Introduction to Mathcad 15: Solution Manual R. W. Larsen

Chapter 1: Mathcad: The Engineer's Scratch Pad		
Problem	Mathcad File	PDF File
1.1	0101.xmcd	0101.pdf
1.2	0102.xmcd	0102.pdf
1.3	0103.xmcd	0103.pdf
1.4	0104.xmcd	0104.pdf
1.5	0105.xmcd	0105.pdf
Chapter 2: Mathcad Fundamentals		
Problem	Mathcad File	PDF File
2.1	0201.xmcd	0201.pdf
2.2	0202.xmcd	0202.pdf
2.3	0203.xmcd	0203.pdf
2.4	0204.xmcd	0204.pdf
2.5	0205.xmcd	0205.pdf
2.6	0206.xmcd	0206.pdf
2.7	0207.xmcd	0207.pdf
2.8	0208.xmcd	0208.pdf
2.9	0209.xmcd	0209.pdf
2.10	0210.xmcd	0210.pdf
2.11	0211.xmcd	0211.pdf
2.12	0212.xmcd	0212.pdf
2.13	0213.xmcd	0213.pdf
2.14	0214.xmcd	0214.pdf
2.15	0215.xmcd	0215.pdf
2.16	0216.xmcd	0216.pdf
2.17	0217.xmcd	0217.pdf
2.18	0218.xmcd	0218.pdf
2.19	0219.xmcd	0219.pdf
2.20	0220.xmcd	0220.pdf

Chapter 3: Mathcad Functions

Problem	Mathcad File	PDF File
3.1	0301.xmcd	0301.pdf 3.2
0302.xmcd	0302.pdf	
3.3	0303.xmcd	0303.pdf
3.4	0304.xmcd	0304.pdf
3.5	0305.xmcd	0305.pdf
3.6	0306.xmcd	0306.pdf
3.7	0307.xmcd	0307.pdf
3.8	0308.xmcd	0308.pdf
3.9	0309.xmcd	0309.pdf
3.10	0310.xmcd	0310.pdf
3.11	0311.xmcd	0311.pdf
3.12	0312.xmcd	0312.pdf
3.13	0313.xmcd	0313.pdf
3.14	0314.xmcd	0314.pdf
3.15	0315.xmcd	0315.pdf
3.16	0316.xmcd	0316.pdf
3.17	0317.xmcd	0317.pdf
3.18	0318.xmcd	0318.pdf
3.19	0319.xmcd	0319.pdf
3.20	0320.xmcd	0320.pdf

Chapter 4: Working with Matrices

Problem	Mathcad File	PDF File
4.1	0401.xmcd	0401.pdf
4.2	0402.xmcd	0402.pdf
4.3	0403.xmcd	0403.pdf
4.4	0404.xmcd	0404.pdf
4.5	0405.xmcd	0405.pdf
4.6	0406.xmcd	0406.pdf
4.7	0407.xmcd	0407.pdf
4.8	0408.xmcd	0408.pdf
4.9	0409.xmcd	0409.pdf
4.10	0410.xmcd	0410.pdf
4.11	0411.xmcd	0411.pdf
4.12	0412.xmcd	0412.pdf
4.13	0413.xmcd	0413.pdf
4.14	0414.xmcd	0414.pdf
4.15	0415.xmcd	0415.pdf

Chapter 5: Data Analysis Functions

Problem	Mathcad File	PDF File
5.1	0501.xmcd	0501.pdf

5.2 0502.xmcd 0502.pdf
5.3 0503.xmcd 0503.pdf
5.4 0504.xmcd 0504.pdf
5.5 0505.xmcd 0505.pdf
5.6 0506.xmcd 0506.pdf
5.7 0507.xmcd 0507.pdf
5.8 0508.xmcd 0508.pdf
$5.9 \quad 0509 . x m c d \quad 0509 . p d f$
5.10 0510.xmcd 0510.pdf
5.11 0511.xmcd 0511.pdf
$5.12 \quad 0512 . x m c d \quad 0512 . \mathrm{pdf}$
5.13 0513.xmcd 0513.pdf
5.14 0514.xmcd 0514.pdf
5.15 0515.xmcd 0515.pdf
5.16 0516.xmcd 0516.pdf
5.17 0517.xmcd 0517.pdf
5.18 0518.xmcd 0518.pdf
5.19 0519.xmcd 0519.pdf
5.20 0520.xmcd 0520.pdf

