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2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) aline R®* (b) aplaneirR® (c) all of R3.

2 v+ w = (2,3)andv —w = (6, —1) will be the diagonals of the parallelogram with
andw as two sides going out frord, 0).

3 This problem gives the diagonals+ w andv — w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this exampte (3, 3) andw = (2, —-2).

4 3v+w=(7,5andcv +dw = 2c +d,c + 2d).

5u+v=(-2,31andu+v+w = (0,0,0) and2u+2v+w = (add first answeps=
(—=2,3,1). The vectorsu, v, w are in the same plane because a combination gives
(0,0,0). Stated another wayt = —v — w is in the plane ob andw.

6 The components of everyw + dw add to zeroc = 3 andd = 9 give (3,3, —6).

7 The nine combinations(2, 1) + d(0, 1) with¢ = 0, 1,2 andd = (0, 1, 2) will lie on
a lattice. If we took all whole numbersandd, the lattice would lie over the whole
plane.
8 The other diagonal is — w (or elsew — v). Adding diagonals give3v (or 2w).
9 The fourth corner can b@, 4) or (4,0) or (-2, 2). Three possible parallelograms!
10 i —j = (1,1,0) isin the basex-y plane).i +j +k = (1,1, 1) is the opposite corner
from (0, 0, 0). Points in the cube have< x < 1,0 <y <1,0<z < 1.
11 Four more cornersl, 1,0), (1,0, 1),(0,1,1),(1,1,1). The center point ig3, 1, 1).
Centers of faces arg, 3.0). (3, 3. 1) and(0, 3. 1), (1,4. Hyand(3.0. 1), (3. 1. J).
12 A four-dimensional cube ha®' = 16 corners an@ - 4 = 8 three-dimensional faces
and24 two-dimensional faces ari® edges in Worked Examplz4 A.
13 Sum= zero vector. Sum= —2:00 vector= 8:00 vector. 2:00 is 30° from horizontal
= (cosZ,sinZ) = (+/3/2,1/2).
14 Moving the origin t06:00 addsj = (0, 1) to every vector. So the sum of twelve vectors
changes frondto 12 = (0, 12).

.3 I .
15 The pomtzv + it is three-fourths of the way to starting fromw. The vector

1 1 . 1 1 .
—v + —w is halfway tou = v + T The vectonw + w is 2u (the far corner of the
parallelogram).

16 All combinations withc + d = 1 are on the line that passes throughand w.
The pointV = —v + 2w is on that line but it is beyond.

17 All vectorscv + cw are on the line passing through, 0) andu = %v +
line continues out beyond + w and back beyond, 0). With ¢ > 0, half o
is removed, leaving ey that starts a0, 0).

18 The combinationsv + dw with0 < ¢ < 1 and0 < d < 1 fill the parallelogramwith
sidesv andw. For example, iv = (1,0) andw = (0, 1) thencv + dw fills the unit
square.

19 With ¢ > 0 andd > 0 we get the infinite “cone” or “wedge” betweanandw. For
example, ifv = (1,0) andw = (0, 1), then the cone is the whole quadrant= 0,
y > 0. Question What if w = —v? The cone opens to a half-space.

w. That
this line
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(@) fu + 2v + Lw is the center of the triangle betweenv andw; u + Jw lies

between: andw (b) Tofillthe triangle keep >0,d >0,e>0,andc+d +e¢ = 1.
The sumigv —u) + (w—v) + (u — w) = zero vector. Those three sides of a triangle
are in the same plane!

The vector} (u + v + w) is outsidethe pyramid because+d +e = 1 + 1+ 1> 1.

All vectors are combinations of v, w as drawn (not in the same plane). Start by seeing
thatcu + dv fills a plane, then addingw fills all of R3.

The combinations of andv fill one plane. The combinations efandw fill another
plane. Those planes meet itige: only the vectorgv are in both planes.

(a) Foraline, choose = v = w = any nonzero vector (b) For a plane, choose
u andv in different directions. A combination like = u + v is in the same plane.

Two equations come from the two componentst 3d = 14 and2c¢ +d = 8. The
solutionisc = 2 andd = 4. Then2(1,2) + 4(3,1) = (14, 8).

The combinations of = (1,0,0) andi + j = (1, 1,0) fill the xy plane inxyz space.

There ares unknown numbersy, v,, v3, wy, wo, w3. The six equations come from the
components ob + w = (4,5,6) andv — w = (2,5, 8). Add to find2v = (6, 10, 14)
sov = (3,5,7) andw = (1,0, —1).

Two combinations out of infinitely many that produse= (0, 1) are —2u + v and
%w — %v. No, three vectors:, v, w in the x-y plane could fail to producé if all
three lie on a line that does not contdin Yes if one combination produces then
two (and infinitely many) combinations will produde This is true even iz = 0; the
combinations can have differeni.

