
 
 
 
 
 
 

 

Introduction to 
Finite Elements in Engineering 

 
 

Tirupathi R. Chandrupatla 
Rowan University 

Glassboro, New Jersey 
 

Ashok D. Belegundu 
The Pennsylvania State University 

University Park, Pennsylvania 
 
 
 
 
 

Solutions Manual 
 
 
 

 
 
 
 
 
 
 
 
 

Prentice Hall, Upper Saddle River, New Jersey 07458 
 
 

Introduction to Finite Elements in Engineering, Fourth Edition, by T. R. Chandrupatla and A. D.  Belegundu. ISBN 01-3-216274-1. 
© 2012 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication is protected by Copyright 
 and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
 system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), 
write to:  Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 

Introduction To Finite Elements In Engineering 4th Edition Chandrupatla Solutions Manual

Visit TestBankDeal.com to get complete for all chapters

https://testbankdeal.com/download/introduction-to-finite-elements-in-engineering-4th-edition-chandrupatla-solutions-manual/


 
 
 
 
 

CONTENTS 
 
 
 
 
  Preface 
 
Chapter 1  Fundamental Concepts       1 
 
Chapter 2 Matrix Algebra and Gaussian Elimination  18 
 
Chapter 3 One-Dimensional Problems    26 
 
Chapter 4 Trusses       61 
 
Chapter 5 Beams and Frames      86 
 
Chapter 6 Two-Dimensional Problems Using Constant 103 
  Strain Triangles 
 
Chapter 7 Axisymmetric Solids Subjected to   151 
  Axisymmetric Loading 
 
Chapter 8 Two-Dimensional Isoparametric Elements 181 
  and Numerical Integration 
 
 
Chapter 9 Three-Dimensional Problems in Stress  207 
  Analysis 
 
Chapter 10 Scalar Field Problems    218 
 
Chapter 11 Dynamic Considerations    264 
 
Chapter 12 Preprocessing and Postprocessing  282 
 
 

Introduction to Finite Elements in Engineering, Fourth Edition, by T. R. Chandrupatla and A. D.  Belegundu. ISBN 01-3-216274-1. 
© 2012 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication is protected by Copyright 
 and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
 system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), 
write to:  Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458. 



PREFACE 
 
This solutions manual serves as an aid to professors in teaching from the book Introduction to 
Finite Elements in Engineering, 4th Edition.  The problems in the book fall into the following 
categories: 
 

1. Simple problems to understand the concepts 
2. Derivations and direct solutions 

   3. Solutions requiring computer runs 
  4. Solutions requiring program modifications 
 
Our basic philosophy in the development of this manual is to provide a complete guidance to the 
teacher in formulating, modeling, and solving the problems.  Complete solutions are given for 
problems in all categories stated. For some larger problems such as those in three dimensional 
stress analysis, complete formulation and modeling aspects are discussed. The students should 
be able to proceed from the guidelines provided. 
 
For problems involving distributed and other types of loading, the nodal loads are to be 
calculated for the input data. The programs do not generate the loads. This calculation and the 
boundary condition decisions enable the student to develop a physical sense for the problems. 
The students may be encouraged to modify the programs to calculate the loads automatically. 
 
The students should be introduced to the programs in Chapter 12 right from the point of solving 
problems in Chapter 6. This will enable the students to solve larger problems with ease. The 
input data file for each program has been provided. Data for a problem should follow this 
format. The best strategy is to copy the example file and edit it for the problem under 
consideration. The data from program MESHGEN will need some editing to complete the 
information on boundary conditions, loads, and material properties. 
 
We thank you for your enthusiastic response to our first three editions of the book. We look 
forward to receive your feedback of your experiences, comments, and suggestions for making 
improvements to the book and this manual. 
 

Tirupathi R. Chandrupatla P.E., CMfgE 
Department of Mechanical Engineering 
Rowan University, Glassboro, NJ 08028 

e-mail: chandrupatla@rowan.edu 
 

Ashok D. Belegundu 
Department of Mechanical and Nuclear Engineering 

The Pennsylvania State University 
University Park, PA 16802 

e-mail:  adb3@psu.edu 
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CHAPTER 1 
FUNDAMENTAL  CONCEPTS 

 
 
1.1   We use the first three steps of Eq. 1.11  
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Adding the above, we get 
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 Adding and subtracting 
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xσν  from the first equation, 
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 Similar expressions can be obtained for εy, and  ε z. 
 
 From the relationship for γyz and Eq. 1.12, 
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 Above relations can be written in the form 
    σ = Dε 
 where D is the material property matrix defined in Eq. 1.15.     
 
 
1.2    Note that u2(x) satisfies the zero slope boundary condition at the support. 
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1.3 Plane strain condition implies that  

                                  
EEE

zyx
z

σ
+

σ
ν−

σ
ν−==ε 0  

        which gives 
                                    ( )yxz σ+σν=σ  

 We have, 0.3    psi 1030    psi 10000    psi 20000 6 =ν×=−=σ=σ Eyx . 
 On substituting the values, 
 
                                                 psi 3000=σ z             
 
 
1.4 Displacement field 
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1.5  On inspection, we note that the displacements u and v are given by 
 
     u =  0.1 y + 4 
    v = 0 
 
 It is then easy to see that 
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1.6    The displacement field is given as 
 
    u =  1 + 3x + 4x3 + 6xy2 

    v = xy − 7x2 

 
 (a)  The strains are then given by 
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(b) In order to draw the contours of the strain field using MATLAB, we need to create a 

script file, which may be edited as a text file and save with “.m” extension. The file 
for plotting εx is given below 

 
file “prob1p5b.m” 

     [X,Y] = meshgrid(-1:.1:1,-1:.1:1); 
     Z = 3.+12.*X.^2+6.*Y.^2; 
     [C,h] = contour(X,Y,Z); 

clabel(C,h); 
 
On running the program, the contour map is shown as follows: 
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    Contours of  εx 
 
Contours of εy and γxy are obtained by changing Z in the script file.  The numbers on 
the contours show the function values. 
 

