 c=1
$$

so $c=1 / 2$.
1.5.5 Part (a):

$$
p(x)= \begin{cases}\frac{\binom{13}{x}\binom{39}{5-x}}{\binom{52}{5}} & x=0,1, \ldots, 5 \\ 0 & \text { elsewhere } .\end{cases}
$$

1.5.9 Part (b):

$$
\sum_{x=1}^{50} x / 5050=\frac{50(51)}{2(5050)}=\frac{51}{202}
$$

1.5.10 For Part (c): Let $C_{n}=\{X \leq n\}$. Then $C_{n} \subset C_{n+1}$ and $\cup_{n} C_{n}=R$. Hence, $\lim _{n \rightarrow \infty} F(n)=1$. Let $\epsilon>0$ be given. Choose n_{0} such that $n \geq n_{0}$ implies $1-F(n)<\epsilon$. Then if $x \geq n_{0}, 1-F(x) \leq 1-F\left(n_{0}\right)<\epsilon$.
1.6.2 Part (a):

$$
p(x)=\frac{\binom{9}{x-1}}{\binom{10}{x-1}} \frac{1}{11-x}=\frac{1}{10}, \quad x=1,2, \ldots 10
$$

1.6.3

$$
\begin{aligned}
& \text { (a) } p(x)=\left(\frac{5}{6}\right)^{x-1}\left(\frac{1}{6}\right), \quad x=1,2,3, \ldots \\
& \text { (b) } \sum_{x=1}^{\infty}\left(\frac{5}{6}\right)^{x-1}\left(\frac{1}{6}\right)=\frac{1 / 6}{1-(25 / 36)}=\frac{6}{11} .
\end{aligned}
$$

1.6.5 Here are R functions which compute the pmf and the cdf:

```
p165 <- function(){
    x = 0:5
    p165 = choose(20,x)*choose(80,5-x)/choose(100,5)
    return(p165)
}
cdf165 <- function(){
    pm <- p165(); dm = -1:6; dx = c(dm,dm); dy = c(rep(0,8),rep(1,8))
    plot(dy~dx,pch=" ",xlab="x",ylab=expression(F(x)));segments(-1,0,0,0)
    ct = 0; cx = -1
```

```
        for(j in 1:6){
            ct = ct + pm[j]; cx = cx + 1
            segments(cx,ct,cx+1,ct)
        }
}
```

1.6.8 $\mathcal{D}_{y}=\left\{1,2^{3}, 3^{3}, \ldots\right\}$. The pmf of Y is

$$
p(y)=\left(\frac{1}{2}\right)^{y^{1 / 3}}, \quad y \in \mathcal{D}_{y}
$$

1.7.1 If $\sqrt{x}<10$ then

$$
F(x)=P\left[X(c)=c^{2} \leq x\right]=P(c \leq \sqrt{x})=\int_{0}^{\sqrt{x}} \frac{1}{10} d z=\frac{\sqrt{x}}{10} .
$$

Thus

$$
f(x)=F^{\prime}(x)= \begin{cases}\frac{1}{20 \sqrt{x}} & 0<x<100 \\ 0 & \text { elsewhere }\end{cases}
$$

1.7.2

$$
C_{2} \subset C_{1}^{c} \Rightarrow P\left(C_{2}\right) \leq P\left(C_{1}^{c}\right)=1-(3 / 8)=5 / 8
$$

1.7.4 Among other characteristics,

$$
\int_{-\infty}^{\infty} \frac{1}{\pi\left(1+x^{2}\right)} d x=\left.\frac{1}{\pi} \arctan x\right|_{-\infty} ^{\infty}=\frac{1}{\pi}\left[\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right]=1
$$

1.7.6 Part (b):

$$
\begin{aligned}
P\left(X^{2}<9\right) & =P(-3<X<3)=\int_{-2}^{3} \frac{x+2}{19} d x \\
& =\frac{1}{18}\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{3}=\frac{1}{18}\left[\frac{21}{2}-(-2)\right]=\frac{25}{36}
\end{aligned}
$$