Chapter 6: Programming in Mathcad

Problem Mathcad File PDF File
6.1 0601.xmcd 0601.pdf
6.2 0602.xmcd 0602.pdf
6.3 0603.xmcd 0603.pdf
6.4 0604.xmcd 0604.pdf
6.5 0605.xmcd 0605.pdf
6.6 0606.xmcd 0606.pdf
6.7 0607.xmcd 0607.pdf
6.8 0608.xmcd 0608.pdf
6.9 0609.xmcd 0609.pdf
6.10 0610.xmcd 0610.pdf
6.11 0611.xmcd 0611.pdf
6.12 0612.xmcd 0612.pdf
6.13 0613.xmcd 0613.pdf
6.14 0614.xmcd 0614.pdf
6.15 0615.xmcd 0615.pdf

\section*{Chapter 7: Symbolic Math Using Mathcad
 | Problem | Mathcad File | PDF File |
| :---: | :---: | :---: |
| 7.1 | 0701.xmcd | 0701.pdf |
| 7.2 | 0702.xmcd | 0702.pdf |
| 7.3 | 0703.xmcd | 0703.pdf |
| 7.4 | 0704.xmcd | 0704.pdf |
| 7.5 | 0705.xmcd | 0705.pdf |
| 7.6 | 0706.xmcd | 0706.pdf |
| 7.7 | 0707.xmcd | 0707.pdf |
| 7.8 | 0708.xmcd | 0708.pdf |
| 7.9 | 0709.xmcd | 0709.pdf |
| 7.10 | 0710.xmcd | 0710.pdf |
| 7.11 | 0711.xmcd | 0711.pdf |
| 7.12 | 0712.xmcd | 0712.pdf |
| 7.13 | 0713.xmcd | 0713.pdf |
| 7.14 | 0714.xmcd | 0714.pdf |
| 7.15 | 0715.xmcd | 0715.pdf |}

Chapter 8: Numerical Techniques

Problem	Mathcad File	PDF File
8.1	0801.xmcd	0801.pdf
8.2	0802.xmcd	0802.pdf
8.3	0803.xmcd	0803.pdf
8.4	0804.xmcd	0804.pdf
8.5	0805.xmcd	0805.pdf
8.6	0806.xmcd	0806.pdf
8.7	0807.xmcd	0807.pdf
8.8	0808.xmcd	0808.pdf
8.9	0809.xmcd	0809.pdf
8.10	0810.xmcd	0810.pdf
8.11	0811.xmcd	0811.pdf
8.12	0812.xmcd	0812.pdf
8.13	0813.xmcd	0813.pdf
8.14	0814.xmcd	0814.pdf
8.15	0815.xmcd	0815.pdf

Chapter 9: Using Mathcad with Other Programs

Problem	Mathcad File	PDF File
9.1	0901.xmcd	0901.pdf
9.2	0902.xmcd	0902.pdf
9.3	0903.xmcd	0903.pdf
9.4	0904.xmcd	0904.pdf
9.5	0905.xmcd	0905.pdf
9.6	0906.xmcd	0906.pdf
9.7	0907.xmcd	0907.pdf

1.1 Mathcad Reference Tables: Physical Property Values at 300 K

Density of Water
Water
$997.1 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

