Chapter 2 Job-Order Costing: Calculating Unit Product Costs

Questions

2-1 Job-order costing is used in situations where many different products, each with individual and unique features, are produced each period.

2-2 In absorption costing, all manufacturing costs, both fixed and variable, are assigned to units of product-units are said to fully absorb manufacturing costs. Conversely, all nonmanufacturing costs are treated as period costs and they are not assigned to units of product.

2-3 Normal costing systems apply overhead costs to jobs by multiplying a predetermined overhead rate by the actual amount of the allocation incurred by the job.

2-4 Unit product cost is computed by taking the total manufacturing costs assigned to a job and dividing it by the number of units contained in the job.

2-5 The first step is to estimate the total amount of the allocation base (the denominator) that will be required for next period's estimated level of production. The second step is to estimate the total fixed manufacturing overhead cost for the coming period and the variable manufacturing overhead cost per unit of the allocation base. The third step is to use the cost formula Y $=a+b X$ to estimate the total manufacturing overhead cost (the numerator) for the coming period. The fourth step is to compute the predetermined overhead rate.

2-6 The job cost sheet is used to record all costs that are assigned to a particular job. These costs include direct materials costs traced to the job, direct labor costs traced to the job, and manufacturing overhead costs applied to the job.

When a job is completed, the job cost sheet is used to compute the unit product cost.

2-7 Some production costs such as a factory manager's salary cannot be traced to a particular product or job, but rather are incurred as a result of overall production activities. In addition, some production costs such as indirect materials cannot be easily traced to jobs. If these costs are to be assigned to products, they must be allocated to the products.

2-8 If actual manufacturing overhead cost is applied to jobs, the company must wait until the end of the accounting period to apply overhead and to cost jobs. If the company computes actual overhead rates more frequently to get around this problem, the rates may fluctuate widely due to seasonal factors or variations in output. For this reason, most companies use predetermined overhead rates to apply manufacturing overhead costs to jobs.

2-9 The measure of activity used as the allocation base should drive the overhead cost; that is, the allocation base should cause the overhead cost. If the allocation base does not really cause the overhead, then costs will be incorrectly attributed to products and jobs and product costs will be distorted.

2-10 Assigning manufacturing overhead costs to jobs does not ensure a profit. The units produced may not be sold and if they are sold, they may not be sold at prices sufficient to cover all costs. It is a myth that assigning costs to products or jobs ensures that those costs will be recovered. Costs are recovered only by selling to customers-not by allocating costs.

2-11 No, you would not expect the total applied overhead for a period to equal the actual overhead for that period. This is because the applied overhead relies on a predetermined overhead rate that is based on estimates in the numerator and denominator.

2-12 When a company applied less overhead to production than it actually incurs, it creates what is known as underapplied overhead. When it applies more overhead to production than it actually incurs, it results in overapplied overhead.

2-13 A plantwide overhead rate is a single overhead rate used throughout a plant. In a multiple overhead rate system, each production department may have its own predetermined overhead rate and its own allocation base. Some companies use multiple overhead rates rather than plantwide rates to more appropriately allocate overhead costs among products. Multiple overhead rates should be used, for example, in situations where one department is machine intensive and another department is labor intensive.

Chapter 2: Applying Excel

The completed worksheet is shown below.

© The McGraw-Hill Companies, Inc., 2019. All rights reserved.

Chapter 2: Applying Excel (continued)

The completed worksheet, with formulas displayed, is shown below.

© The McGraw-Hill Companies, Inc., 2019. All rights reserved.

Chapter 2: Applying Excel (continued)

[Note: To display formulas in Excel 2013, select File > Options > Advanced > Display options for this worksheet > Show formulas in cells instead of their calculated amounts. To display the formulas in other versions of Excel, consult Excel Help.]

Chapter 2: Applying Excel (continued)

1. When the total fixed manufacturing overhead cost for the Milling Department is changed to $\$ 300,000$, the worksheet changes as shown below:

2	A			B	C	D	E	-
1	Chapter 2: Applying Excel							
2	Data							
3								
4	Markup on job cost			75\%				
5								
6				Depart	ment			
7				Milling	Assembly			
8	Machine-ho			60,000	3,000			
9	Direct labor-	ours		8,000	80,000			
10	Total fixed	nufacturing overhead cost		\$300,000	\$500,000			
11	Variable ma	facturing overhead per machin	e-hour	\$2.00				
12	Variable ma	facturing overhead per direc	labor-hour		\$3.75			
13								
14	Cost summ	for Job 407		Depart	ment			
15				Milling	Assembly			
16	Machine-ho			90	4			
17	Direct labor-	ours		5	20			
18	Direct mate			\$800	\$370			
19	Direct labor			\$70	\$280			
20								
21	Enter a form	a into each of the cells ma	d with a ? below					
22								
3 Step 1: Calculate the estimated total manufacturing overhead cost for each department								
24				Milling	Assembly			
25	Total fixed m	anufacturing overhead cost		\$300,000	\$500,000			
26	Variable ma	ufacturing overhead per mach	e-hour or direct labor-hour	\$2.00	\$3.75			
27	Total machi	-hours or direct labor-hours		60,000	80,000			
28	Total variabl	manufacturing overhead		\$120,000	\$300,000			
29	Total manuf	uring overhead		\$420,000	\$800,000			
30								
31	Step 2: Calculate the predetermined overhead rate in each department							
32				Milling	Assembly			
33	Total manuf	cturing overhead		\$420,000	\$800,000			
34	Total machi	e-hours or direct labor-hours		60,000	80,000			
35	Predetermin	d overhead rate per machine	our or direct labor-hour	\$7.00	\$10.00			
36								
37	Step 3: Calculate the amount of overhead applied from both departments to Job 407							
38				Milling	Assembly			
39	Predetermin	overhead rate per machine	our or direct labor-hour	\$7.00	\$10.00			
40	Machine-ho	s or direct labor-hours for the		90	20			
41	Manufacturi	g overhead applied		\$630.00	\$200.00			
42								
43	Step 4: Calculate the total job cost for Job 407							
				Milling	Assembly	Total		
45	Direct mate			\$800.00	\$370.00	\$1,170.00		
46	Direct labor			\$70.00	\$280.00	\$350.00		
	Manufacturi	g overhead applied		\$630.00	\$200.00	\$830.00		
48	Total cost of	Job 407				\$2,350.00		
49								
50	Step 5: Cal	ulate the selling price for	b 407					
51	Total cost of	Job 407				\$2,350.00		
52	Markup					\$1,762.50		
53	Selling price	of Job 407				\$4,112.50		
54								-
	- ..	Chapter 2 Requirement 1	Chapter 2 Requirem ...	; 1				

© The McGraw-Hill Companies, Inc., 2019. All rights reserved.

Chapter 2: Applying Excel (continued)

The selling price of Job 407 has dropped from $\$ 4,348.75$ to $\$ 4,112.50$ because the fixed manufacturing overhead in the Milling Department decreased from $\$ 390,000$ to $\$ 300,000$. This reduced the predetermined overhead rate in the Milling Department from $\$ 8.50$ per machine-hour to $\$ 7.00$ per machine-hour and hence the amount of overhead applied to Job 407 in the Milling Department.