1.7.8 Part (c):

$$
f^{\prime}(x)=x e^{-x}-\frac{1}{2} x^{2} e^{-x}=\frac{1}{2} x e^{-x}(2-x)=0
$$

hence, $x=2$ is the mode because it maximizes $f(x)$.
1.7.9 Part (b):

$$
\int_{0}^{m} 3 x^{2} d x=\frac{1}{2}
$$

hence, $m^{3}=2^{-1}$ and $m=(1 / 2)^{1 / 3}$.
1.7.10

$$
\int_{0}^{\xi_{0.2}} 4 x^{3} d x=0.2:
$$

hence, $\xi_{0.2}^{4}=0.2$ and $\xi_{0.2}=0.2^{1 / 4}$.
1.7.13 $x=1$ is the mode because for $0<x<\infty$ because

$$
\begin{aligned}
f(x) & =F^{\prime}(x)=e^{-x}-e^{-x}+x e^{-x}=x e^{-x} \\
f^{\prime}(x) & =-x e^{-x}+e^{-x}=0
\end{aligned}
$$

and $f^{\prime}(1)=0$.
1.7.16 Since $\Delta>0$

$$
X>z \Rightarrow Y=X+\Delta>z
$$

Hence, $P(X>z) \leq P(Y>z)$.
1.7.19 Since $f(x)$ is symmetric about $0, \xi_{.25}<0$. So we need to solve,

$$
\int_{-2}^{\xi .25}\left(-\frac{x}{4}\right) d x=.25 .
$$

The solution is $\xi_{.25}=-\sqrt{2}$.
1.7.22 For $0<y<27$,

$$
\begin{aligned}
x & =y^{1 / 3}, \quad \frac{d x}{d y}=\frac{1}{3} y^{-2 / 3} \\
g(y)= & =\frac{1}{3 y^{2 / 3}} \frac{y^{2 / 3}}{9}=\frac{1}{27} .
\end{aligned}
$$

1.7.24

$$
\begin{aligned}
f(x) & =\frac{1}{\pi}, \quad \frac{-\pi}{2}<x<\frac{\pi}{2} . \\
x & =\arctan y, \quad \frac{d x}{d y}=\frac{1}{1+y^{2}}, \quad-\infty<y<\infty . \\
g(y) & =\frac{1}{\pi} \frac{1}{1+y^{2}}, \quad-\infty<y<\infty .
\end{aligned}
$$

1.7.25

$$
\begin{aligned}
G(y) & =P\left(-2 \log X^{4} \leq y\right)=P\left(X \geq e^{-y / 8}\right)=\int_{e^{-y / 8}}^{1} 4 x^{3} d x=1-e^{-y / 2}, \quad 0<y<\infty \\
g(y) & =G^{\prime}(y)= \begin{cases}e^{-y / 2} & 0<y<\infty \\
0 & \text { elsewhere }\end{cases}
\end{aligned}
$$

1.7.26

$$
\begin{aligned}
G(y) & =P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& = \begin{cases}\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{3} d x=\frac{2 \sqrt{y}}{3} & 0 \leq y<1 \\
\int_{-1}^{\sqrt{y}} \frac{1}{3} d x=\frac{\sqrt{y}}{3}+\frac{1}{3} & 1 \leq y<4\end{cases} \\
g(y) & = \begin{cases}\frac{1}{3 \sqrt{y}} & 0 \leq y<1 \\
\frac{1}{6 \sqrt{y}} & 1 \leq y<4 \\
0 & \text { elsewhere. }\end{cases}
\end{aligned}
$$

1.8.5

$$
E(1 / X)=\sum_{x=51}^{100} \frac{1}{x} \frac{1}{50} .
$$

The latter sum is bounded by the two integrals

$$
\int_{51}^{101} \frac{1}{x} d x \text { and } \int_{50}^{100} \frac{1}{x} d x
$$