Density of Sea Water
Sea water

$$
1025 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Viscosity of Water
Water
$0.00089 \frac{\text { newton } \cdot \mathrm{sec}}{\mathrm{m}^{2}}$

Viscosity of Kerosene
Kerosene
$0.00164 \frac{\text { newton } \cdot \text { sec }}{\mathrm{m}^{2}}$

Surface Tension of Water
Water
$0.07197 \cdot \frac{\text { newton }}{m}$

Surface Tension of Acetone
Acetone
$0.0231 \cdot \frac{\text { newton }}{m}$

1.2 Mathcad Reference Tables: Comparing Physical Property Values

Which metal has the higher thermal conductivity: copper or aluminum?

$$
\text { Copper } \quad 3.98 \cdot \frac{\mathrm{watt}}{\mathrm{~cm} \cdot \mathrm{~K}}
$$

Aluminum
$2.37 \cdot \frac{\mathrm{watt}}{\mathrm{cm} \cdot \mathrm{K}}$
Answer: Copper
Which metal has the higher linear expansion coefficient: copper or iron?
Copper 16.6

Iron 12

Answer: Copper

Which metal has the lower modulus of elasticity: gold or silver?
Gold $\quad 7.446 \cdot 10^{10} \cdot \mathrm{~Pa}$
Silver $\quad 7.239 \cdot 10^{10} \cdot \mathrm{~Pa}$

Answer: Silver

Which metal has the lower melting point: lead or tin?

Lead	$600.7 \cdot \mathrm{~K}$
Tin	$505 \cdot \mathrm{~K}$

Answer: Tin

1.3 Effect of Temperature on Viscosity

$\mu_{\text {correct }}:=0.00037 \cdot \frac{\mathrm{~N}}{\mathrm{sec} \cdot \mathrm{m}^{2}} \quad \ll$ actual viscosity at 350 K
$\mu_{\text {incorrect }}:=0.00089 \cdot \frac{\mathrm{~N}}{\mathrm{sec} \cdot \mathrm{m}^{2}} \quad \ll$ at 300 K, not 350 K
Percent_Error $:=\frac{\mu_{\text {correct }}-\mu_{\text {incorrect }}}{\mu_{\text {correct }}} \cdot 100 \%$

Percent_Error $=-140.5 \% \quad$ The minus sign indicates that the correct value is smaller than the incorrect value (the difference is negative).

1.4 Mathcad Reference Tables: Geometry Formulas

Area and perimeter of a trapezoid

Area: $\quad \frac{1}{2} \cdot h \cdot(a+b)$

Perimeter: $\quad a+b+h \cdot\left(\frac{1}{\sin (\theta)}+\frac{1}{\sin (\phi)}\right)$

Area of a regular polygon with " n " sides

Area: $\quad \frac{1}{4} \cdot n \cdot b^{2} \cdot \cot \left(\frac{\pi}{n}\right)$

Volume of a torus (doughnut shape)

Volume:

$$
\frac{1}{4} \cdot \pi^{2} \cdot(a+b) \cdot(b-a)^{2}
$$

1.5 Mathcad Reference Tables: Capacitance Formula

Capacitance:

$\frac{4 \cdot \pi \cdot \varepsilon}{\frac{1}{r_{1}}-\frac{1}{r_{2}}}$

2.1 Unit Conversions

part a)

$$
a:=2.998 \cdot 10^{8} \cdot \frac{\mathrm{~m}}{\mathrm{sec}} \quad a=6.706 \times 10^{8} \frac{\mathrm{mi}}{\mathrm{hr}}
$$

part b)

$$
\rho:=62.3 \cdot \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
$$

$$
\rho=997.95 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

part c)

$$
\rho:=1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho=62.428 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
$$

part d)

$$
\mu:=0.01 \cdot \text { poise } \quad \begin{aligned}
& \mu=6.72 \times 10^{-4} \frac{\mathrm{lb}}{\mathrm{ft} \cdot \mathrm{sec}} \\
& \mu=1 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{sec}}
\end{aligned}
$$