Chapter 2: Applying Excel (continued)

2. For the new Job 408, the worksheet should look like the following:

© The McGraw-Hill Companies, Inc., 2019. All rights reserved.

Chapter 2: Applying Excel (continued)

3. When the total number of machine-hours in the Assembly Department increases from 3,000 machine-hours to 6,000 machine-hours, the worksheet looks like the following:

(c) The McGraw-Hill Companies, Inc., 2019. All rights reserved.

Chapter 2: Applying Excel (continued)

The selling price for Job 408 is not affected by this change. The reason for this is that the total number of machine-hours in the Assembly Department has no effect on any cost. There would have been a change in costs and in the selling price if the total machine-hours in the Milling Department would have changed. This is because the predetermined overhead rate in that department is based on machine-hours and any change in the total machine-hours would affect the magnitude of the predetermined overhead rate in that department.

Chapter 2: Applying Excel (continued)

4. When the total number of direct labor-hours in the Assembly Department decreases from 80,000 direct labor-hours to 50,000 direct laborhours, the worksheet looks like the following:

© The McGraw-Hill Companies, Inc., 2019. All rights reserved.

Chapter 2: Applying Excel (continued)

The selling price of Job 408 has increased from $\$ 2,905.00$ to $\$ 2,944.38$. This occurs because the decrease in the total number of direct laborhours in the Assembly Department increases the predetermined overhead rate in that department from $\$ 10.00$ per direct labor-hour to $\$ 13.75$ per direct labor-hour. In effect, the same total fixed manufacturing overhead cost is spread across fewer total direct labor-hours.

The Foundational 15

1. The first step is to calculate the estimated total overhead costs in Molding and Fabrication:

Molding: Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost is computed as follows:

$$
Y=\$ 10,000+(\$ 1.40 \text { per MH)(2,500 MHs })
$$

Estimated fixed manufacturing overhead \$10,000
Estimated variable manufacturing overhead:
$\$ 1.40$ per MH $\times 2,500 \mathrm{MHs}$ 3,500
Estimated total manufacturing overhead cost
$\$ 13,500$
Fabrication: Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost is computed as follows:

$$
Y=\$ 15,000+(\$ 2.20 \operatorname{per} M H)(1,500 \mathrm{MHs})
$$

Estimated fixed manufacturing overhead \$15,000
Estimated variable manufacturing overhead:

$$
\$ 2.20 \text { per } \mathrm{MH} \times 1,500 \mathrm{MHs} .
$$

\qquad 3,300
Estimated total manufacturing overhead cost
$\$ 18,300$
The second step is to combine the estimated manufacturing overhead costs in Molding and Fabrication ($\$ 13,500+\$ 18,300=\$ 31,800$) to enable calculating the predetermined overhead rate as follows:

Estimated total manufacturing overhead (a). Estimated total machine-hours (MHs) (b). Predetermined overhead rate (a) $\div(b)$
\qquad \$31,800 4,000 MHs $\$ 7.95$ per MH
2. The manufacturing overhead applied to Jobs P and Q is computed as follows:

	Job P	Job Q
Actual machine-hours worked (a)	2,300	1,700
Predetermined overhead rate per MH (b).....	$\$ 7.95$	$\$ 7.95$
Manufacturing overhead applied (a) $\times(\mathrm{b}) \ldots$.	$\$ 18,285$	$\$ 13,515$

The Foundational 15

3. The total manufacturing cost assigned to Job P is computed as follows:

> Job P

Direct materials.. \$13,000
Direct labor 21,000
Manufacturing overhead applied 18,285
Total manufacturing cost
\$52,285
4. Job P's unit product cost is computed as follows:

$$
J o b ~ P
$$

Total manufacturing cost (a) \$52,285
Number of units (b) 20
Unit product cost (rounded) (a) $\div(\mathrm{b})$
\$2,614
5. The total manufacturing cost assigned to Job Q is computed as follows:

	Job Q
Direct materials	\$ 8,000
Direct labor.	7,500
Manufacturing overhead applied.	13,515
Total manufacturing cost.	\$29,015

6. Job Q's unit product cost is computed as follows:

	Job Q
Total manufacturing cost (a)	$\$ 29,015$
Number of units (b).................................	30
Unit product cost (rounded) (a) $\div(\mathrm{b})$.	$\$ 967$

7. The selling prices are calculated as follows:

	Job P	Job Q
Total manufacturing cost.	\$52,285	\$29,015
Markup (based on 80\%)	41,828	23,212
Total price for the job (a)	\$94,113	\$52,227
Number of units in the job (b)..	20	30
Selling price per unit (rounded) (a) \div (b).	\$4,706	\$1,741

The Foundational 15

8. The cost of goods sold is the sum of the manufacturing costs assigned to Jobs P and Q:

Total manufacturing cost assigned to Job P... \$52,285
Total manufacturing cost assigned to Job Q .. 29,015
Cost of goods sold
\$81,300
9. Molding: Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost is computed as follows:

$$
Y=\$ 10,000+(\$ 1.40 \text { per MH) }(2,500 \mathrm{MHs})
$$

Estimated fixed manufacturing overhead \$10,000
Estimated variable manufacturing overhead:
$\$ 1.40$ per $\mathrm{MH} \times 2,500 \mathrm{MHs}$ 3,500
Estimated total manufacturing overhead cost
$\$ 13,500$
The predetermined overhead rate in Molding is computed as follows:
Estimated total manufacturing overhead (a) ... \$13,500 Estimated total machine-hours (MHs) (b)........ Predetermined overhead rate (a) \div (b) 2,500 MHs $\$ 5.40$ per MH

Fabrication: Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost is computed as follows:

$$
Y=\$ 15,000+(\$ 2.20 \text { per MH)(1,500 MHs })
$$

Estimated fixed manufacturing overhead \$15,000
Estimated variable manufacturing overhead:
$\$ 2.20$ per $\mathrm{MH} \times 1,500 \mathrm{MHs}$
3,300
Estimated total manufacturing overhead cost. \$18,300

The predetermined overhead rate in Fabrication is computed as follows:
Estimated total manufacturing overhead (a) ... \$18,300
Estimated total machine-hours (MHs) (b)........ $1,500 \mathrm{MHs}$
Predetermined overhead rate (a) $\div(\mathrm{b})$
$\$ 12.20$ per MH

The Foundational 15

10. The applied overhead from Molding is computed as follows:

	Job P	Job Q
Machine-hours worked on job (a)	1,700	800
Molding overhead rate (b)........................	$\$ 5.40$	$\$ 5.40$
Manufacturing overhead applied (a) $\times(\mathrm{b}) \ldots$.	$\$ 9,180$	$\$ 4,320$

11. The applied overhead from Fabrication is computed as follows:

	Job P	Job Q
Machine-hours worked on job (a)	600	900
Fabrication overhead rate (b).................	$\$ 12.20$	$\$ 12.20$
Manufacturing overhead applied (a) $\times(\mathrm{b}) \ldots$.	$\$ 7,320$	$\$ 10,980$

12. The unit product cost for Job P is computed as follows:

Direct materials

\$13,000

Direct labor.. 21,000
Manufacturing overhead applied:
Molding Department................................. \$9,180
Fabrication Department 7,320
16,500
Total manufacturing cost (a)
\$50,500
Number of units in the job (b)..................... 20
Unit product cost (a) \div (b).......................... $\$ 2,525$
13. The unit product cost for Job Q is computed as follows:

Direct materials.		\$8,000
Direct labor		7,500
Manufacturing overhead applied:		
Molding Department	\$4,320	
Fabrication Department	10,980	15,300
Total manufacturing cost (a).....................		\$30,800
Number of units in the job (b).		30
Unit product cost (rounded) (a) \div (b).........		\$1,027

© The McGraw-Hill Companies, Inc., 2019. All rights reserved.