An appropriate approximation might be

$$
\frac{1}{50} \int_{50.5}^{101.5} \frac{1}{x} d x=\frac{1}{50}(\log 100.5-\log 50.5) .
$$

1.8.7

$$
E[X(1-X)]=\int_{0}^{1} x(1-x) 3 x^{2} d x .
$$

1.8.9 When $1<y<\infty$

$$
\begin{aligned}
G(y) & =P(1 / X \leq y)=P(X \geq 1 / y)=\int_{1 / y}^{1} 2 x d x=1-\frac{1}{y^{2}} \\
g(y) & =\frac{2}{y^{3}} \\
E(Y) & =\int_{1}^{\infty} y \frac{2}{y^{3}} d y=2, \text { which equals } \int_{0}^{1}(1 / x) 2 x d x .
\end{aligned}
$$

1.8.11 The expectation of X does not exist because

$$
E(|X|)=\frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} d x=\frac{1}{\pi} \int_{1}^{\infty} \frac{1}{u} d u=\infty
$$

where the change of variable $u=1+x^{2}$ was used.
1.8.1 Here is the pmf of G :

$-p_{0}+2$	$-p_{0}+5$	$-p_{0}+8$
$\frac{\binom{3}{2}}{\binom{5}{2}}$	$\frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}}$	$\left.\frac{(2}{2}\right)$
$\binom{5}{2}$		

It follows that $E(G)=-p_{0}+4.4$; so for a fair game take $p_{0}=\$ 4.40$. Here is an R function which simulates the game.

```
game1814 <- function(p0,nsims){
    collG = c()
    for(i in 1:nsims){
        p = sample(c(1,1,1,4,4),2)
        collG = c(collG,-p0 + sum(p))
    }
    game1814 = mean(collG)
    return(game1814)
}
```

1.9.2

$$
M(t)=\sum_{x=1}^{\infty}\left(\frac{e^{t}}{2}\right)^{x}=\frac{e^{t} / 2}{1-\left(e^{t} / 2\right)}, \quad e^{t} / 2<1
$$

Find $E(X)=M^{\prime}(0)$ and $\operatorname{Var}(X)=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}$.
1.9.4

$$
0 \leq \operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}
$$

1.9.6

$$
E\left[\left(\frac{X-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sigma^{2}} \sigma^{2}=1
$$

1.9.8

$$
\begin{aligned}
K(b) & =E\left[(X-b)^{2}\right]=E\left(X^{2}\right)-2 b E(X)+b^{2} \\
K^{\prime}(b) & =-2 E(X)+2 b=0 \Rightarrow b=E(X) .
\end{aligned}
$$

1.9.11 For a continuous type random variable,

$$
\begin{aligned}
K(t) & =\int_{-\infty}^{\infty} t^{x} f(x) d x \\
K^{\prime}(t) & =\int_{-\infty}^{\infty} x t^{x-1} f(x) d x \Rightarrow K^{\prime}(1)=E(X) \\
K^{\prime \prime}(t) & =\int_{-\infty}^{\infty} x(x-1) t^{x-2} f(x) d x \Rightarrow K^{\prime \prime}(1)=E\left[X\left(X_{1}\right)\right]
\end{aligned}
$$

and so forth.
1.9 .12

$$
\begin{aligned}
3= & E(X-7) \Rightarrow E(X)=10=\mu . \\
11= & E\left[(X-7)^{2}\right]=E\left(X^{2}\right)-14 E(X)+49=E\left(X^{2}\right)-91 \\
& \Rightarrow E\left(X^{2}\right)=102 \text { and } \operatorname{var}(X)=102-100=2 . \\
15= & E\left[(X-7)^{3}\right] . \text { Expand }(X-7)^{3} \text { and continue. }
\end{aligned}
$$

