Preface

This Instructor’s Solutions Manual contains solutions for essentially all of the exercises in the
text that are intended to be done by hand. Solutions to Matlab exercises are not included.
The Student’s Solutions Manual that accompanies this text contains solutions for only selected
odd-numbered exercises, including those exercises whose answers appear in the answer key. The
solutions that appear in the students’ manual are identical to those provided in this manual,
and generally provide a more detailed solution than is available in the answer key. Although no
pattern is strictly adhered to throughout the student manual, the solutions provided there are
primarily to the computational exercises, whereas solutions that involve proof are generally not
included. None of the solutions to the supplementary end-of-chapter exercises are included in the
student manual.
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Chapter 1

Matrices and Systems of Equations

1.1 Introduction to Matrices and Systems of Linear Equations
1. Linear.
2. Nonlinear.
3. Linear.
4. Nonlinear.

5. Nonlinear.

6. Linear.

7. 21+3x2 = 7 1+3-2 = 7
dri—a9 = 2 4-1-2 = 2

8 Ob6x1—ax0+x3 = 14 6-2—(-1)+1 = 14
r1+2x+4zyg = 4 242-(-1)+4-1 = 4

9. r1+xT0 = 0 1+(—1) = 0
3x1+4xy = -1 3-14+4-(-1) = -1
—x1+ 20 = -3 —1—|—2-(—1) = -3

10. 329 =9, 3:3 = 9
41’1 = 8, 4.2 = 8

11. Unique solution.
12. No Solution

13. Infinitely many solutions.
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14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

No solution.

(a) The planes do not intersect; that is, the planes are parallel.

(b) The planes intersect in a line or the planes are coincident.

The planes intersect in the line x = (1 —t)/2,y =2,z = t.

The planes intersect in the line x =4 - 3t,y =2t — 1,z =t.

Coincident planes.

2 1 6
A= |: 4 3 8 ]
1 2 71
o133 1)
1 4 -3
Q=1|21 1
3 2 1
r1 +2x9 +Tx3 = 1
2x1 +2x9 +4x3 = 3
221 + a2 = ;o1 + 4dxy = =3
dry + 3z = 21 4+ x92 = 1
3r1 + 229 =
1 -1 1 -1 -1
A= [ 11 } » B= [ 1 1 3 ]
1 1 -1 1 1 -1 2
A_[Q —1]73_[20—11]'
1 3 -1 1 3 -1 1
A= 5 1|, B= 2 5 1 5
| 1 1 1 1 1 1 3
1 1 2 1 1 2 6
A= 3 4 -1 |, B= 3 4 -1 5
| -1 1 1 -1 1 1 2
[ 1 1 -3 1 1 -3 -1
A= 1 2 -5 |, B= 1 2 -5 =2
| -1 -3 7 -1 -3 7 3
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29.

30.

31.

32.

33.

1 11 1 1 11
A=12 3 1|,B=1]2 31 2
1 -1 3 1 -1 3 2

Elementary operations on equations: FEy — 2F7 .

21 + 3z = 6

Reduced system of equations: Ty = -5

Elementary row operations: R —2R; .

Reduced augmented matrix: { (2) _? _g }

Elementary operations on equations: Fo — Fy, F3+ 2F .

1+ 229 —23 = 1
Reduced system of equations: —22+3z3 = 1.
5%2 - 2:133 =

Elementary row operations: Ro — Ry, R3+ 2Ry .

1 2 -1 1
Reduced augmented matrix: | 0 —1 3 1
0 5 -2 6

Elementary operations on equations: FEj < Fo, E3 —2F; .

Tl —x9+2x3 = 1
Reduced system of equations: To+2x3 = 4.
31’2 — 53}3 = 4

Elementary row operations: R; <+ Rs, R3 —2R; .