The Foundational 15

14. The selling prices are calculated as follows:

	Job P	Job Q
Total manufacturing cost.	\$50,500	\$30,800
Markup (based on 80\%)	40,400	24,640
Total price for the job (a)	\$90,900	\$55,440
Number of units in the job (b).	20	30
Selling price per unit (a) $\div(\mathrm{b})$	\$4,545	\$1,848

15. The cost of goods sold is the sum of the manufacturing costs assigned to Jobs P and Q :

Total manufacturing cost assigned to Job P... \$50,500
Total manufacturing cost assigned to Job Q .. $\quad 30,800$
Cost of goods sold....................................... \$81,300

Exercise 2-1 (10 minutes)

The estimated total manufacturing overhead cost is computed as follows:

$$
Y=\$ 94,000+(\$ 2.00 \text { per DLH })(20,000 \text { DLHs })
$$

Estimated fixed manufacturing overhead \$ 94,000
Estimated variable manufacturing overhead: \$2.00 per DLH $\times 20,000$ DLHs....................................... 40,000
Estimated total manufacturing overhead cost............ \$134,000
The plantwide predetermined overhead rate is computed as follows:
Estimated total manufacturing overhead (a)..... \$134,000 Estimated total direct labor hours (b)............... 20,000 DLHs
Predetermined overhead rate (a) $\div(b)$. $\$ 6.70$ per DLH

Exercise 2-2 (10 minutes)

$$
\begin{array}{lr}
\text { Actual direct labor-hours (a)........................ } & 10,800 \\
\text { Predetermined overhead rate (b).............. } & \$ 23.40 \\
\text { Manufacturing overhead applied (a) } \times(\mathrm{b}) \ldots . & \$ 252,720
\end{array}
$$

Exercise 2-3 (10 minutes)

1. Total direct labor-hours required for Job A-500:

Direct labor cost (a) \$153
Direct labor wage rate per hour (b) \$17
Total direct labor hours (a) \div (b) 9
Total manufacturing cost assigned to Job A-500:
Direct materials \$231
Direct labor 153
Manufacturing overhead applied (\$14 per DLH $\times 9$ DLHs) 126
Total manufacturing cost $\$ 510$
2. Unit product cost for Job A-500:
Total manufacturing cost (a) \$510
Number of units in the job (b) 40
Unit product cost (a) $\div(\mathrm{b})$ \$12.75

Exercise 2-4 (10 minutes)

1 and 2.
The total direct labor-hours required for Job N-60:

Direct labor cost (a)	Assembly	$\$ 180$
Packaging		

The total manufacturing cost and unit product cost for Job N-60 is computed as follows:

Direct materials (\$340 + \$25) \$365
Direct labor ($\$ 180+\$ 40$) 220
Assembly Department ($\$ 16$ per DLH $\times 9$ DLHs)....... $\$ 144$
Testing \& Packaging Department ($\$ 12$ per DLH $\times 2$
DLHs)... $\underline{24} \underline{168}$
Total manufacturing cost.
$\$ 753$
Total manufacturing cost (a) $\$ 753$
Number of units in the job (b)
10
Unit product cost (a) \div (b)
$\$ 75.30$

Exercise 2-5 (10 minutes)

1 and 2.
The total direct labor-hours required in Finishing for Job 700:
Finishing
Direct labor cost (a) \$128
Direct labor wage rate per hour (b)............. \$16
Total direct labor hours (a) \div (b) 8

The total manufacturing cost and unit product cost for Job 700 is computed as follows:

Direct materials ($\$ 410+\$ 60$) $\$ 470$
Direct labor (\$128 + \$48) 176
Finishing Department ($\$ 18$ per DLH $\times 8$ DLHs)........ $\$ 144$
Fabrication Department $(110 \% \times \$ 60) \ldots \quad 66$ 210
Total manufacturing cost $\$ 856$

Total manufacturing cost (a) \$856
Number of units in the job (b) 15
Unit product cost (rounded) (a) $\div(b)$
\$57.07

Exercise 2-6 (10 minutes)

1. The estimated total overhead cost is computed as follows:

$$
Y=\$ 680,000+(\$ 0.50 \text { per DLH })(80,000 \text { DLHs })
$$

Estimated fixed overhead cost \$680,000Estimated variable overhead cost: $\$ 0.50$ per DLH \times80,000 DLHs40,000Estimated total overhead cost$\$ 720,000$

The predetermined overhead rate is computed as follows:

Estimated total overhead (a).....................	$\$ 720,000$
Estimated total direct labor-hours (b)	80,000 DLHs
Predetermined overhead rate (a) $\div(\mathrm{b}) \ldots .$.	$\$ 9.00$ per DLH

2. Total manufacturing cost assigned to Xavier:

Direct materials	\$38,000
Direct labor	21,000
Overhead applied (\$9.00 per DLH $\times 280$ DLHs)	2,520
Total manufacturing cost.	\$61,520

Exercise 2-7 (20 minutes)

1. Step 1: The total direct labor-hours required for Job Omega:

Direct labor cost (a) \$345,000
Direct labor wage rate per hour (b) \$15
Total direct labor hours worked (a) \div (b)
23,000

Step 2: Derive the plantwide predetermined overhead rate:

Manufacturing overhead applied to Job	
Omega (a) ...	$\$ 184,000$
Direct labor hours worked on Job Omega (b)	23,000

Plantwide predetermined overhead rate (a) \div (b)
$\$ 8.00$ per DLH
2. The job cost sheet for Job Alpha is derived as follows: (note that direct materials is the plug figure)

Direct labor (54,500 DLHs $\times \$ 15$ per DLH)	817,500
Manufacturing overhead applied ($\$ 8$ per DLH \times 54,500 DLHs).	436,000
Total job cost (given)	\$1,533,50

Exercise 2-8 (10 minutes)

Direct material...............................	$\$ 10,000$
Direct labor	12,000
Manufacturing overhead applied:	
$\$ 12,000 \times 125 \% \ldots \ldots$.	$\underline{15,000}$
Total manufacturing cost	$\underline{\$ 37,000}$
Total manufacturing cost (a)	$\$ 37,000$
Number of units in job (b)............	1,000
Unit product cost (a) $\div(\mathrm{b})$.	$\$ 37$

Exercise 2-9 (30 minutes)