1.9.16

$$
\begin{aligned}
E(X) & =0 \Rightarrow \operatorname{var}(X)=E\left(X^{2}\right)=2 p \\
E\left(X^{4}\right) & =2 p \Rightarrow \text { kurtosis }=2 p / 4 p^{2}=1 / 2 p
\end{aligned}
$$

1.9.17

$$
\begin{aligned}
\psi^{\prime}(t)= & M^{\prime}(t) / M(t) \Rightarrow \psi^{\prime}(0)=M^{\prime}(0) / M(0)=E(X) \\
\psi^{\prime \prime}(t)= & \frac{M(t) M^{\prime \prime}(t)-M^{\prime}(t) M^{\prime}(t)}{\left[M(t)^{2}\right]} \\
& \Rightarrow \psi^{\prime \prime}(0)=\frac{M(0) M^{\prime \prime}(0)-M^{\prime}(0) M^{\prime}(0)}{\left[M(0)^{2}\right]}=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}=\operatorname{var}(X)
\end{aligned}
$$

1.9 .19

$$
M(t)=(1-t)^{-3}=1+3 t+3 \cdot 4 \frac{t^{2}}{2!}+3 \cdot 4 \cdot 5 \frac{t^{3}}{3!}+\cdots
$$

Considering the coefficient of t^{r} / r ! , we have

$$
E\left(X^{r}\right)=3 \cdot 4 \cdot 5 \cdots(r+2), \quad r=1,2,3 \ldots
$$

1.9.21 Integrating the parts with $u=1-F(x), d v=d x$, we get

$$
\{[1-F(x)] x\}_{0}^{b}-\int_{0}^{b} x[-f(x)] d x=\int_{0}^{b} x f(x) d x=E(X)
$$

1.9.24

$$
\begin{aligned}
E(X) & =\int_{0}^{1} x \frac{1}{4} d x+0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}=\frac{5}{8} \\
E\left(X^{2}\right) & =\int_{0}^{1} x^{2} \frac{1}{4} d x+0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}=\frac{7}{12} \\
\operatorname{var}(X) & =\frac{7}{12}-\left(\frac{5}{8}\right)^{2}=\frac{37}{192}
\end{aligned}
$$

1.9.25

$$
E(X)=\int_{-\infty}^{\infty} x\left[c_{1} f_{1}(x)+\cdots+c_{k} f_{k}(x)\right] d x=\sum_{i=1}^{k} c_{i} \mu_{i}=\mu
$$

Because $\int_{-\infty}^{\infty}(x-\mu)^{2} f_{i}(x) d x=\sigma_{i}^{2}+\left(\mu_{i}-\mu\right)^{2}$, we have

$$
E\left[(X-\mu)^{2}\right]=\sum_{i=1}^{k} c_{i}\left[\sigma_{i}^{2}+\left(\mu_{i}-\mu\right)^{2}\right] .
$$

1.10 .2

$$
\mu=\int_{0}^{\infty} x f(x) d x \geq \int_{2 \mu}^{\infty} 2 \mu f(x) d x=2 \mu P(X>2 \mu)
$$

Thus $\frac{1}{2} \geq P(X>2 \mu)$.
1.10.5 If, in Theorem 1.10.2, we take $u(X)=\exp \{t X\}$ and $c=\exp \{t a\}$, we have

$$
P(\exp \{t X\} \geq \exp \{t a\}] \leq M(t) \exp \{-t a\}
$$

If $t>0$, the events $\exp \{t X\} \geq \exp \{t a\}$ and $X \geq a$ are equivalent. If $t<0$, the events $\exp \{t X\} \geq \exp \{t a\}$ and $X \leq a$ are equivalent.
1.10.6 We have $P(X \geq 1) \leq[1-\exp \{-2 t\}] / 2 t$ for all $0<t<\infty$, and $P(X \leq-1) \leq$ $[\exp \{2 t\}-1] / 2 t$ for all $-\infty<t<0$. Each of these bounds has the limit 0 as $t \rightarrow \infty$ and $t \rightarrow-\infty$, respectively.