1 -1 21
Reduced augmented matrix: | 0 1 1 4
0 3 -5 4

Elementary operations on equations: FEy — E1, F3 —3FE; .

r1+x0 = 9
Reduced system of equations: —2x9 = 2.
—2xy = =21

Elementary row operations: Ro — R, R3 —3R; .

1 1 9
Reduced augmented matrix: | 0 —2 -2
0 -2 =21
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34.

35.

36.

37.

38.

Elementary operations on equations: FEs + E1, F3+2FE; .
ryt+retaz—xg4 = 1
Reduced system of equations: 2y = 4.

3r9+3x3 —3x4y = 4
Elementary row operations: Ro + Ri, R34+ 2R; .

1 1 1 -1 1
Reduced augmented matrix: | 0 2 0 0 4
0 3 3 -3 4
Elementary operations on equations: FEy < Fy, E3+ Ep .
T+ 229 —x3+2x4 = 1
Reduced system of equations: Tot+x3—x4 = 3.
3rg+6x3 = 1

Elementary row operations: Ro < Rj, Rs+ R1 .

12 -1 11
Reduced augmented matrix: | 0 1 1 -1 3
03 6 01

Elementary operations on equations: Fs — Fy, E3 — 3E; .

1 +x2 = 0
Reduced system of equations: -2z = 0.
—2:132 = 0

Elementary row operations: Ro — R;, R3 —3R; .

1 10
Reduced augmented matrix: | 0 —2 0
0 -2 0

(b) In each case, the graph of the resulting equation is a line.

Now if aj; =0 we easily obtain the equivalent system

a21T1 + a22%2 by
ajpr2 = by

Thus we may suppose that a;; # 0. Then :

2171 + a2 = by =

a1z +aprs = by { E; — (ag1/a11)Eq

|
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a11x1 + apr2 = by a11b2 }
((—a21/a11)a1a + ag)re = (—az/a11)by + be -
a1121 + apre = by
(a11a22 — a12a21)r2 = —a21b1 + a11ba

Each of a;; and (aj1a22 — aj2a21) is non-zero. m

39. Let
A— { a11x1 + ajax2 = by }

a2171 + a2 = ba
and let

B— { a1121 + ajaw2 = by }
cao1x1 + cassry = cby
Suppose that £1 = s1, 9 = s9 is a solution to A . Then a1181 + a1282 = b1, and a1 s1 +
2282 = by. But this means that cas1s1 + cagzese = cby and so x1 = s1, xg = so is also a
solution to B . Now suppose that x1 = t1, x9 = t9 is asolution to B . Then a11t1+aq2to = by
and cagit1 + cagato = cby . Since ¢ # 0 | ag1x1 + agero = by . M

40. Let

a2171 + agrs = by

A:{ a11x1 + apr2 = by }

and let

{ a1171 + ajax2 = by }
(ag1 + caii)x1 + (age + carz)wa = ba + cby

Let 1 = s1 and 29 = s9 be a solution to A . Then a1151+a1252 = b1 and as151+ag252 = by so
a1181+a1282 = by and (ag1+cai1)si+(age+caia)se = ba+cby as required. Now if 1 = ¢; and
x9 = tg is a solution to B then aj1t1+a12te = by and (ag1 +cayy)t; +(age+caio)te = ba+cby,
S0 a11t1 + ajoto = b1 and a9t + ajoto = by as required. m

41. The proof is very similar to that of 45 and 46.

42. By adding the two equations we obtain: Qx% —2x1 = 4. Then 1 = 2 or 1 = —1 and
substituting these values in the second equation we find that there are three solutions:

r1=-1,20=0;21=2,22=V3, ;21 =2, 25 = —V3.
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1.2 Echelon Form and Gauss-Jordan Elimination

1. The matrix is in echelon form. The row operation Ry — 2R, transforms the matrix to

reduced echelon form [ é (1) ]