The combinations of andw fill the planeunlessy and w lie on the same line through
(0,0). Four vectors whose combinations fildimensional space: one example is the
“standard basis{1, 0, 0,0), (0, 1,0, 0), (0,0, 1,0), and(0, 0,0, 1).

The equationsu + dv + ew = b are
2¢ —d =1 Sod = 2e c =3/4
—c4+2d —e=0 thenc = 3e d=2/4
—d +2¢ =0 thende = 1 e =1/4

Problem Set 1.2, page 19

1
2

3

4

u-v=—184+32=14u-w=-48+48=0,v-w=24+24=48=w-v.
|u|| = 1and|v|| = 5and|w| = 10. Thenl.4 < (1)(5) and48 < (5)(10), confirming
the Schwarz inequality.

Unit vectorsv/|lv| = (2. 2) = (.6..8) andw/|w|| = (%.2) = (.8,.6). The cosine

of 0 is ﬁ . ”“’—” = 22. The vectoraw, u, —w make0°, 90°, 180° angles withw.

@ v-(—v) = -1 bG)y@w+w -w—w)=v-v+w-v—v-wWw—wW-Ww
1+( )=( )—1=0s06 = 90° (noticev-w = w-v) ©) (v—2w)-(v+2w)
vev—4w-w=1—-4=-3
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Solutions to Exercises

up = v/|v]| = 3, 1)/V10andu; = w/|jw| = (2,1,2)/3. Uy = (1,-3)/V/10s
perpendicular tar; (and so is(—1,3)/+/10). U, could be(1, —2,0)/+/5: There is a
whole plane of vectors perpendiculari#g, and a whole circle of unit vectors in that
plane.

All vectorsw = (c, 2¢) are perpendicular te. All vectors(x, y,z)withx+y+z =0
lie on aplane All vectors perpendicular tol, 1, 1) and(1, 2, 3) lie on aline.

(@) cod =v-w/|v|||lw|| = 1/(2)(1) sof = 60° or /3 radians (b) co8 = 0
sof = 90° or n/2 radians (c) co8 = 2/(2)(2) = 1/2s06 = 60° or n/3
(d) cosd = —1/+/2 5060 = 135° or 37 /4.

(a) Falsew andw are any vectors in the plane perpendiculag to (b) True:u - (v +
2w) =u-v+2u-w =0 (c) True,|lu—v|?> = (u—v)-(u—v) splits into
u-u+v-v=2whenu-v=v-u=0.

If vowy/viw; = —1thenv,w, = —vywp Orvywy+vwy = v-w = 0: perpendicular!
Slope2 /1 and—1/2 multiply to give—1: thenv-w = 0 and the vectors (the directions)
are perpendicular.

v - w < 0 means angle- 90°; thesew’s fill half of 3-dimensional space.

(1, 1) perpendicular tq1,5) —c(1,1)if 6 —2c = 00rc = 3;v-(w—cv) =0 if
¢ =v-w/v-v. Subtractingv is the key to perpendicular vectors.

The plane perpendicular 1@, 0, 1) contains all vectorgc, d, —c). In that planep =
(1,0,—1) andw = (0, 1, 0) are perpendicular.

One possibility among manyt = (1,—1,0,0),v = (0,0,1,—1),w = (1,1,—1,—1)
and(1, 1, 1, 1) are perpendicular to each other. “We can rotate thosew in their 3D
hyperplane.”

1(x+y) =(2+8)/2=5;cosf =216/+/10/10 = 8/10.
[v]?=1+14---+1=9s0|v| =32 =v/3=(5....,3) isaunitvector iroD;
w = (1,—1,0,...,0)/+/2is a unit vector in th&D hyperplane perpendicular io
cosa = 1/+/2, cosp = 0, cosy = —1/+/2. For any vectow, co$ « +cos +cos y
= (f + v +v])/lv)? =1

[v]|?> = 4% + 22 = 20 and||w||?> = (—1)? + 22 = 5. Pythagoras i§(3,4)||*> = 25 =
20 + 5.

Start from the rulesgl), (2), (3) for v-w = w-v andu-(v+w) and(cv)-w. Use rule(2)
for(v+w)-(v+w) = (v+w)-v+(v+w)-w. Byrule(1) thisisv-(v+w)+w-(v+w).
Rule(2) againgivey v+ v-w+w-v+w-w=v-v+2v-w+ w-w. Notice
v-w = w - v! The main point is to be free to open up parentheses.

We know thatlv — w) - (v —w) = v-v—2v-w + w - w. The Law of Cosines writes
[|lv]|||lw] cose for v-w. Whenf < 90° thisv - w is positive, so in this case-v + w - w
is larger thar|v — w||2.