Chapter 2

Multivariate Distributions

2.1.2

$$
P\left(A_{5}\right)=\frac{7}{8}-\frac{4}{8}-\frac{3}{8}+\frac{2}{8}=\frac{2}{8} .
$$

2.1.5

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty}\left[2 g\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right) / \pi \sqrt{x_{1}^{2}+x_{2}^{2}}\right] d x_{1} d x_{2} & =\int_{0}^{\infty} \int_{0}^{\pi / 2}[2 g(\rho) / \pi \rho] \rho d \theta d \rho \\
& =\int_{0}^{\infty} g(\rho) d \rho=1
\end{aligned}
$$

2.1.6 We can write the double integration as

$$
P(a<X<b, c<Y<d)=\int_{a}^{b} 2 x e^{-x^{2}} d x \cdot \int_{c}^{d} 2 y e^{-y^{2}} d y
$$

Since $a, c>0$, the one-to-one transformations $z=x^{2}$ and $w=y^{2}$, lead to the answer.
2.1.7

$$
\begin{aligned}
G(z) & =P(X+Y \leq z)=\int_{0}^{z} \int_{0}^{z-x} e^{-x-y} d y d x \\
& =\int_{0}^{z}\left[1-e^{-(z-x)}\right] e^{-x} d x=1-e^{-z}-z e^{-z} \\
g(z) & =G^{\prime}(z)= \begin{cases}z e^{-z} & 0<z<\infty \\
0 & \text { elsewhere. }\end{cases}
\end{aligned}
$$

2.1.8

$$
\begin{aligned}
G(z) & =P(X Y \leq z)=1-\int_{z}^{1} \int_{z / x}^{1} d y d x \\
& =1-\int_{z}^{1}\left(1-\frac{z}{x}\right) d x=z-z \log z \\
g(z) & =G^{\prime}(z)= \begin{cases}-\log z & 0<z<1 \\
0 & \text { elsewhere }\end{cases}
\end{aligned}
$$

Why is $-\log z>0$?
2.1.9

$$
f(x, y)= \begin{cases}\frac{\binom{13}{x}\binom{13}{y}\binom{136}{\hline 13-x-y}}{\binom{52}{13}} & x \geq 0, y \geq 0, x+y \leq 13, x \text { and } y \text { integers } \\ 0 & \text { elsewhere }\end{cases}
$$

2.1.11

$$
P\left(X_{1}+X_{2} \leq 1\right)=15 \int_{0}^{1 / 2} x_{1}^{2}\left[\int_{x_{1}}^{1-x_{1}} x_{2} d x_{2}\right] d x_{1}
$$

2.1.15

$$
\begin{aligned}
E\left[e^{t_{1} X_{1}+t_{2} X_{2}}\right] & =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} e^{t_{1} i+t_{2} j}\left(\frac{1}{2}\right)^{i+j} \\
& =\sum_{i=1}^{\infty}\left(e^{t_{1}} \frac{1}{2}\right)^{i} \sum_{j=1}^{\infty}\left(e^{t_{1}} \frac{1}{2}\right)^{j} \\
& =\left[\frac{1}{1-2^{-1} e^{t_{1}}}-1\right]\left[\frac{1}{1-2^{-1} e^{t_{2}}}-1\right]
\end{aligned}
$$

provided $t_{i}<\log 2, i=1,2$.
2.2.1

$$
p\left(y_{1}, y_{2}\right)= \begin{cases}\left(\frac{2}{3}\right)^{y_{2}}\left(\frac{1}{3}\right)^{2-y_{2}} & \left(y_{1}, y_{2}\right)=(0,0),(-1,1),(1,1),(0,2) \\ 0 & \text { elsewhere }\end{cases}
$$