1. The estimated total overhead cost is computed as follows:

$$
Y=\$ 1,980,000+(\$ 2.00 \text { per MH)(165,000 MHs })
$$

Estimated fixed overhead \$1,980,000
Estimated variable overhead: $\$ 2.00$ per $\mathrm{MH} \times$ 165,000 MHs 330,000

> Estimated total overhead cost \$2,310,000

The plantwide predetermined overhead rate is computed as follows:

Estimated total overhead (a).....................	$\$ 2,310,000$
Estimated total machine-hours (b) $\ldots \ldots$.	$165,000 \mathrm{MHs}$
Predetermined overhead rate (a) \div (b)......	$\$ 14.00$ per MH

2. Total manufacturing cost assigned to Job P90:

Direct materials	\$1,150
Direct labor	830
Overhead applied (\$14 per MH $\times 72 \mathrm{MHs}$) .	1,008
Total manufacturing cost.	\$2,988

3a. Given that the company is operating at 50% of its manufacturing capacity, an argument can made that the company should pursue any business opportunities that generate a positive a contribution margin. Based on the information provided, it appears that Job P90 does generate a positive contribution margin as shown below:

Sales.
Direct materials
Direct labor
Variable overhead applied ($\$ 2.00$ per MH $\times 72$ MHs)
Contribution margin
\$2,500
\$1,150
830
144 2,124
\$ 376

Exercise 2-9 (continued)

3b. The CFO's argument is based on the assertion that Job P90 does not generate enough revenue to cover the cost of the manufacturing resources that it consumes. However, given that the company is operating at 50\% of its manufacturing capacity, the overhead costs applied to Job P90 in requirement 2 do not represent the cost of the overhead resources consumed making Job P90. In other words, the overhead applied in requirement 2 includes a charge for used and unused capacity.

If we estimate a capacity-based overhead rate for the company and apply overhead costs to Job P90 using this rate, it reveals that the revenue generated by the job $(\$ 2,500)$ is still insufficient to cover its manufacturing costs of $\$ 2,556$, as computed below:

The estimated total overhead cost (at capacity) is computed as follows (keep in mind that $165,000 \mathrm{MHs} \div 50 \%=330,000 \mathrm{MHs}$):

$$
\mathrm{Y}=\$ 1,980,000+(\$ 2.00 \text { per MH)(330,000 MHs })
$$

Estimated fixed overhead \$1,980,000
Estimated variable overhead: $\$ 2.00$ per MH \times
330,000 MHs .. 660,000

Estimated total overhead cost \$2,640,000
The predetermined capacity-based overhead rate is computed as follows:

Estimated total overhead (a)
Estimated total machine-hours (b)
Predetermined overhead rate (a) $\div(b)$.
\$2,640,000
330,000 MHs
$\$ 8.00$ per MH

The total manufacturing cost assigned to Job P90 (using a capacity-based overhead rate):
Direct materials \$1,150
Direct labor 830
Overhead applied ($\$ 8$ per MH $\times 72 \mathrm{MHs}$) 576

Total manufacturing cost.
$\$ 2,556$

Exercise 2-10 (10 minutes)

1. Yes, overhead should be applied to Job W at year-end.

Because \$6,000 of overhead was applied to Job V on the basis of $\$ 8,000$ of direct labor cost, the company's predetermined overhead rate must be 75% of direct labor cost.
Job W direct labor cost (a).. \$4,000
Predetermined overhead rate (b) 0.75

Manufacturing overhead applied to Job W (a) $\times(\mathrm{b}) \ldots . . . \quad \$ 3,000$
2. The direct materials $(\$ 2,500)$, direct labor ($\$ 4,000$), and applied overhead $(\$ 3,000)$ for Job W will be included in Work in Process on Sigma Corporation's balance sheet.

Exercise 2-11 (30 minutes)

1. The estimated total fixed manufacturing overhead can be computed using the data from any of quarters 1-3. For illustrative purposes, we'll use the first quarter as follows:

Total overhead cost (First quarter) \$300,000
Variable cost element ($\$ 2.00$ per unit $\times 80,000$ units) 160,000
Fixed cost element ... \$140,000
2. The fixed and variable cost estimates from requirement 1 can be used to estimate the total manufacturing overhead cost for the fourth quarter as follows:

$$
Y=\$ 140,000+(\$ 2.00 \text { per unit)}(60,000 \text { units })
$$

Estimated fixed manufacturing overhead \$140,000
Estimated variable manufacturing overhead
$\$ 2.00$ per unit $\times 60,000$ units.
120,000
Estimated total manufacturing overhead cost
\$260,000
The estimated unit product cost for the fourth quarter is computed as follows:

Direct materials ... \$180,000
Direct labor 96,000
Manufacturing overhead..................................... $\underline{260,000}$
Total manufacturing costs (a) \$536,000
Number of units to be produced (b)..................... 60,000
Unit product cost (rounded) (a) $\div(\mathrm{b}) \ldots \quad \$ 8.93$

Exercise 2-11 (continued)

3. The fixed portion of the manufacturing overhead cost is causing the unit product costs to fluctuate. The unit product cost increases as the level of production decreases because the fixed overhead is spread over fewer units.
4. The unit product cost can be stabilized by using a predetermined overhead rate that is based on expected activity for the entire year. The cost formula created in requirement 1 can be adapted to compute the annual predetermined overhead rate. The annual fixed manufacturing overhead is $\$ 560,000$ ($\$ 140,000$ per quarter $\times 4$ quarters). The variable manufacturing overhead per unit is $\$ 2.00$. The cost formula is as follows:

$$
Y=\$ 560,000+(\$ 2.00 \text { per unit } \times 200,000 \text { units })
$$

Estimated fixed manufacturing overhead \$560,000
Estimated variable manufacturing overhead
$\$ 2.00$ per unit $\times 200,000$ units. 400,000
Estimated total manufacturing overhead cost
\$960,000
The annual predetermined overhead rate is computed as follows:
Estimated total manufacturing overhead (a) \$960,000 Estimated total units produced (b).............. 200,000
Predetermined overhead rate (a) $\div(\mathrm{b}) \ldots . .$. . $\$ 4.80$ per unit
Using a predetermined overhead rate of $\$ 4.80$ per unit, the unit product costs would stabilize as shown below:

Quarter

			Third	
Direct materi	\$240,000	\$120,000	\$ 60,000	\$180,000
Direct labor.	128,000	64,000	32,000	96,000
Manufacturing overhead: at $\$ 4.80$ per unit \qquad	384,000	192,000	96,000	288,000
Total cost (a).	\$752,000	\$376,000	\$188,000	\$564,000
Number of units produced (b).	80,000	40,000	20,000	60,000
Unit product cost (a) \div (b)	\$9.40	\$9.40	\$9.40	\$9.40

Exercise 2-12 (20 minutes)

1. The estimated total manufacturing overhead cost is computed as follows:

$$
Y=\$ 650,000+(\$ 3.00 \text { per MH })(100,000 \mathrm{MHs})
$$

Estimated fixed manufacturing overhead. \$650,000
Estimated variable manufacturing overhead: $\$ 3.00$ per MH $\times 100,000 \mathrm{MHs}$