2v-w < 2||v|/||w| leadsto|v+w|* = v-v+2v-w+w-w < ||[v|>+2|v|||w]+|w]|>.
This is(||v]| + ||w])?. Taking square roots giveld + w|| < ||v| + ||w].

v2w? + v wivaws + V3w < v2w? 4+ viw? +v3w? + viw? is true (cancel terms)
because the differenceigw3 + viw? — 2v;wiv,w, Which is(viws — vawy)? > 0.
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cosp = wy/||w| and sin8 = w,/||w|. Then co$p —a) = cosp cosa +singS sina =
viwy/|[v|[|lw] + vawa/||v|||w] = v - w/||v||w]|. Thisis co® because — o = 6.
Example 6 givesu, ||U;| < $(u? + U?) and|u,||Uz| < 1 (w3 + UZ). The whole line
becomes96 < (.6)(.8) + (.8)(.6) < 2(.6% + .8%) + 1(.8%2 +.6%) = 1. True:.96 < 1.

The cosine o is x//x2 + y2, near side over hypotenuse. THewosf|? is not greater
than 1:x2/(x2 + y?) < 1.

The vectorsw = (x, y) with (1,2) - w = x 4+ 2y = 5 lie on a line in thexy plane.
The shortestv on that line is(1, 2). (The Schwarz inequalityw|| > v - w/||v| = V/5

is an equality when cas = 0 andw = (1,2) and||w| = +/5.)

The length||v — w|| is betweer2 and8 (triangle inequality whetfjv| = 5 and||w| =
3). The dot product - w is between-15 and15 by the Schwarz inequality.

Three vectors in the plane could make angles greater 9hamnvith each other: for
example(1,0), (—1,4), (—1,—4). Four vectors coulahot do this 360° total angle).
How many can do this ifR3 or R*? Ben Harris and Greg Marks showed me that the
answer isn + 1. The vectors from the center of a regular simplexRhto itsn + 1
vertices all have negative dot productsz {2 vectors inR” had negative dot products,
project them onto the plane orthogonal to the last one. Nawhaven + 1 vectors in
R"~! with negative dot products. Keep going to 4 vectorRft no way!

For a specific example, pick = (1,2, —3) and therw = (=3, 1, 2). In this example
cosd = v-w/|v||w]| = —7/v/144/14 = —1/2 and® = 120° . This always
happens wher + y + z = 0:

1 1
v.w=xz+xy+yz=§(x+y+z)2_§(x2+y2+zz)
This is the same as- w =0 — 3 lvlllw]. Then cod = 5

Wikipedia gives this proof of geometric mean = 3j/xyz < arithmetic mean
A = (x + y + z)/3. First there is equality in case = y = z. OtherwiseA is

somewhere between the three positive numbers, say for égampA4 < y.

Use the known inequality < a for thetwo positive numbers andy + z — A. Their

meana = %(x +y+z—A)is %(3A — A) = same aM! Soa > g says that
A > g@?2A=x(y+z-ADA. But(y +z—A)A = (y —A(A—z) + yz > yz.

Substitute to findd® > xyz = G as we wanted to prove. Not easy!

There are many proofs @ = (x;x,---x,)/" < A = (x; + X2 + -+ 4+ x,)/n. In
calculus you are maximizing on the planec; + x5 + -+ + x, = n. The maximum
occurs when alk’s are equal.

The columns of the 4 by 4 “Hadamard matrix” (timés are perpendicular unit
vectors:

1 1 1 1
1 1 1 —1 1 —1
SH=S11 1 21 -

1 —1 -1 1

The command$ = randn (3,30); D = sqrt (diag (V' * V)); U = V\D; will give
30 random unit vectors in the columns@f Thenu’ x U is a row matrix of 30 dot
products whose average absolute value may be cldséto
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Problem Set 1.3, page 29

1 2sq1 + 3s, + 453 = (2,5,9). The same vectds comes fromS timesx = (2, 3, 4):

1 0 072 (rowl)-x 2
|:1 1 0} [3}:[(row2)-xi|:[5].
1 1 1]L4 (row2)-x 9

2 The solutionsarg; = 1, y, = 0, y3 = 0 (right side= columnl) andy; = 1, y, = 3,
y3 = 5. That second example illustrates that the firstdd numbers add te?.

1 = B; yn = b 1 0 071[B;
3 yi+»2 = B, gives Yy, = —B) +B; =|—-1 1 0]|]| B,
yi+y2+ys = Bs 3 = —B, +B3 0 —1 1]|B;

1 00 1 00
The inverse off = [1 1 O} isA= [—1 1 O}: independent columns id andS'!
I 11 0-1 1

4 The combinatiordw; + Ow, + Ows; always gives the zero vector, but this problem
looks for otherzerocombinations (then the vectors atependentthey lie in a plane):
w, = (w; + w3)/2 SO one combination that gives zerc%iwl —wy + %w3.

5 The rows of the3 by 3 matrix in Problem 4 must also likependentr, = %(rl +r3).
The column and row combinations that prod@care the same: this is unusual.