2. Echelon form. Ry — 2R; yields reduced row echelon form [ 10 -7 ]

01 3

3. Not in echelon form. (1/2)Ry, Re —4R1, (—1/5)Ry yields echelon form [ (1) 3{2 ;g }
123 ]

4. Not in echelon form. R; < R yields echelon form [ 01 1

5. Not in echelon form.

, 10 1/2 2
Ry < Ry, (1/2)Ry, (1/2)Ry yields the echelon form [ 00 1 32 ]

6. Not in echelon form.

(1/2)R; yields the echelon form L0 3/2 172 ]

00 1 2
7. Not in echelon form. Ry — 4Rs3, R; — 2R3, Ry — 3Rs yields the reduced echelon form

1 00 5
010 =2
001 1
1 —1/2 3/2
8. Not in echelon form. (1/2)R;, (—1/3)Rs3 yields the echelon form | 0 1 1
0 0 1
1 2 -1 =2
9. Not in echelon form. (1/2)Rs yields the echelon form | 0 1 —1 —3/2
00 0 1

1 -4 3 —4 —6
10. Not in echelon form —R;, (1/2)Rs yields the echelon form | 0 1 1/2 —-3/2 -3/2
0 0 0 1 2
11. T = 0, To = 0.
12. The system is inconsistent.

13. 1 = —2 4 b5x3, xo = 1 — 3z3, z3 is arbitrary.

14. T = 1—21‘3, T2 =0.
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15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.

37.

r1=0,29 =0, 23 =0.

1 =0,290 =0, 23 =0.

r1 = x3 = x4 = 0, xo is arbitrary.

The system is inconsistent.

The system is inconsistent.

r1 =3x4 —bx5 — 2, x9 = T4 + x5 — 2, 3 = —224 — T5 + 2, T4 and x5 are arbitrary.
x1=—1—(1/2)xa + (1/2)z4, x3 = 1 — x4, 22 and x4 arbitrary, x5 = 0.

x1 = (5 + 3x2)/2, xo arbitrary.

The system is inconsistent.

r1 = x3, T2 = —3 4 2x3, x3 arbitrary.

r1 = 2 — 9, T9 arbitrary.

x1 = 10 4+ x9, xo arbitrary, rz = —6.

r1 =2 — x9 + x3, T2 and x3 arbitrary.

xr1 = 2x3, xo = 1, x3 arbitrary.

r1 =3 — 2x3, xo = —2 + 3x3, T3 arbitrary.

r1 = —3x4 — 625, x0 = 1 4+ 314 + Tx5, x3 = —224 — S5, T4 and x5 arbitrary.

x1 = 3— (Twy — 1625)/2, x9 = (x4 +2x5)/2, v3 = =2+ (5xgy — 1225) /2, 24 and x5 arbitrary.
1 =2, x90 = —1.

The system is inconsistent.

x1 =1 — 2x9, xo arbitrary.

The system is inconsistent.

1+ 2x9 = -3 E+ Ey 1 +2x2 = -3
ary —2xy = 5 = (a+ 1Dz = 2
’Hence if @ = —1 there is no solution. ‘
1+ 39 = 4 Ey — 2F, r1+3xy = 4
2x1 +6x2 = a == 0 = a-—38

’ Thus, if a # 8 there is no solution. ‘
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38 201 +4x9 = a Ey — (3/2)E1 201 +4z0 = a
" 3r1+6x2 = 5 = 0 = 5—(3/2)a
I Thus, if a # 10/3 there is no solution. ‘
39 3z1+ars = 3 Es — (a/3)E; 3z1 +ars = 3
T ar1+3z2 = 5 — (a2/3—3)x2 = 5—a
‘ Thus, if a = +3 there is no solution. ‘
A0 r1+are = 6 Es — aFEq T +ary = 6
" ary+2ar9 = 4 = (2a —a*)zy = 4—6a

41. cosa =1/2 and sinf =1/2,s0 a = w/3 or « = 57/3 and = 7/6 or § = 57 /6.