300,000
Estimated total manufacturing overhead cost \$950,000
The plantwide predetermined overhead rate is computed as follows:

Estimated total manufacturing overhead (a)	$\$ 950,000$
Estimated total machine-hours (b)	$100,000 \mathrm{MHs}$
Predetermined overhead rate (a) \div (b)......	$\$ 9.50 \mathrm{per} \mathrm{MH}$

2. Total manufacturing cost assigned to Job 400:

Direct materials ... \$ 450
Direct labor ... 210
Manufacturing overhead applied (\$9.50 per MH $\times 40$
MHs)... 380
Total manufacturing cost.. \$1,040
3. The unit product cost of Job 400 is computed as follows:

Total manufacturing cost (a)..................... \$1,040
Number of units in the job (b).................... 52
Unit product cost (a) $\div(\mathrm{b}) . ~ \$ 20$
4. The selling price per unit is computed as follows:

Total manufacturing cost \$1,040
Markup (120\% of manufacturing cost) 1,248
Selling price for Job 400 (a)....................... $\$ 2,288$
Number of units in Job 400 (b) 52
Selling price per unit (a) \div (b) $\$ 44$

Exercise 2-12 (continued)

5. Possible critiques of Moody's pricing tactics include (1) relying on a plantwide overhead rate to allocate overhead costs to jobs may distort the cost base used for cost-plus pricing, (2) relying on an absorption approach may allocate unused capacity costs to jobs thereby distorting the cost base for cost-plus pricing, and (3) relying on absorption cost-plus pricing ignores the customers' willingness to pay based on their perceived value of the product or service.

Exercise 2-13 (20 minutes)

1. Cutting Department:

The estimated total manufacturing overhead cost in the Cutting Department is computed as follows:

$$
Y=\$ 264,000+(\$ 2.00 \operatorname{per} \mathrm{MH})(48,000 \mathrm{MHs})
$$

Estimated fixed manufacturing overhead \$264,000
Estimated variable manufacturing overhead $\$ 2.00$ per $\mathrm{MH} \times 48,000 \mathrm{MHs}$ 96,000
Estimated total manufacturing overhead cost.
\$360,000
The predetermined overhead rate is computed as follows:

Finishing Department:

The estimated total manufacturing overhead cost in the Finishing Department is computed as follows:

$$
Y=\$ 366,000+(\$ 4.00 \text { per DLH })(30,000 \text { DLHs })
$$

Estimated fixed manufacturing overhead
Estimated variable manufacturing overhead $\$ 4.00$ per DLH $\times 30,000$ DLHs 120,000
Estimated total manufacturing overhead cost. \$486,000

The predetermined overhead rate is computed as follows:
Estimated total manufacturing overhead (a) .. \$486,000
Estimated total direct labor-hours (b)
Predetermined overhead rate (a) \div (b)
$\$ 16.20$ per DLH

Exercise 2-13 (continued)

2. Total manufacturing cost assigned to Job 203:

Direct materials (\$500 + \$310)
\$ 810
Direct labor (\$108 + \$360).............................. 468
Cutting Department ($80 \mathrm{MHs} \times \$ 7.50$ per MH) .. $\quad \$ 600$
Finishing Department (20 DLH $\times \$ 16.20$ per DLH) ... 324 924
Total manufacturing cost. $\$ 2,202$
3. Yes; if some jobs require a large amount of machine time and a small amount of labor time, they would be charged substantially less overhead cost if a plantwide overhead rate based on direct labor hours were used. It appears, for example, that this would be true of Job 203 which required considerable machine time to complete, but required a relatively small amount of labor hours.

Exercise 2-14 (10 minutes)

1. The estimated total overhead cost is computed as follows:

$$
Y=\$ 4,800,000+(\$ 0.05 \text { per DL\$ })(\$ 8,000,000)
$$

Estimated fixed overhead
\$4,800,000

Estimated variable overhead: \$0.05 per DL\$ \times \$8,000,000 DL\$ 400,000
Estimated total overhead cost \$5,200,000
The predetermined overhead rate is computed as follows:

Estimated total overhead (a).....................	$\$ 5,200,000$
Estimated total direct labor-dollars (b).......	$8,000,000$ DL\$
Predetermined overhead rate (a) \div (b)......	$\$ 0.65$ per DL\$

2. Total cost assigned to You Can Say That Again:

Direct materials ... \$1,259,000
Direct labor
Overhead applied ($\$ 0.65$ per DL\$ $\times \$ 2,400,000$)...... 1,560,000
Total job cost .. \$5,219,000

Exercise 2-15 (45 minutes)

1a. The first step is to calculate the estimated total overhead costs in Molding and Fabrication:

Molding: Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost would be calculated as follows:

$$
Y=\$ 700,000+(\$ 3.00 \operatorname{per} \mathrm{MH})(20,000 \mathrm{MHs})
$$

Estimated fixed manufacturing overhead. \$700,000
Estimated variable manufacturing overhead: $\$ 3.00$ per $\mathrm{MH} \times 20,000 \mathrm{MHs}$ 60,000
Estimated total manufacturing overhead cost \qquad $\$ 760,000$

Fabrication: Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost would be calculated as follows:

$$
\mathrm{Y}=\$ 210,000+(\$ 1.00 \text { per } \mathrm{MH})(30,000 \mathrm{MHs})
$$

Estimated fixed manufacturing overhead. \$210,000
Estimated variable manufacturing overhead: \$1.00 per MH $\times 30,000 \mathrm{MHs}$ 30,000
Estimated total manufacturing overhead cost \$240,000

The second step is to combine the estimated manufacturing overhead costs in Molding and Fabrication ($\$ 760,000+\$ 240,000=\$ 1,000,000$) to enable calculating the predetermined overhead rate as follows:

Estimated total manufacturing overhead (a) \$1,000,000 Estimated total machine-hours (b) 50,000 MHs
Predetermined overhead rate (a) $\div(b)$...... $\$ 20.00$ per MH

Exercise 2-15 (continued)

1b. Total manufacturing cost assigned to Jobs D-70 and C-200:

		D-70		C-200
Direct materials	\$	700,000		550,000
Direct labor		360,000		400,000
Manufacturing overhead applied (\$20.00 per MH $\times 20,000 \mathrm{MHs}$; $\$ 20.00$ per $\mathrm{MH} \times$				
30,000 MHs).		400,000		600,000
Total manufacturing cost		460,000		1,550,000

1c. Bid prices for Jobs D-70 and C-200:

	D-70	C-200
Total manufacturing cost (a)	\$1,460,000	\$1,550,000
Markup percentage (b)	150\%	150\%
Bid price (a) $\times(\mathrm{b})$.	\$2,190,000	\$2,325,000

1d. Because the company has no beginning or ending inventories and only Jobs D-70 and C-200 were started, completed, and sold during the year, the cost of goods sold is equal to the sum of the manufacturing costs assigned to both jobs of \$3,010,000 (=\$1,460,000 + $\$ 1,550,000$).