13 57
6c=3 1 2 4] hascolumm = 2 (columnl) + column2

3
1
0 | has columr8 = — columnl + column2
1
0
5

has columrd = 3 (column1) — column2

7 All three rows are perpendicular to the solutierfthe three equations; - x = 0 and
ro-x = 0andrsz-x = Otell us this). Then the whole plane of the rows is perpendicul
to x (the plane is also perpendicular to all multiptes).

xl—O = b] X1 = bl 1 0 0 O bl

8 Xo — X1 = bz Xy = b1+b2 _ 1 1 0 0 b2 _A_lb
X3— Xy = b3 x3 = by +by+ b3 — {1 1 1 0 by | —
X4 — X3 = by X4 = by + Dby + b3+ by 1 1 1 1 ba

9 The cyclic difference matriC has a line of solutions (id dimensions) taCx = 0:

—1 X1
-1 (0) X2 = any constant vector.
X3
1

0
0
1
—1 X4

0
0

=10 whenx =
0

(SIS N o T o

0

1

—1

0 o0
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Zp —Z1 = b] zZ1 = —bl—bz—b3 -1 -1 -1 bl
10 Z3 —Zp = bz Zy) = —b2 —b3 = |: 0 —1 —1i| |:b2i| = A_lb
0—23 = b3 z3 = —b3 0 0 —1 b3

11 The forward differences of the squares @re- 1) — 12 = t2 + 2t + 1 —12 =2t + 1.
Differences of theith power arg(t + 1)" — " = t" —t" + nt""! 4+ ..., The leading
term is the derivativea¢"~!. The binomial theorem gives all the terms(of+ 1)".

12 Centered difference matrices@fensize seem to be invertible. Look at eqhsand4:

0 1 0 0 X1 by First X1 —by — by
—1 0 1 0 X2 | by solve X2 - by

0 -1 0 1 X3 B b3 Xp = bl X3 - —b4

0 0 -1 0 X4 b4 —X3 = b4 X4 b] + b3

13 Odd size The five centered difference equations leadite- b3 + bs = 0.

X2 =b1
X3 — X1 =b2
X4—X2=b3
X5—X3=b4

—X4:b5

14 An example ida,b) = (3,6) and(c,d) = (1,2). The ratiosu/c andb/d are equal.
Thenad = bc. Then (when you divide byd) the ratiosz /b andc/d are equal!

Add equationd, 3,5

The left side of the sum is zero

The right side i$; + b3 + bs

There cannot be a solution unlégs+ b3 + b5 = 0.

Problem Set 2.1, page 40

1 The columns aré = (1,0,0) andj = (0,1,0) andk = (0,0, 1) andb = (2,3,4) =
2i +3j + 4k.

2 The planes are the sanmizx = 4isx = 2,3y = 9isy = 3,anddz = 16isz = 4. The
solution is the same poilX = x. The columns are changed; but same combination.

3 The solution is not changed! The second plane and row 2 of #iexyand all columns
of the matrix (vectors in the column picture) are changed.

4 If z =2thenx + y = 0andx — y = z give the point(1,—1,2). If z = 0 then
x +y = 6andx — y = 4 produce(5, 1, 0). Halfway between those (8,0, 1).

5 If x, y,z satisfy the first two equations they also satisfy the thirdagipn. The line
L of solutions containg = (1,1,0) andw = (3,1, 1) andu = v + Lw and all
combinationgv + dw withc +d = 1.

6 Equationl + equatiorn2 — equation3 is now0 = —4. Line misses planeio solution

7 Column3 = Column 1 makes the matrix singular. Solutidnsy,z) = (1,1,0) or
(0,1,1) and you can add any multiple ¢1,0,1); b = (4,6,c) needsc = 10 for
solvability (thena lies in the plane of the columns).

8 Four planes in 4-dimensional space normally meetpoiat The solution toAx =
(3,3,3,2) isx = (0,0,1,2) if A has columng(1,0,0,0),(1,1,0,0),(1,1,1,0),
(I,1,1,1). Theequationsare+y +z+t =3, y+z+t =3,z+t =3,t =2.

9 (@) Ax = (18,5,0)and (b) Ax = (3,4,5.5).
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Multiplying as linear combinations of the columns gives faeneAx. By rows or by
columns:9 separate multiplications fdr by 3.

Ax equals(14,22) and(0,0) and 0, 7).

Ax equals(z, y, x) and(0, 0,0) and G, 3, 6).

(a) x hasn components andx hasm components (b) Planes from each equation
in Ax = b are inn-dimensional space, but the columns are:hdlimensional space.

2x + 3y +z+ 5t = 8is Ax = b withthel by 4 matrix4 = [2 3 | 5]. The
solutionsx fill a 3D “plane” in 4 dimensions. It could be callechgperplane

@i=[3 1] o[t ]

90° rotation fromR = [ 0 1

-1 0}, 180° rotation fromR? = [_1 O] =—1I.

0 -1

0 1 0 0 0 1

P=[0 0 1|producegy,z,x)andQ =|1 0 0 |recoverdx,y,z). Qisthe
(1 0 0 010

inverse ofP.