Note: Poise is predefined in Mathcad, but cP is not. To use cP, define it in a worksheet as:

$$
\begin{aligned}
& \mathrm{cP}:=\frac{\text { poise }}{100} \\
& \mu=1 \mathrm{cP}
\end{aligned}
$$

part e)

$$
\mathrm{R}_{\text {gas }}:=0.08206 \cdot \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \mathrm{R}_{\text {gas }}=8.315 \frac{\mathrm{joule}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Note: R is predefined as ${ }^{\circ} R$ (Rankine) in Mathcad, so $R_{\text {gas }}$ was used here to preserve the definition of R.

2.2 Volume and Surface Area of a Sphere

$\mathrm{r}:=3 \cdot \mathrm{~cm}$

$$
\begin{array}{lll}
\mathrm{V}:=\frac{4}{3} \cdot \pi \cdot \mathrm{r}^{3} & \mathrm{~V}=1.131 \times 10^{-4} \mathrm{~m}^{3} & \mathrm{~V}=113.097 \mathrm{~cm}^{3} \\
\mathrm{~A}:=4 \cdot \pi \cdot \mathrm{r}^{2} & \mathrm{~A}=0.011 \mathrm{~m}^{2} & \mathrm{~A}=113.097 \mathrm{~cm}^{2}
\end{array}
$$

2.3 Volume and Surface Area of a Torus

$$
\begin{array}{lll}
\mathrm{R}:=3 \cdot \mathrm{~cm} & \mathrm{r}:=1.5 \cdot \mathrm{~cm} \\
\mathrm{~V}:=2 \cdot \pi^{2} \cdot \mathrm{R} \cdot \mathrm{r}^{2} & \mathrm{~V}=1.332 \times 10^{-4} \mathrm{~m}^{3} & \mathrm{~V}=133.24 \mathrm{~cm}^{3} \\
\mathrm{~A}:=4 \cdot \pi^{2} \cdot \mathrm{R} \cdot \mathrm{r} & \mathrm{~A}=0.018 \mathrm{~m}^{2} & \mathrm{~A}=177.653 \mathrm{~cm}^{2}
\end{array}
$$

Note: Defining "R" above overwrote the definition of ${ }^{\circ} \mathrm{R}$ in Mathcad's unit system. It doesn't cause any trouble here because temperature is not involved in these calculations.

2.4 Ideal Gas Behavior, I

$\mathrm{M}:=5 \cdot \mathrm{gm} \quad$ MW $:=35.45 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$
$\mathrm{h}:=2 \cdot \mathrm{~cm}$
$\mathrm{T}:=(25+273.15) \cdot \mathrm{K}$
$\mathrm{n}:=\frac{\mathrm{M}}{\mathrm{MW}} \quad \mathrm{n}=0.141 \mathrm{~mol}$
$P:=1 \cdot \mathrm{~atm}$
$\mathrm{R}_{\mathrm{gas}}:=0.08206 \cdot \frac{\mathrm{liter} \cdot \mathrm{atm}}{\mathrm{mol} \cdot \mathrm{K}}$
part a)

$$
\begin{array}{ll}
\mathrm{V}:=\frac{\mathrm{n} \cdot \mathrm{R}_{\mathrm{gas}} \cdot \mathrm{~T}}{\mathrm{P}} & \mathrm{~V}=3.451 \times 10^{-3} \mathrm{~m}^{3} \quad \mathrm{~V}=3.451 \text { liter } \\
\mathrm{r}:=\sqrt{\frac{\mathrm{V}}{\pi \cdot h}} & \mathrm{r}=23.435 \mathrm{~cm}
\end{array}
$$

part b)

$$
\begin{array}{ll}
\mathrm{V}_{\text {final }}:=\mathrm{V} \cdot \frac{5 \cdot \mathrm{~cm}}{2 \cdot \mathrm{~cm}} & \mathrm{~V}_{\text {final }}=8.627 \text { liter } \\
\mathrm{T}_{\text {final }}:=\frac{\mathrm{P} \cdot \mathrm{~V}_{\text {final }}}{\mathrm{n} \cdot \mathrm{R}_{\text {gas }}} & \mathrm{T}_{\text {final }}=745.375 \mathrm{~K}
\end{array}
$$