Exercise 2-15 (continued)

2a. Molding Department:

Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost would be depicted as follows:

$$
\mathrm{Y}=\$ 700,000+(\$ 3.00 \text { per MH)(20,000 MHs })
$$

Estimated fixed manufacturing overhead................. \$700,000
Estimated variable manufacturing overhead: \$3.00

Estimated total manufacturing overhead cost \$760,000
The predetermined overhead rate is computed as follows:

Estimated total manufacturing overhead (a).	$\$ 760,000$
Estimated total machine-hours (b) \ldots.	$20,000 \mathrm{MHs}$
Predetermined overhead rate (a) \div (b) $\ldots . .$.	$\$ 38.00 \mathrm{per} \mathrm{MH}$

Fabrication Department:
Using the equation $Y=a+b X$, the estimated total manufacturing overhead cost would be depicted as follows:

$$
Y=\$ 210,000+(\$ 1.00 \operatorname{per} \mathrm{MH})(30,000 \mathrm{MHs})
$$

Estimated fixed manufacturing overhead.................. \$210,000
Estimated variable manufacturing overhead: \$1.00
per MH $\times 30,000 \mathrm{MHs}$
30,000
Estimated total manufacturing overhead cost \$240,000
The predetermined overhead rate is computed as follows:

Estimated total manufacturing overhead (a).	$\$ 240,000$
Estimated total direct labor-hours (b)..........	$30,000 \mathrm{MHs}$
Predetermined overhead rate (a) \div (b) $\ldots . .$.	$\$ 8.00 \mathrm{per} \mathrm{MH}$

Exercise 2-15 (continued)

2b. Total manufacturing costs assigned to Jobs D-70 and C-200:

	D-70	C-200
Direct materials.	\$ 700,000	\$ 550,000
Direct labor..	360,000	400,000
Molding Department ($14,000 \mathrm{MHs} \times \$ 38$ per MH; 6,000 MHs $\times \$ 38$ per MH).	532,000	228,000
Fabrication Department ($6,000 \mathrm{MH} \times \$ 8$ per MH; $24,000 \mathrm{MH} \times \$ 8$ per MH)	48,000	192,000
Total manufacturing cost	\$1,640,000	\$1,370,000

2c. Bid prices for Jobs D-70 and C-200:

	D-70	c-200
Total manufacturing cost (a)	\$1,640,000	\$1,370,000
Markup percentage (b)	150\%	150\%
Bid price (a) $\times(\mathrm{b})$	\$2,460,000	\$2,055,000

2d. Because the company has no beginning or ending inventories and only Jobs D-70 and C-200 were started, completed, and sold during the year, the cost of goods sold is equal to the sum of the manufacturing costs assigned to both jobs of \$3,010,000 (=\$1,640,000 + \$1,370,000).
3. The plantwide and departmental approaches for applying manufacturing overhead costs to products produce identical cost of goods sold figures. However, these two approaches lead to different bid prices for Jobs D70 and C-200. The bid price for Job D-70 using the departmental approach is $\$ 270,000(=\$ 2,460,000-\$ 2,190,000)$ higher than the bid price using the plantwide approach. This is because the departmental cost pools reflect the fact that Job D-70 is an intensive user of Molding machine-hours. The overhead rate in Molding (\$38) is much higher than the overhead rate in Fabrication (\$8). Conversely, Job C-200 is an intensive user of the less-expensive Fabrication machine-hours, so its departmental bid price is $\$ 270,000$ lower than the plantwide bid price.

Exercise 2-15 (continued)

Whether a job-order costing system relies on plantwide overhead cost allocation or departmental overhead cost allocation does not usually have an important impact on the accuracy of the cost of goods sold reported for the company as a whole. However, it can have a huge impact on internal decisions with respect to individual jobs, such as establishing bid prices for those jobs. Job-order costing systems that rely on plantwide overhead cost allocation are commonly used to value ending inventories and cost of goods sold for external reporting purposes, but they can create costing inaccuracies for individual jobs that adversely influence internal decision making.

1a. The estimated total overhead cost is computed as follows:

$$
Y=\$ 784,000+(\$ 2.00 \text { per DLH })(140,000 \text { DLHs })
$$

The predetermined overhead rate is computed as follows:

Estimated total manufacturing overhead (a)	$\$ 1,064,000$
Estimated total direct labor-hours (b)	140,000 DLH
Predetermined overhead rate (a) \div (b)......	$\$ 7.60$ per DLH

1b. Total manufacturing cost assigned to Job 550:
Direct materials ... \$175
Direct labor
Manufacturing overhead applied ($\$ 7.60$ per DLH \times
15 DLH) ...
114
Total manufacturing cost of Job 550 \$514

1c. The selling price for Job 550 is computed as follows: Job 550
Total manufacturing cost... \$ 514
Markup (200\%)... 1,028
Selling price
\$1,542

Problem 2-16 (continued)

2a. The estimated total overhead cost is computed as follows:

$$
Y=\$ 784,000+(\$ 4.00 \text { per MH)(70,000 MHs })
$$

Estimated fixed manufacturing overhead................. \$ 784,000
Estimated variable manufacturing overhead: \$4.00 per MH $\times 70,000 \mathrm{MHs}$ 280,000
Estimated total manufacturing overhead cost \$1,064,000

The predetermined overhead rate is computed as follows:

Estimated total manufacturing overhead (a)	$\$ 1,064,000$
Estimated total machine-hours (b)..............	$70,000 \mathrm{MHs}$
Predetermined overhead rate (a) \div (b).......	$\$ 15.20 \mathrm{per} \mathrm{MH}$

2b. Total manufacturing cost assigned to Job 550:

Direct materials	\$175
Direct labor	225
Manufacturing overhead applied (\$15.20 per MH $\times 5$	
MH) .	76
Total manufacturing cost of Job 550	\$476

2c. The selling price for Job 550 is computed as follows:

Markup (200\%)
952
Selling price
\$1,428
3. The price for Job 550 using direct labor-hours as the allocation base ($\$ 1,542$) is $\$ 114$ higher than the price derived using machine-hours as the allocation base ($\$ 1,428$). If machine-hours is the better choice for an allocation base, then if Landen continues to use direct labor-hours as its overhead allocation base, it will overprice jobs that are intensive users of direct labor-hours and non-intensive users of machine-hours. In a bidding situation, Landen will tend to lose bids on jobs such as Job 550 if its competitors have more accurate cost accounting systems.