- 1 00
E = _} (1)} andE = [—1 1 O} subtract the first component from the second.
0 0 1

1 0 0 1 0 0
E=|0 1 OlandE™' =] 0 1 0], Ev = (3,4,8) and E"' Ev recovers

1 0 1 1 0 1
(3,4,5)
1 0 . . 0 0 . .
Pr =1, (| Projects onto thec-axis andP, = 0 1 | Projects onto they-axis.
5 5 0
v = [7] hasPiv = [0} and P, Pyv = [0]

[V —v2

— rotates all vectors by 45 The columns ofR are the results from
2[V2 V2 } Y
rotating(1, 0) and(0, 1)!

R =

X
The dot productdx = [1 4 5] [yi| = (1 by 3(3 by 1) is zero for pointqx, y, z)

Z
on a plane in three dimensions. The columnglafre one-dimensional vectors.
A=[1 2 ; 3 4]andx =[5 —2]"andb =[1 7]".r = b— Axx prints as zero.
Axv=1[3 4 5]"andv’ x v = 50. Butv % A gives an error message from 3 by 1
times 3 by 3.
ones(4,4) xones(4,1) =[4 4 4 4] Bxw =[10 10 10 10]’.
The row picture has two lines meeting at the soluti¢y2§. The column picture will
have4(1, 1) 4+ 2(—2, 1) = 4(column 1)+ 2(column 2)= right side(0, 6).

The row picture show® planesin 3-dimensional space The column picture is in
2-dimensional spaceThe solutions normally lie on lane.
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28 The row picture shows foulinesin the 2D plane. The column picture is four-
dimensional space. No solution unless the right side is éawattion ofthe two columns

29 u, = 7 anduz = 65 . The components add to 1. They are always positive.

3 andus = [ 52

u;,v7, w7 are all close tq.6, .4). Their components still add to 1.

30 [g ﬂ [2} = [2] = steady state. No change when multiplied bE/i i]

8 3 4 54u 5—u+4+v 5-—v
3 M=|1 5 9|=|5—u—v 5 S54+u+v|; M3(1,1,1) = (15,15, 15);

6 7 2 54v 54u—v 5—u
My(1,1,1,1) = (34,34,34,34) becausd 4+ 2 4 --- + 16 = 136 which is4(34).

32 A is singular when its third columw is a combinatiortu + dv of the first columns.
A typical column picture has outside the plane af, v, w. A typical row picture has
the intersection line of two planes parallel to the thirdygal’hen no solution

33 w = (5,7)is5u + 7v. ThenAw equalsS timesAu plus7 timesAv.

2 -1 0 07[x 1 X 4
-1 2 -1 Oof|x|_|2 x| |7
34| o 1 2 _1||xs|= |3 |hasthesolution " = |¢
0 0 -1 2 X4 4 X4 6

35 x =(1,...,1)givesSx = sum of each row= 1+---+9 = 45 for Sudoku matrices.

6 row orders(1, 2, 3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2, 1) are in Section 2.7.
The same permutations oblocksof rows produce Sudoku matrices, §b = 1296
orders of the rows all stay Sudoku. (And alsi296 permutations of thé columns.)

Problem Set 2.2, page 51

1 Multiply by £, = % = 5 and subtract to findx + 3y = 14 and—6y = 6. The pivots
to circle are 2 and-6.

2 —6y = 6 givesy = —1. Then2x + 3y = 1 givesx = 2. Multiplying the right side
(1, 11) by 4 will multiply the solution by 4 to give the new solutign, y) = (8, —4).

3 Subtract—% (or add%) times equation 1. The new second equatioByis= 3. Then

y=1andx =5. If the right side changes sign, so does the solutigny) = (-5, —1).
4 Subtract! = £ times equation 1. The new second pivot multiplying d — (cb/a)
or (ad — bc)/a. Theny = (ag —cf)/(ad — bc).
5 6x + 4y is 2 times3x + 2y. There is no solution unless the right sideis10 = 20.

Then all the points on the lirex 42y = 10 are solutions, including), 5) and(4, —1).
(The two lines in the row picture are the same line, contg@ithsolutions).

6 Singular system ib = 4, becausdx + 8y is 2 times2x + 4y. Theng = 32 makes
the lines become theame infinitely many solutions likg8, 0) and(0, 4).

7 If a = 2 elimination must fail (two parallel lines in the row pictyreThe equations
have no solution. Witk = 0, elimination will stop for a row exchange. Thén = —3
givesy = —1 and4x + 6y = 6 givesx = 3.
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If & = 3 elimination must fail: no solution. Ik = —3, elimination gives) = 0 in
equation 2: infinitely many solutions. &f = 0 a row exchange is needed: one solution.
On the left sidepx — 4y is 2 times(3x — 2y). Therefore we neetl, = 2h; on the
right side. Then there will be infinitely many solutions (twarallel lines become one
single line).
The equatiory = 1 comes from elimination (subtragt+ y = 5 fromx + 2y = 6).
Thenx = 4and5x —4y = ¢ = 16.
(&) Another solution i%(x +X,y+Y,z+Z). (b) If 25 planes meet at two points,
they meet along the whole line through those two points.
Elimination leads to an upper triangular system; then comask substitution.