2.2.2

$$
p\left(y_{1}, y_{2}\right)= \begin{cases}y_{1} / 36 & y_{1}=y_{2}, 2 y_{2}, 3 y_{2} ; y_{2}=1,2,3 \\ 0 & \text { elsewhere }\end{cases}
$$

y_{1}	1	2	3	4	6	9
$p\left(y_{1}\right)$	$1 / 36$	$4 / 36$	$6 / 36$	$4 / 36$	$12 / 36$	$9 / 36$

2.2.4 The inverse transformation is given by $x_{1}=y_{1} y_{2}$ and $x_{2}=y_{2}$ with Jacobian $J=y_{2}$. By noting what the boundaries of the space $\mathcal{S}\left(X_{1}, X_{2}\right)$ map into, it follows that the space $\mathcal{T}\left(Y_{1}, Y_{2}\right)=\left\{\left(y_{1}, y_{2}\right): 0<y_{i}<1, i=1,2\right\}$. The pdf of $\left(Y_{1}, Y_{2}\right)$ is $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=8 y_{1} y_{2}^{3}$.
2.2.5 The inverse transformation is $x_{1}=y_{1}-y_{2}$ and $x_{2}=y_{2}$ with Jacobian $J=1$. The space of $\left(Y_{1}, Y_{2}\right)$ is $\mathcal{T}=\left\{\left(y_{1}, y_{2}\right):-\infty<y_{i}<\infty, i=1,2\right\}$. Thus the joint pdf of $\left(Y_{1}, Y_{2}\right)$ is

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right)
$$

which leads to formula (2.2.1).
2.3.2
(a) $c_{1} \int_{0}^{x_{2}} x_{1} / x_{2}^{2} d x_{1}=\frac{c_{1}}{2}=1 \Rightarrow c_{1}=2$ and $c_{2}=5$.
(b) $10 x_{1} x_{2}^{2}, 0<x_{1}<x_{2}<1$; zero elsewhere
(c) $\quad \int_{1 / 4}^{1 / 2} 2 x_{1} /(5 / 8)^{2} d x=\frac{64}{25}\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{12}{25}$.
(d) $\quad \int_{1 / 4}^{1 / 2} \int_{x_{1}}^{1} 10 x_{1} x_{2}^{2} d x_{2} d x_{1}=\int_{1 / 4}^{1 / 2} \frac{10}{3} x_{1}\left(1-x_{1}^{3}\right) d x_{1}=\frac{135}{512}$.
2.3.3

$$
\begin{aligned}
f_{2}\left(x_{2}\right) & =\int_{0}^{x_{2}} 21 x_{1}^{2} x_{2}^{3} d x_{1}=7 x_{2}^{6}, 0<x_{2}<1 . \\
f_{1 \mid 2}\left(x_{1} \mid x_{2}\right) & =21 x_{1}^{2} x_{2}^{3} / 7 x_{2}^{6}=3 x_{1}^{2} / x_{2}^{3}, \quad 0<x_{1}<x_{2} . \\
E\left(X_{1} \mid x_{2}\right) & =\int_{0}^{x_{2}} x_{1}\left(3 x_{1}^{2} / x_{2}^{3}\right) d x_{1}=\frac{3}{4} x_{2} . \\
G(y) & =P\left(\frac{3}{4} X_{2} \leq y\right)=\int_{0}^{4 y / 3} 7 x_{2}^{6} d x_{2}=\left(\frac{4 y}{3}\right)^{7}, \quad 0<y<\frac{3}{4} \\
g(y) & = \begin{cases}7\left(\frac{4}{3}\right)^{7} y^{6} \quad 0<y<\frac{3}{4} \\
0 & \text { elsewhere. }\end{cases} \\
E(Y) & =\frac{73}{8} \frac{21}{4}=\frac{7}{32} . \\
\operatorname{Var}(Y) & =\frac{7}{1024} . \\
E\left(X_{1}\right) & =\frac{21}{32} . \\
\operatorname{Var}\left(X_{1}\right) & =\frac{553}{15360}>\frac{7}{1024} .
\end{aligned}
$$