(c) The maximum value of εx is at any of the corners of the square region.  The 
maximum value is 21. 

                                                                                                                                 
 
1.7   
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1.9 From the derivation made in P1.1, we have 
 

                                   

( )( ) ( )[ ]

( )( ) ( )[ ]

( ) yzyz

vxx

zyxx

E

E

E

γ
ν+

=τ

νε+εν−
ν−ν+

=σ

νε+νε+εν−
ν−ν+

=σ

12

and

21
211

form in the written becan which 

1
211

  

                   Lame’s constants λ and µ are defined in the expressions 
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µ is same as the shear modulus G.      
 
 
1.10  
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1.11 
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1.12   Following the steps of Example 1.1, we have 
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 Above matrix form is same as the set of equations: 
 
   170 q1  − 80 q2  =  60 
 
            − 80 q1  + 80 q2  =  50 
 
 Solving for q1 and q2, we get 
 
    q1 =  1.222 mm 
 
    q2 =  1.847 mm 
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1.13   

 
When the wall is smooth, 0xσ = . T∆ is the temperature rise. 

a) When the block is thin in the z direction, it corresponds to plane stress condition. The 
rigid walls in the y direction require 0yε = . The generalized Hooke’s law yields the 
equations 
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From the second equation, setting 0yε = , we get  y E Tσ α= − ∆ . xε is then calculated 

using the first equation as ( )1 Tν α− ∆ . 
b) When the block is very thick in the z direction, plain strain condition prevails. Now we 

have 0zε = , in addition to 0yε = . zσ is not zero. 
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xε is now obtained from the first equation.     
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1.14   For thin block, it is plane stress condition. Treating the nominal size as 1, we may set the 

initial strain 0
0.1
1

Tε α= ∆ =  in part (a) of problem 1.13. Thus 0.1y Eσ = − .   

 
1.15 
 

The potential energy  Π is given by     
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Consider the polynomial from Example 1.2, 
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 On substituting the above expressions and integrating, the first term of  becomes 
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1.16 
 
   
 
 

 

x=0 

x=2 
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We use the displacement field defined by u = a0 + a1x + a2x2. 
 
  u = 0  at x = 0 ⇒  a0 = 0 
 
  u = 0  at x = 1 ⇒  a1 + a2 = 0  ⇒   a2 = − a1  

 
 We then have u =  a1x(1 − x),  and  du/dx = a1(1 − x). 
 
 The potential energy is now written as 
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 This yields,   a1 = 0.1 
 
  Displacemen u = 0.1x(1 − x) 
 
  Stress σ =E du/dx = 0.1(1 − x)     
 
1.17  Let u1 be the displacement at x = 200 mm.  Piecewise linear displacement that is 

continuous in the interval 0 ≤ x ≤ 500 is represented as shown in the figure. 
 
 
 
 
 
 
 
 0 200 500 

u1 

u = a3 + a4x u = a1 + a2x 
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 0 ≤ x ≤ 200   
  u = 0  at x = 0   ⇒   a1 = 0 
  u = u1  at x = 200   ⇒   a2 = u1/200 
  ⇒   u = (u1/200)x        du/dx = u1/200 
 
 200 ≤ x ≤ 500   
  u = 0   at x = 500   ⇒    a3 + 500 a4 = 0 
  u = u1  at x = 200   ⇒   a3 + 200 a4 = u1 

⇒ a4 = −u1/300       a3 = (5/3)u1 
⇒ u = (5/3)u1 − (u1/300)x      du/dx =  − u1/200 
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 Note that using the units MPa (N/mm2) for modulus of elasticity and  mm2 for area and 

mm for length will result in displacement in mm, and stress in MPa. 
 
 Thus,  Eal = 70000 MPa,  Est = 200000, and A1 = 900 mm2, A2 = 1200 mm2. On 

substituting these values into the above equation, we get 
 
    u1 = 0.009 mm 
 
 This is precisely the solution obtained from strength of materials approach    
 
1.18 
 In the Galerkin method, we start from the equilibrium equation 
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 Following the steps of Example 1.3, we get 
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 This is to be satisfied for every φ1, which gives the solution 
 
    u1 = 0.5              
 
1.19    We use 
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 a3 and a4 are considered as independent variables in 
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 on expanding and integrating the terms, we get 
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 We differentiate with respect to the variables and equate to zero. 
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 On solving, we get  
a3 = −0.74856  and  a4 = −0.00045. 

 
 On substituting in the expression for u, at x = 1, 
 
   u1= 0.749 
 
 This approximation is close to the value obtained in the example problem.   
 
 
1.20 
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 (b) 
  Since u = 0 at x = 0  and x = 60,  and u = a0 + a1x + a2x2, we have 
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  On substituting and integrating, 
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  Setting  dΠ/da2 = 0  gives 
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