2x +3y+ z=38 x =2

y+3z=4 gives y =1 |Ifazerois atthe start of row 2 or 3,

8z =38 z =1 thatavoids a row operation.
2x — 3y =3 2x —3y =3 2x —3y =3 x=3
4x -5y + z=7 gives y+ z=1 and y+ z=1 and y=1
2x — y—3z=5 2y +3z=2 —5z=0 z=0

Subtract 2x row 1 from row 2, subtract ¥ row 1 from row 3, subtract X row 2 from
row 3

Subtrac® times row 1 from row 2 to reacts/ —10) y—z = 2. Equation (3) isy—z = 3.
If d = 10 exchange rows 2 and 3. df = 11 the system becomes singular.

The second pivot position will contair2 — b. If b = —2 we exchange with row 3. If
b = —1 (singular case) the second equatioris— z = 0. A solution is(1, 1, —1).
Example of Ox +0y +2z=4 Exchange Ox + 3y +4z=4
() 2 exchanges xX+2y+2z=5 (b) but then xX+2y+2z=5
Ox +3y+4z=6 break down Ox + 3y +4z=6
(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

If row 1 =row 2, then row 2 is zero after the first step; exchange therpsvavith row
3 and there is nthird pivot. If column2 = column 1, then colum@ has no pivot.

Examplex + 2y + 3z = 0,4x 4+ 8y + 12z = 0, 5x 4+ 10y + 15z = 0 has 9 different
coefficients but rows 2 and 3 becoithe= 0: infinitely many solutions.

Row 2 become8y — 4z = 5, then row 3 becomeg; + 4)z =t — 5. If ¢ = —4 the
system is singular—no third pivot. Therrit= 5 the third equation i® = 0. Choosing
z = 1the equatiol3y — 4z = 5 givesy = 3 and equation 1 gives = —9.

Singular if row 3 is a combination of rows 1 and 2. From the eiesvwthe three planes
form a triangle. This happens if rowis+2 =row 3 on the left side but not the right
side:x+y+z=0,x—2y—z=1,2x—y=4. No parallel planes but still no solution.

(a) Pivots2, % %, % in the equationgx + y = 0, %y +z =0, %z 4+t =0, %t =5
after elimination. Back substitution gives= 4,z = -3,y = 2,x = —1. (b) If
the off-diagonal entries change frol to —1, the pivots are the same. The solution is
(1,2,3,4) instead of(—1,2, -3, 4).

The fifth pivot isg for both matrices (1's or1's off the diagonal). The:th pivot is

n+1
-
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If ordinary elimination leads ta + y = 1 and2y = 3, the original second equation
could be2y + £(x + y) = 3 + £ for any£. Then{ will be the multiplier to reach
2y =3.

Elimination fails on[;Z i] ifa=2o0ora=0.

a = 2 (equal columns)y = 4 (equal rows)a = 0 (zero column).

Solvable fors = 10 (add the two pairs of equations to get b +c¢ +d on the left sides,
12 and2 + s on the right sides). The four equations tar, ¢, d aresingular! Two
1 100 I 1 0 0
. 1 3 0 4 1 010 0 -1 1 0
solutions art{l 7} and[2 6}’ A= 00 1 1 andU = 0 0 1 1
01 0 1 0 0 00
Elimination leaves the diagonal matrix di&g2,1) in 3x = 3,2y = 2,z = 4. Then

x=1y=1z=4.
A2,:) = A(2,:) — 3 % A(1,:) subtracts} times row1 from row 2.

The average pivots for rand(®jthoutrow exchanges wer};, 5, 10in one experiment—
but pivots 2 and 3 can be arbitrarily large. Their averagesaatually infinite ! With
row exchangesn MATLAB’s lu code, the averages/5 and.50 and.365 are much
more stable (and should be predictable, also for randn vathal instead of uniform
probability distribution).

If A(5,5)is7 notl1, then the last pivot will bé not4.

Row j of U is a combination of rows, ..., j of A. If Ax = 0thenUx = 0 (not true
if b replaced®). U is the diagonal o when A is lower triangular.

The question deals with 100 equatiofis = 0 when A is singular.

(&) Some linear combination of the 100 rowshie row of 100 zeros
(b) Some linear combination of the 1@6lumnsis the column of zeros
(c) A very singular matrix has all oness = eyg100). A better example has 99

random rows (or the numbeits, . .., 100’ in those rows). The 100th row could
be the sum of the first 99 rows (or any other combination ofeéhosvs with no
zeros).