42. cos’a = 3/4 and sin? 3 = 1/2. The choices for a are 7/6, 57/6, 7r/6, and 117/6. The
choices for  are w/4, 3w /4, 5w /4, and Tr /4.

43. x1 = 1 — 2x3, x2 = 2 + x3, w3 arbitrary. (a) z3 = 1/2. (b) In order for 1 > 0,22 > 0, we
must have —2 < z3 < 1/2; for a given 1 and z2,y = —6 — 7x3, so the minimum value is
y =8 at x3 = —2. (¢) The minimum value is 20.

R — (d/(b—cd)R
" [i Z] { RZ;:Rl } [é b—dcd} (lreCa”b—cdséoQ

o vt ] 4 0]

8 8
| IS
| —

S =

o8

—_ 8
| IS
| —

S =
oK
o8
—_
| — |
o O
O

—_ 8
—_ 1

|
o |
|

(1 =z 1 =z 0 1 00
46. ) |0 1|,]oo0],|o0 1o oo
_OO 0 0 0 0 0 0
[ 1 =z 2] 1 z =z 1 z = 1 z =z
mlo1az],lo1z|,]l0o01|,]000],
| 0 0 1 0 0 O 0 0 O 0 0 O
[0 1 x ] 01 =z 0 0 1 0 0 0
001,100 0}],1]00O0O(,[0 0 0/{.
(000 |00 O 000 000
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47.

48.

49.

50.

51.

1l 2 » «x 1l 2 = «x 1 2 = «x
¢c)l0 1 z2z|,{01 2z 2z|,|01 2z x|,
(001 2] [0001] 000 0]
(1 2 2 2] [1 2z 2z 2] [1 2 = =z
001 z|,]l001x|,l0001
l0o0oo01] [00o00] 000 0]
(1 2z 2 2] [0 1 2z 21 [0 1 = =z
0000|,l001=z]|,[l000 1],
lo0oo00] [0001] o000
[0 1 2z 2] [0 O 1 =z 001 x
ooo0o0f|,loo001],]0oo00 0],
(000 0] [0000 000 0
[0 0 0 1 0 0 0 O
00 O0O0O],]00 00O
| 00 0 0 0 0 0 O
1 2 2R, 1 2 Ry — Ry 1 2
2 3 = 4 6 = 3 4|
1 47 ( Ro—3R, | [1 4 Ri + (2/5)Rs

o SRR SIS

+ 2Ry 1 2
— 2 1

100z; + 10x9 + 23 = 15(w1 + 22 + 23)
100x3 + 1029 + 1 = 10021 + 1022 4+ x3 + 396
rs = x1+xo+1

x1=1,29=3,and 3 =5, so N = 135.

a—b+c = 6
at+b+c = 4
4a+2b+c¢c = 9

a=2,b=-1,¢c=3. Soy=2z%>—z+3.

Let x1, x9, z3 be the amounts initially held by players one, two and three, respectively.

Also assume that player one loses the first game, player two loses the second game, and
player three loses the third game. Then after three games, the amount of money held by
each player is given by the following table
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52.

93.

54.

95.

56.

Player Amount of money
1 4$1 — 4$2 — 4$3 =24
2 —2x1 + 6x9 — 223 = 24
3 —T] — X9+ Txz =24

Solving yields 21 = 39, x2 = 21, and z3 = 12.

The resulting system of equations is

r1+ax2+2x3 = 34
T1+x9 = 7
To+x3 = 22
The solution is 1 = 12, x9 = —5, x3 = 27.

If 21 is the number of adults, x5 the number of students, and x3 the number of children,
then 1 +xo + 23 =79, 621 + 322+ (1/2)x3 = 207, and for j = 1,2, 3, x; is an integer such
that 0 < x; <79. Following is a list of possiblities

Number of Adults 0 5 10 15 20 25 30
Number of Students 67 56 45 34 23 12 1
Number of Children 12 18 24 30 36 42 48

The resulting system of equations is

a+b+c+d = 5
b+2c+3d = 5
a+2b+ 4c+ 8d 17
b+4c+12d = 21.