Problem 2-17 (20 minutes)

1. The predetermined plantwide overhead rate is computed as follows:

Estimated manufacturing overhead (a) \$1,400,000
Estimated total direct labor-hours (b) 80,000
Predetermined overhead rate (a) $\div(b)$.
$\$ 17.50$ per DLH
The overhead applied to Job Bravo is computed as follows:
Direct labor-hours worked on Bravo (a) Predetermined overhead rate (b) \qquad 14

Overhead applied to Bravo (a) $\times(\mathrm{b})$ \qquad $\$ 17.50$ per DLH \$245
2. The predetermined overhead rate in Assembly is computed as follows:

Estimated manufacturing overhead (a)....... \$600,000
Estimated total direct labor-hours (b)
Predetermined overhead rate (a) $\div(b)$. \qquad
50,000 DLHs $\$ 12.00$ per DLH

The predetermined overhead rate in Fabrication is computed as follows:
Estimated manufacturing overhead (a)....... \$800,000
Estimated total machine-hours (b) 100,000 MHs
Predetermined overhead rate (a) \div
(b)
$\$ 8.00$ per MH
The overhead applied to Job Bravo is computed as follows:

Quantity of allocation base used (a)
Predetermined overhead rate (b)
Overhead applied to Bravo (a) $\times(\mathrm{b})$

Assembly Fabrication Total

11	6	
$\$ 12.00$	$\$ 8.00$	
$\$ 132$	$\$ 48$	$\$ 180$

Problem 2-18 (15 minutes)

1. The estimated total overhead cost is computed as follows:

$$
Y=\$ 350,000+(\$ 1.00 \text { per DLH })(20,000 \text { DLHs })
$$

Estimated fixed overhead \$350,000
Estimated variable overhead: $\$ 1.00$ per DLH \times 20,000 DLHs 20,000
Estimated total overhead cost
$\$ 370,000$
The predetermined overhead rate is computed as follows:

Estimated total overhead (a)
Estimated total direct labor-hours (b)
Predetermined overhead rate (a) $\div(b)$
\$370,000
20,000 DLHs
$\$ 18.50$ per DLH
2. Total manufacturing cost assigned to Mr. Wilkes:

Direct materials ... \$590
Direct labor 109
Overhead applied ($\$ 18.50$ per DLH $\times 6$ DLH) 111
Total cost assigned to Mr. Wilkes
$\$ 810$
3. The price charged to Mr. Wilkes is computed as follows:

Job Wilkes
Total manufacturing cost
\$ 810
Markup (40\%) 324
Selling price
\$1,134

Problem 2-19 (20 minutes)

1. Molding Department:

The estimated total manufacturing overhead cost in the Molding Department is computed as follows:

$$
\mathrm{Y}=\$ 497,000+\$ 1.50 \text { per } \mathrm{MH} \times 70,000 \mathrm{MHs}
$$

Estimated fixed manufacturing overhead \$497,000
Estimated variable manufacturing overhead:
$\$ 1.50$ per $\mathrm{MH} \times 70,000 \mathrm{MHs}$ 105,000
Estimated total manufacturing overhead cost.
\$602,000
The predetermined overhead rate is computed as follows:
Estimated total manufacturing overhead (a). \$602,000
Estimated total machine-hours (b) 70,000 MHs
Predetermined overhead rate (a) $\div(b) \ldots \quad \$ 8.60$ per MH
Painting Department:
The estimated total manufacturing overhead cost in the Painting Department is computed as follows:

$$
Y=\$ 615,000+\$ 2.00 \text { per DLH } \times 60,000 \text { DLHs }
$$

Estimated fixed manufacturing overhead \$615,000
Estimated variable manufacturing overhead:
$\$ 2.00$ per DLH $\times 60,000$ DLHs
120,000
Estimated total manufacturing overhead cost.
\$735,000
The predetermined overhead rate is computed as follows:
Estimated total manufacturing overhead (a). \$735,000
Estimated total DLHs (b) 60,000
DLHs
Predetermined overhead rate (a) $\div(\mathrm{b}) \ldots \quad \$ 12.25$ per DLH

Problem 2-19 (continued)

2. Molding Department overhead applied:

110 machine-hours $\times \$ 8.60$ per machine-hour $\$ 946$
Painting Department overhead applied: 84 direct labor-hours $\times \$ 12.25$ per DLH

1,029
Total overhead cost. \$1,975
3. Total cost of Job 205:

	Molding		
	Deinting		
Det.	Dept.	Total	
Direct materials......................	$\$ 770$	$\$ 1,332$	$\$ 2,102$
Direct labor...........................	525	1,470	1,995
Manufacturing overhead applied	$\underline{946}$	$\underline{1,029}$	$\underline{1,975}$
Total manufacturing cost	$\underline{\$ 2,241}$	$\underline{\$ 3,831}$	$\underline{\$ 6,072}$

Unit product cost for Job 205:
Total manufacturing cost (a).................... \$6,072
Number of units in the job (b).
50 units
Unit product cost (a) \div (b)
\$121.44 per unit

Problem 2-20 (45 minutes)

1a. The first step is to calculate the total estimated overhead costs in ICU and Other:

ICU: Using the equation $Y=a+b X$, the estimated total overhead cost would be calculated as follows:

$$
Y=\$ 3,200,000+(\$ 236 \text { per patient-day)(2,000 patient-days })
$$

Estimated fixed overhead
\$3,200,000

Estimated variable overhead:
$\$ 236$ per patient-day $\times 2,000$ patient-days........ 472,000
Estimated total overhead cost
\$3,672,000
Other: Using the equation $Y=a+b X$, the estimated total overhead cost would be calculated as follows:
$Y=\$ 14,000,000+(\$ 96$ per patient-day)(18,000 patient-days)
Estimated fixed overhead \$14,000,000
Estimated variable overhead:
$\$ 96$ per patient-day $\times 18,000$ patient-days 1,728,000
Estimated total overhead cost
$\$ 15,728,000$
The second step is to combine the estimated overhead costs in ICU and Other $(\$ 3,672,000+\$ 15,728,000=\$ 19,400,000)$ to enable calculating the predetermined overhead rate as follows:

Estimated total overhead (a)
Estimated total patient-days (b)
Predetermined overhead rate (a) \div (b)
\$19,400,000
20,000 patient-days
\$970 per patient-day

Problem 2-20 (continued)

1b. The total cost assign to Patients A and B is computed as follows:

	Patient A	Patient B
Direct materials	\$ 4,500	\$ 6,200
Direct labor.	25,000	36,000
Overhead applied (\$970 per patient-day $\times 14$ patient days; (\$970 per patientday $\times 21$ patient days)	13,580	20,370
Total cost	\$43,080	\$62,570

2a. The overhead rate in ICU is computed as follows:
$\mathrm{Y}=\$ 3,200,000+$ ($\$ 236$ per patient-day)(2,000 patient-days)
Estimated fixed overhead
\$3,200,000

Estimated variable overhead:
$\$ 236$ per patient-day $\times 2,000$ patient-days........ 472,000
Estimated total overhead cost
\$3,672,000
The predetermined overhead rate is computed as follows:

> Estimated total overhead (a) Estimated total patient-days (b) Predetermined overhead rate (a) \div (b)
\$3,672,000
2,000 patient-days
\$1,836 per patient-day

The overhead rate in Other is computed as follows:

$$
\mathrm{Y}=\$ 14,000,000+(\$ 96 \text { per patient-day)(18,000 patient-days) }
$$

Estimated fixed overhead
\$14,000,000

Estimated variable overhead:
$\$ 96$ per patient-day $\times 18,000$ patient-days 1,728,000
Estimated total overhead cost
$\$ 15,728,000$
The predetermined overhead rate is computed as follows:

Estimated total overhead (a) \qquad \$15,728,000
Estimated total patient-days (b) Predetermined overhead rate (rounded) (a) \div (b)

18,000 patient-days
$\$ 873.78$ per patient-day

Problem 2-20 (continued)

2b. The total cost assigned to Patient A:

Direct materials		\$ 4,500
Direct labor		25,000
ICU (\$1,836 per patient-day $\times 0$ patient-days).	0	0
Other ($\$ 873.78$ per patient day $\times 14$ patientdays) (rounded to nearest dollar)	12,233	12,233
Total cost assigned to Patient A		\$41,733

The total cost assigned to Patient B:

Direct materials		\$ 6,200
Direct labor		36,000
ICU ($\$ 1,836$ per patient-day $\times 7$ patient-days).	\$12,852	
Other ($\$ 873.78$ per patient day $\times 14$ patientdays) (rounded to nearest dollar)	12,233	25,085
Total cost assigned to Patient B .		\$67,285

3. Relying on just one predetermined overhead rate overlooks the fact that some departments are more intensive users of overhead resources than others. As the name implies, patients in the ICU require more intensive (and expensive) care than other patients in other departments. Broadly speaking, relying on only one overhead rate, will most likely overcost patients with less severe illnesses and undercost patients with more severe illnesses.