Note: A common error when working with mass is to use the variable " m " for the mass. This would overwrite the " m " used for meters in Mathcad's unit system creating errors that can be extensive and hard to find. Here, the variable " M " is used to avoid this problem (Mathcad's variable names are case sensitive so " m " and " M " are different variable names.)

2.5 Ideal Gas Behavior, II

$$
\begin{array}{ll}
\mathrm{r}:=2.5 \cdot \mathrm{~cm} & \mathrm{~h}:=5 \cdot \mathrm{~cm} \\
\mathrm{~V}:=\pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h} & \mathrm{~V}=98.175 \mathrm{~cm}^{3}
\end{array}
$$

$P:=1 \cdot \mathrm{~atm}$
$\mathrm{T}:=(25+273.15) \cdot \mathrm{K}$
$\mathrm{R}_{\text {gas }}:=0.08206 \cdot \frac{\mathrm{liter} \cdot \mathrm{atm}}{\mathrm{mol} \cdot \mathrm{K}}$
part a)

$$
\mathrm{n}:=\frac{\mathrm{P} \cdot \mathrm{~V}}{\mathrm{R}_{\mathrm{gas}} \cdot \mathrm{~T}} \quad \mathrm{n}=4.013 \times 10^{-3} \mathrm{~mol}
$$

part b)

$$
\begin{array}{ll}
\mathrm{V}_{\text {final }}:=\mathrm{V} \cdot \frac{2 \cdot \mathrm{~cm}}{5 \cdot \mathrm{~cm}} & \mathrm{~V}_{\text {final }}=0.039 \text { liter } \\
\mathrm{P}_{\text {final }}:=\frac{\mathrm{n} \cdot \mathrm{R}_{\text {gas }} \cdot \mathrm{T}}{\mathrm{~V}_{\text {final }}} & \mathrm{P}_{\text {final }}=2.5 \mathrm{~atm}
\end{array}
$$

2.6 Relating Force and Mass

$\mathrm{g}_{\mathrm{C}}:=1 \quad \ll$ unnecessary, but can be included if desired
$\mathrm{M}:=150 \cdot \mathrm{~kg} \quad \ll$ did not want to use 'm' -- it would overwrite the definition of "meters"
$\mathrm{g}=9.807 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \ll ' \mathrm{~g}$ ' is a predefined variable in Mathcad
part a)

$$
\mathrm{F}:=\mathrm{M} \cdot \frac{\mathrm{~g}}{\mathrm{~g}_{\mathrm{C}}} \quad \mathrm{~F}=1470.997 \mathrm{~N}
$$

- or -

$$
\mathrm{F}:=\mathrm{M} \cdot \mathrm{~g} \quad \mathrm{~F}=1470.997 \mathrm{~N}
$$

part b)

$$
\begin{array}{lll}
\mathrm{FF}:=300 \cdot \mathrm{~N} & & \ll \text { allowed force per wire } \\
\mathrm{MM}:=\mathrm{FF} \cdot \frac{\mathrm{~g}_{\mathrm{C}}}{\mathrm{~g}} & \mathrm{MM}=30.591 \mathrm{~kg} & \ll \mathrm{~kg} / \text { wire } \\
\mathrm{N}_{\text {wires }}:=\frac{\mathrm{M}}{\mathrm{MM}} & \mathrm{~N}_{\text {wires }}=4.903 & \ll \text { round UP to } 5 \text { wires }
\end{array}
$$