The solution is a =3, b=1,c= —1,d =2. So p(z) =3 +z — 2% + 223.
By (7), 1 +2+3+4---+n=ain + an?. Setting n =1 and n = 2 gives

ar+a = 1
2a1 +4a2 = 3

The solution is a1 = a2 =1/2,s0 1+2+3+...+n=n(n+1)/2.

By (7), 12 4+22 + 32 +--- +n? = a1n + agn? + agn3. Setting n =1, n =2, n = 3, gives

ar+as+az = 1
2a1 + 4as 4+ 8ag =
3&1 + 9&2 + 27a3 = 14

The solution is a; = 1/6, az = 1/2 and a3 = 1/3, so 124+22+32+. . .4+n? = n(n+1)(2n+1)/6.
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11

o7.

58.

1.3

The system of equations obtained from (7) is

a1 +az +asz+aq+ as

2a1 + 4as + 8as + 16a4 + 32as5

3aq1 4+ 9as + 27as + 8lay + 242as

4a1 + 16as + 64as + 256a4 + 1024a5
5a1 + 25a9 + 125a3 + 625a4 + 3125a5

1
17
98
354
979

The solution is a1 = —1/30, az = 0, a3 = 1/3, ay = 1/2, a5 = 1/5. Therefore, 1* + 24 +
34+ 4+t =nn+1)2n+1)(3n% +3n —1)/30.

15425 4+3° 4. 4n® =n2(n+1)%(2n% +2n —1)/12.

Consistent Systems of Linear Equations

11
. 00
. The augmented matrix reduces to 0 0
| 0 0

n =3, r =2, xo is independent.
[1 0
. The augmented matrix reduces to | 0 1
1 0 0

n=2r=2.

[1 0
. The augmented matrix reduces to 1
1 0 0

n =4, r = 3, z3 is independent.
(1 2
. 00
. The augmented matrix reduces to 00
00

n=4,r =2 xy and x3 are indepen_dent.

unique solution.

5/6
2/3
0
0

o O = O

—3/2
2
0

4 0 13/2
-1 0 —3/2
0 1 1/2

1/3
1/3
0
0

O O O Ww
O O = O

By the corollary to Theorem 3, there are infinitely many solutions.

Infinitely many solutions.

.m=2andr<2sor=0,n—r=2;r=1,n—r=1,r=2 n—r =0. There could be a

.n=4andr<3sor=0n—-r=4r=1,n—r=3jr=2,n—r=2,r=3, n—r=1.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Infinitely many solutions.

. Infinitely many solutions, a unique solution or no solution.

Infinitely many solutions, a unique solution, or no solution.
A unique solution or infinitely many solutions.
Infinitely many solutions or a unique solution.
Infinitely many solutions.

Infinitely many solutions.

Infinitely many solutions or a unique solution.
Infinitely many solutions or a unique solution.
Infinitely many solutions.

Infinitely many solutions.

There are nontrivial solutions.

There are nontrivial solutions.

There is only the trivial solution.

There is only the trivial solution.

If a = —1 then when we reduce the augmented matrix we obtain a row of zeroes and hence
infinitely many nontrivial solutions.

1 0 2 —2b;+3by
(a) Reduced row echelon form of the augmented matrixis | 0 1 —1 by — b2
0 0 0 bg—b—2b
Hence, if b3 — by — 2by # 0 then the system is inconsistent. Therefore, the system of
equations is consistent if and only if bg — by — 2bs = 0.

(b) (i) The system is consistent. For example, a solution is 1 = —1, zo = 1 and x3 = 1.
(ii) The system is inconsistent by part (a). (i74) The system is consistent. For example,
a solution is x1 = 1, x9 = 0 and x3 = 1.

o O O %
o O % 8
O ¥ 8 8
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