(d) The row picture has 100 planegeting along a common line through0. The
column picture has 100 vectors all in the same 99-dimenkhyeerplane.

Problem Set 2.3, page 63

1

2

3

100 100 10077010 010
Ey=|-510|,Emx=|010|,P=|001]||100]|=|00T1]
00 1 071 010]loo1 100

E3yExb = (1,-5,-35) but E51 Ezxb = (1,-5,0). When E3, comes first, row 3
feels no effect from row 1.

1 0071 0071 0 0 1 0 0
—4 1 0[,]0 1 0|.|0 1 0| M=EpEyEy =|-4 1 0.
00 1] 120 1] [0 -2 1 10 -2 1
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1 1 1 1
E E E
Elimination on column 456 = | 0 ST I B L VI Bt ol ' The
0 0 2 10

original Ax = b has becomé&/x = ¢ = (1,—4,10). Then back substitution gives
z=-5y= %,x = %.This solvesdx = (1,0,0).

Changingas; from 7 to 11 will change the third pivot from 5 to 9. Changiags from
7 to 2 will change the pivot from 5 tno pivot

2 3 7 1 4
Example: |2 3 7 3| = |4/|. Ifall columns are multiples of colum,
2 3 7|]-1 4

there is no second pivot.
To reverseEs;, add 7 times row1 to row 3. The inverse of the elimination matrix

1 0 0 1 0 0
E=| 01 0|iseE-'=]0 1 0
7 0 1 70 1
M= 2 andM*:[ ¢ b ] detM* = a(d — €b) — b(c — La)
c—4ta d—1tb

reduces tatd — bc!

1 00
M = [ 00 l}. After the exchange, we neédts; (not E,;) to act on the new row 3.

110
1 0 1 1 0 1 2 0 1

E;= [0 1 0} ; [0 1 0} E31Ez3= [0 1 0} . Test on the identity matrix!
0 0 1 1 0 1 1 0 1

1 2 2

An example with two negative pivots i = [1 1 2}. The diagonal entries can
1 2 1

change sign during elimination.

9 8 77 rowsand 1 2 3
The first productig 6 5 4 | also columns The second productis0 1 -2 |.
3 2 1] reversed. 0 2 -3
(a) E times the third column o is the third column ofEB. A column that starts

at zero will stay at zero. (b)E could add row2 to row 3 to change a zero row to a
nonzero row.

E>i has—{yy =3, E3; has—{3; =3, E43 has—{43 = 3. Otherwise thet’s match/.

—1 —4 -7 —1 -4 -7
aj; =2i —3j1 A= [ 1 -2 —5} — [ 0 -6 —12]. The zero became12,
3 0 -3 0 —12 -24

1 00
an example ofill-in. To remove that-12, chooseFE;, = [O 1 O}.
0 -2 1
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(@) The ages o andY arex andy: x —2y = 0andx + y = 33; x = 22 and
y =11 (b) Theliney = mx + ¢ containsx = 2, y = 5andx = 3, y = 7 when
2m + ¢ = 5and3m + ¢ = 7. Thenm = 2 is the slope.

a+ b+ ¢ 4
The parabola = a+bx+cx? goes through tha given points whena+ 2b+ 4c¢ 8.

a+ 3b+ 9c = 14
Thena = 2, b = 1, andc = 1. This matrix with columng1, 1, 1), (1,2, 3), (1,4,9)
is a “WVandermonde matrix.”

1 0 0 1 0 0 1 0 0 1 0
EF:|:a 1 Oi|,FE:|: a 1 Oi|,E2:|:2a 1 Oi|,F3:|:O 1
b ¢ 1 b+ac ¢ 1 2b 0 1 0 3c

01 0 0 0 1
PQ = [O 0 1}. In the opposite order, two row exchanges give = |:1 0 O],
1 0 0 01 0

If M exchanges rowaand3 thenM? = [ (also(—M)? = I). There are many square

roots of /: Any matrix M = [ﬁ _ﬂ hasM? = [ if a*> + bc = 1.

—_ o O

(2) Each column of£B is E times a column ofB (b) [i (1)} [i g ﬂ =

1 2 4 .
[2 4 8]AIIrowsofEBaremultlplesof[l 2 4]

1 0 I 1] . I 1 2 1
No.Ez[1 1}andF:[O l]glveEFz[1 2} butFE:[1 1]
@) > asjx; (D) az1 —an  (C) az1 —2an (d) (EAx); = (Ax); = Y ay;x;.

E(EA) subtracts4 times row1 from row 2 (EEA does the row operation twice).
AE subtract2 times columr2 of 4 from columnl1 (multiplication by E on the right
side acts omrolumnsinstead of rows).

[2 3 1 2 3 1 . L 2X1 + 3x2
[4 b]= 1 1 171710 _5 1g| Thetriangular systemis 5%,

Back substitution gives; = 5 andx, = —3.