2.3.8 The marginal pdf of X is

$$
f_{X}(x)=2 \int_{x}^{\infty} e^{-x} e^{-y} d y=2 e^{-2 x}, \quad 0<x<\infty
$$

Hence, the conditional pdf of Y given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{2 e^{-x} e^{-y}}{2 e^{-2 x}}=e^{-(y-x)}, \quad 0<x<y<\infty
$$

with conditional mean

$$
E(Y \mid X=x)=\int_{x}^{\infty} y e^{-(y-x)} d y=x+1, \quad x>0
$$

2.3.9 For Part (c):
$\binom{13}{x_{2}}\binom{13}{x_{3}}\binom{13}{2-x_{2}-x_{3}} /\binom{39}{2}, \quad$ where integers $x_{2}, x_{3} \geq 0$ and $x_{2}+x_{3} \leq 2$.
2.3.11
(a) $\quad f_{1}\left(x_{1}\right) f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=1 \cdot \frac{1}{x_{1}}, \quad 0<x_{2}<x_{1}<1$.
(b) $\quad \int_{1 / 2}^{1} \int_{1-x_{1}}^{x_{1}} \frac{1}{x_{1}} d x_{2} d x_{1}=\int_{1 / 2}^{1} \frac{2 x_{1}-1}{x_{1}} d x_{1}=2(1 / 2)+\log (1 / 2)=1-\log 2$.
2.3.12
(b) $\quad \int_{2}^{\infty} e^{-x} d x / \int_{1}^{\infty} e^{-x} d x=e^{-2} / e^{-1}=e^{-1}$.
2.4.2 X_{1} and X_{2} are dependent because $0<x_{1}<x_{2}<\infty$ is not a product space.
2.4.4 Because X_{1} and X_{2} are independent, the probability equals

$$
\left[\int_{0}^{1 / 3} 2 x_{1} d x_{1}\right]\left[\int_{0}^{1 / 3} 2\left(1-x_{2}\right) d x_{2}\right]=(1 / 3)^{2}\left[1-(2 / 3)^{2}\right]=5 / 81
$$

2.4.7 The marginal pdf of X_{1} is given by

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-2-\sqrt{1-\left(x_{1}-1\right)^{2}}}^{-2+\sqrt{1-\left(x_{1}-1\right)^{2}}} \frac{1}{\pi} d x_{2}=\frac{2}{\pi} \sqrt{1-\left(x_{1}-1\right)^{2}}, \quad 0<x<2
$$

The random variables X_{1} and X_{2} are not independent.
2.4.8 X and Y are dependent because $0<y<x<1$ is not a product space.

$$
E(X \mid y)=\int_{y}^{1} x\left[2 x /\left(1-y^{2}\right)\right] d x=\frac{2\left(1-y^{2}\right)}{3\left(1-y^{2}\right)}
$$

2.4.9

$$
\begin{aligned}
P(X+Y \leq 60) & =P(X \leq 10)+\int_{10}^{20} \int_{40}^{60-x} \frac{1}{300} d y d x \\
& =\frac{1}{3}+\int_{10}^{20}(20-x) / 300 d x=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}
\end{aligned}
$$

2.4.12

$$
\begin{aligned}
P\left(\left|X_{1}-X_{2}\right|=1\right) & =P\left(X_{1}=0, X_{2}=1\right)+P\left(X_{1}=1, X_{2}=0\right) \\
& =P\left(X_{1}=0\right) P\left(X_{2}=1\right)+P\left(X_{1}=1\right) P\left(X_{2}=0\right)=\frac{1}{3} .
\end{aligned}
$$