Problem 2-21 (30 minutes)

1. The plantwide predetermined overhead rate is computed as follows:
$\begin{array}{lr}\text { Estimated manufacturing overhead (a) } \ldots . . . & \$ 600,000 \\ \text { Estimated total direct labor-hours (b) } & 60,000 \text { DLHs } \\ \text { Predetermined overhead rate (a) } \div \text { (b)...... } & \$ 10 \text { per DLH }\end{array}$
The overhead applied to Job A is computed as follows:
Direct labor-hours worked on Job A (a) 15
Predetermined overhead rate (b) \qquad $\$ 10$ per DLH
Overhead applied to Job A (a) × (b)
The overhead applied to Job B is computed as follows:
Direct labor-hours worked on Job B (a)
Predetermined overhead rate (b)
\$10 per DLH
Overhead applied to Job B (a) $\times(\mathrm{b})$.
2. The predetermined overhead rate in Machining is computed as follows:

Estimated manufacturing overhead (a) $\ldots . .$.	$\$ 500,000$
Estimated total machine-hours (b)	$50,000 \mathrm{MHs}$
Predetermined overhead rate (a) \div (b)......	$\$ 10$ per MH

The predetermined overhead rate in Assembly is computed as follows:

Estimated manufacturing overhead (a)......	$\$ 100,000$
Estimated total direct labor-hours (b)	50,000 DLHs
Predetermined overhead rate (a) \div (b)......	$\$ 2$ per DLH

The overhead applied to Job A is computed as follows:

	Machining	Assembly	Total
Quantity of allocation base used (a).	11	10	
Predetermined overhead rate (b) $\ldots .$.	$\$ 10$	$\$ 2$	
Overhead applied to Job A (a) $\times(\mathrm{b})$.	$\$ 110$	$\$ 20$	$\$ 130$

Problem 2-21 (continued)

The overhead applied to Job B is computed as follows:

Quantity of allocation base used (a). Predetermined overhead rate (b) Overhead applied to Job B (a) $\times(\mathrm{b})$.

Machining	Assembly	Total
12	5	
$\$ 10$	$\$ 2$	
$\$ 120$	$\$ 10$	$\$ 130$

3. The plantwide approach will overcost jobs that are intensive users of Assembly and minimal users of Machining. Conversely, it will undercost products that are intensive users of Machining and minimal users of Assembly. These cost distortions will adversely impact the company's pricing process. Jobs that get overcosted will have selling prices that are greater than the prices that would be established using departmental overhead allocation. Jobs that get undercosted will have selling prices that are less than the prices that would be established using departmental overhead allocation.

Case (60 minutes)

1. a.

$$
\begin{aligned}
\begin{array}{c}
\text { Predetermined } \\
\text { overhead rate }
\end{array} & =\frac{\text { Estimated total manufacturing overhead cost }}{\text { Estimated total amount of the allocation base }} \\
& =\frac{\$ 840,000}{\$ 600,000 \text { direct labor cost }}=\begin{array}{c}
140 \% \text { of direct } \\
\text { labor cost }
\end{array}
\end{aligned}
$$

b. The manufacturing overhead cost applied to the Koopers job is computed as follows:

$$
\$ 9,500 \times 140 \%=\$ 13,300
$$

2. a.

Estimated manufacturing overhead cost (a).......
Estimated direct labor cost (b).
Predetermined overhead rate (a) $\div(b) \ldots$.

Fabricating Machining Assembly
Department Department Department
$\$ 350,000 \$ 400,000 \$ 90,000$
$\$ 200,000 \$ 100,000 \quad \$ 300,000$

400\%
30\%
b. Fabricating Department:
$\$ 2,800 \times 175 \% \ldots . ~ \$ 4,900$
Machining Department: $\$ 500 \times 400 \%$

2,000
Assembly Department: \$6,200 × 30\%

1,860
Total applied overhead
3. The bulk of the labor cost on the Koopers job is in the Assembly Department, which incurs very little overhead cost. The department has an overhead rate of only 30% of direct labor cost as compared to much higher rates in the other two departments. Therefore, as shown above, use of departmental overhead rates results in a relatively small amount of overhead cost being charged to the job.
Use of a plantwide overhead rate in effect redistributes overhead costs proportionately between the three departments (at 140\% of direct labor

Case (continued)

cost) and results in a large amount of overhead cost being charged to the Koopers job, as shown in Part 1. This may explain why the company bid too high and lost the job. Too much overhead cost was assigned to the job for the kind of work being done on the job in the plant.
On jobs that require a large amount of labor in the Fabricating or Machining Departments the opposite will be true, and the company will tend to charge too little overhead cost to the jobs if a plantwide overhead rate is being used. The reason is that the plantwide overhead rate (140%) is much lower than the rates would be if these departments were considered separately.
4. The company's bid was:

Direct materials.	\$ 4,600
Direct labor.	9,500
Manufacturing overhead applied (see requirement 1b)	13,300
Total manufacturing cost	\$27,400
Bidding rate	$\times 1.5$
Total bid price..	\$41,100

If departmental overhead rates had been used, the bid would have been:

Direct materials.	\$ 4,600
Direct labor	9,500
Manufacturing overhead applied (see requirement 2b) \qquad	8,760
Total manufacturing cost	\$22,860
Bidding rate .	$\times 1.5$
Total bid price	\$34,290

Note that if departmental overhead rates had been used, Teledex Company would have been the low bidder on the Koopers job because the competitor underbid Teledex by only $\$ 2,000$.

Communicating in Practice

Date: Current date
To: Instructor
From: Student's Name
Subject: Talk with a Controller
The student's memorandum should address the following:

- The name, title, and job affiliation of the individual interviewed. (Note: Not specifically required in problem but essential and, as such, a good topic for class discussion, if appropriate.)
- A list of the company's main products.
- Identification of the type of costing system in use (job-order, process, or other).
- Brief description of how overhead is assigned to products (including basis for allocation and whether more than one overhead rate is in use).
- Indication as to whether any changes have been made to or are being considered in relation to the company's costing system, and, if applicable, a brief description of the changes.