The last equation becom@s= 3. If the original 6 is 3, then row % row 2 = row 3.

@) Addtwocolumnsbandb*[l 41 0}_{1 4 1 0:|—>x=|:_7i|

2.7 0 1 0 -1 =2 1 2
andx*:[_?].

(a) No solution ifd =0 andc #0 (b) Many solutions it/ =0=c. No effect froma, b.
A=Al = A(BC) = (AB)C = IC = C. That middle equation is crucial.
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1 0 O
1 1 0
0 -1 1
0 0 -1
still has multipliers=
1 0

1

-2

29 E=|

0 1 00O

0 1 00

0 subtracts each row from the nextrow. The resylt 11 0
1 0 1 2 1
1 in a3 by 3 Pascal matrix. The produdt of all elimination

0 0
matrices is _i (1) 8 . This “alternating sign Pascal matrix” is on page 88.
-1 3 =3 1

30 Given positive integers withd — bc = 1. Certainlyc < a andb < d would be
impossible. Alsac > a andb > d would be impossible with integers. This leaves

row 1 <row?2 OR row2 < row 1. An example isM = B ﬂ Multiply by

(1) _” to get[; ;’] then multiply twice by[_i (1)} to get|:(l) i] This shows

e R

1 1 1
1/2 1 0 1 0 1
31 Ear = 0 0 1 cEn=1 2/3 1 cEa=1g 00 ’
0 0 0 0 0 1 0 0 3/4 1
12 1
E43 E3p Bz = |: 1§3 231 :|
1/4 2/4 3/4

Problem Set 2.4, page 75

1 If all entries of4, B, C, D arel, thenBA = 3 ones5) is5by5; AB = 50neg3)is3
by3; ABD = 150neg3,1)is3 by 1. DBA andA(B + C) are not defined.

2 (a) A (column 3 ofB) (b) (Row 1 ofA) B (c) (Row 3 ofA4)(column 4 ofBB)
(d) (Row 1 ofC)D(column 1 ofE).

3 AB + AC isthe same ad(B + C) = [3 8] (Distributive law).

4 A(BC) = (AB)C by theassociative law In this example both answers a{rg 8]

from columnl of AB and row2 of C (multiply columns times rows).
, _[1 2b [t nb , _[4 4 o 2m
5(a)A_[O 1 andA”_0 It (b)A_OOandA”_ o ol

6 (A4+B)* = [12 2] = A%+ AB + BA+ B?. ButA? + 2AB + B? = [12 ﬂ

7 (@) True (b) False (c) True (d) False: usudlyB)? # A?B2.
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8 The rows ofDA are3 (row 1 of A) and5 (row 2 of A). Both rows ofE A are row2 of A.
The columns ofd D are3 (column1 of A) and5 (column2 of A). The first column of
AE is zero, the second is colunirof A 4+ column2 of A.

a a-+b
9 AF = L d } and E(AF) equals(EA)F because matrix multiplication is
c C
associative
at+c b+d at+c b+d )
10 FA = and thenE (FA) = . E(FA)is not
c d a+2c b+2d

the same ag'(E A) because multiplication is not commutative.

0 0 1
11 (a) B=41I (b) B=0 (c) B = [O 1 O} (d) Every row ofB is 1,0, 0.
1 00

a 0 a b ) )
12 AB = = BA = givesb = ¢ = 0. ThenAC = CA gives
c 0 0 0
a = d. The only matrices that commute with andC (and all other matrices) are
multiplesof/: A = al.
13 (A—B)> =(B—A)?> = A(A— B)— B(A— B) = A2— AB — BA+ B2. In atypical
case (WheM B # BA) the matrix4? — 24B + B? is different from(4 — B)?.
14 (a) True @2 is only defined whent is square) (b) False (il ism byn andB isn
by m, thenAB ism by m and BA is n by n). (c) True (d) False (tak8 = 0).
15 (a) mn (use every entry oft) (b) mnp = pxpart (a) (c)n> (n? dot products).
16 (a) Use only column2oB (b) Useonlyrow 2 of4 (c)—(d) Use row 2 of first.
1 1 1 1 -1 1

17 A=| 1 2 2 |hasg; =min(i,j).A=| -1 1 —1 |has; = (-1t =
1 2 3 I -1 1
/1 1/2 1/3
“alternating sign matrix’A = | 2/1 2/2 2/3 | hasa;; = i/j (this will be an
3/1 3/2 3/3

example of aank one matrix
18 Diagonal matrix, lower triangular, symmetric, all rows afjiZero matrix fits all four.

19 (a) an (b) £31 = azi/an (c) as — (%)012 (d) az, — (%)012-

0040 0008
0004 0000 ) . .
20 A% = , A3 = ., A* = zero matrix forstrictly triangular A.
0000 0000
0000 0000
by 2y 4z 8t
2z 4t 0
Thendv = A Y2 L A%y = L A3y = L A% =0
z 2t 0
t 0
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