2.5.1 For Part (c):

$$
\operatorname{cov}=(0)(0)(1 / 3)+(1)(1)(1 / 3)+(2)(0)(1 / 3)-(1)(1 / 3)=0 .
$$

Thus $\rho=0$ and yet X and Y are dependent.
2.5.3

$$
\rho^{2}=(1 / 2)(1 / 2)=1 / 4 \Rightarrow \rho=1 / 2 .
$$

2.5.11 Let $Y=\left(X_{1}-\mu_{1}\right)+\left(X_{2}-\mu_{2}\right)$. Then the mean of Y is 0 and its variance is

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(X_{1}+X_{2}\right)=\sigma^{2}+\sigma^{2}+2 \rho \sigma^{2}=2 \sigma^{2}(1-\rho) .
$$

Use Chebyshev's inequality to obtain the result.
2.6.1 For Part (g):

$$
E(X \mid y, z)=\int_{0}^{1} x \frac{3(x+y+z) / 2}{3((1 / 2)+y+z) / 2} d x=\frac{(1 / 3)+(y / 2)+(z / 2)}{(1 / 2)+y+z} .
$$

2.6.3

$$
\begin{aligned}
G(y) & =1-P\left(y<X_{i}, i=1,2,3,4\right)=1-\left[(1-y)^{3}\right]^{4}=1-(1-y)^{12} \\
g(y) & =G^{\prime}(y)= \begin{cases}12(1-y)^{11} & 0<y<1 \\
0 & \text { elsewhere } .\end{cases}
\end{aligned}
$$

2.6.6 Multiply both members of $E\left[X_{1}-\mu_{1} \mid x_{2}, x_{3}\right]=b_{2}\left(x_{2}-\mu_{2}\right)+b_{3}\left(x_{3}-\mu_{3}\right)$ by the joint pdf of X_{2} and X_{3} and denote the result by (1). Multiply both members of (1) by ($x_{2}-\mu_{2}$) and integrate (or sum) on x_{2} and x_{3}. This gives (2), $\rho_{12} \sigma_{1} \sigma_{2}=b_{2} \sigma_{2}^{2}+3 \rho_{23} \sigma_{1} \sigma_{2}$. Return to (1) and multiply each member by ($x_{3}-\mu_{3}$) and integrate (or sum) on x_{2} and x_{3}. This yields (3) $\rho_{13} \sigma_{1} \sigma_{3}=$ $b_{2} \rho_{23} \sigma_{2} \sigma_{3}+b_{3} \sigma_{3}^{2}$. Solve (2) and (3) for b_{2} and b_{3}.
2.6.9
(a) $\quad \int_{0}^{\infty} \int_{x_{1}}^{\infty} e^{-x_{1}-x_{2}} d x_{2} d x_{1} / \int_{0}^{\infty} \int_{x_{1} / 2}^{\infty} e^{-x_{1}-x_{2}} d x_{2} d x_{1}$

$$
+\int_{0}^{\infty} e^{-2 x_{1}} d x_{1} / \int_{0}^{\infty} e^{-3 x_{1} / 2} d x_{1}=\frac{1}{2} \frac{2}{3}=\frac{3}{4} .
$$

2.7.1

$$
x_{1}=y_{1} y_{2} y_{3}, x_{2}=y_{2} y_{3}-y_{1} y_{2} y_{3}, x_{3}=y_{3}-y_{2} y_{3} .
$$

with $J=y_{2} y_{3}^{2}$, and $0<y_{1}<1,0<y_{2}<1,0<y_{3}<\infty$. This yields

$$
g\left(y_{1}, y_{2}, y_{3}\right)=y_{2} y_{3}^{2} e^{-y_{3}}=(1)\left(2 y_{2}\right)\left(y_{3}^{2} e^{-y_{3}} / 2\right)=g_{1}\left(y_{1}\right) g_{2}\left(y_{2}\right) g_{3}\left(y_{3}\right) .
$$

