
3.1 

CHAPTER 3 
 

3.1 Output = 5 Volts = Vo 

Input = 5 V = 510-6 volts = Vi 
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3.2 GdB=60dB 

Vi=3mV=310-3 volts 
GdB=60dB=20log10G 
 3dB= log10G 

  G = 103 

 G = Vo/Vi 

 Vo = GVi = 103(310-3) 
      = 3 volts 
 

3.3 Eq. 3.2 applies. For G =10, GdB = log10(10) = 20. Similarly, for G = 100 and 
500, the decibel gains are 40 and 54. 
 
 
3.4 The circuit resembles Fig. 3.9 (a). For this problem we want the voltage drop 

across the resistor Rs to be 0.01xVs. The current in the loop is )/( iss RRVI   

and the voltage drop across the resistor is Vdrop = IsxRs. 
Combining these: 

120)120/()/(01.0 ississs RVRRRVV  . Solving for Ri, we get 

 Ri = 11,880 . 
 
 
3.5 The circuit resembles Fig. 3.9(a). The input voltage, Vi, is IxRi. The current is 
Vs/(Rs+Ri). Combining, Vi=RixVs/(Rs+Ri). In the first case: 
 
0.005=5x106xVs/(Rs+5x106) For the second case: 
 
0.0048=10,000xVs/(Rs+10,000) These can be solved simultaneously to give  

Rs = 416 . 
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3.2 

3.6 a) From Eq. 3.14, 
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Since R1 and R2 typically range from 1k to 1M, we arbitrarily choose: 

 R2=99k 

  R1 = 1k 
 
b) f = 10 kHz = 104 Hz 
GPB = 106 Hz   for 741 
G = 100 
 
From Eq. 3.15, 
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This is the corner frequency so signal is -3dB from dc gain. 
dc gain = 100 = 40dB. Gain at 104 Hz is then 37 dB. 
From Eq. 3.16, 
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3.3 

3.7 
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Selecting R1 = 1k, R2 can be evaluated as 99k.. 
 
Since GBP = 1 MHz = 100(Bandwidth) 

 bandwidth = 10 kHz = fc 
 
Gain will decrease 6dB from DC value for each octave above 10 kHz. 
The phase angle can be determined from Eq. 3.16, 
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 0 -26.6 -45 -84.3 

 
 

 



3.4 

3.8 
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Selecting R2 = 999 k, R1 can be evaluated as 1 k. 

Since GBP = 1MHz for the A741C op-amp and G = 1000 at low 
frequencies, 
 GBP = 1MHz = 1000(Bandwidth) 

  Bandwidth = 1 kHz = fc 
If f = 10 kHz and fc = 1 kHz, we must calculate the number of times fc 
doubles before reaching f. 
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Now the gain can be calculated knowing that for each doubling the gain 
decreases by 6dB (i.e. per octave) 
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From Eq. 3.16, 
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3.5 

3.9 G = 100 (Actually -100 since signal inverted) 
 

Input impedance = 1000  R1 
From Eq. 3.17, 
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Since GPBnoninv = 106 Hz, from Eq. 3.18, 
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From Eq. 3.15, 
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3.10 G = 10 (Actually -10 since output inverted) 

Input impedance = 10 k = 10000   R1 
From Eq. 3.17, 
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Since GPBnoninv = 106Hz, from Eq. 3.18, 

  

GPB
R

R R
GPB

kHz

inv noninv







2

1 2

6100000

10000 100000
10

909

 

From Eq. 3.15, 
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3.6 

3.11  (a) 10 = 2N. N = ln10/ln2 = 3.33 
(b) dB/decade = NxdB/octave = 3.33x6 = 20 dB/decade 
 
3.12 

 
The gain of the op-amp itself is  

Vo=g(Vp  Vn)     [A] 
Vp is grounded so Vp = 0    [B] 
 
The current through the loop including Vi, R1, R2, and Vo is 
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Vn can then be evaluated as 
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Substituting [C] and [B] into [A] 
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Rearranging: 
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Noting the g is very large 
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3.7 

3.13 The complete circuit is as follows, 

 
For a loading error of 0.1%, the voltage drop across Rs should be 

900.001 = 0.09 V.  The current through Rs is then: 
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IRs also flows through R1 and the combination of R2 and Ri. For R2 and Ri, 
we have: 
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The voltage drop across R1=900.0910= 79.91V 
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3.8 

3.14 
a) If we ignore the effects of Rs and R0, we can use Eq. 3.19: 
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(If we include Rs and R0 ,the value of 

R2 is 7193 , less than 1% 
different.) 

b) I
V

R
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. (neglecting load 

effects) 

 P = I2R = (0.0012)2(100000 + 7142.9) = 0.13 W 
 
c) 
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Voltage drop across line load resistor 

 V I R V smallA   0 00112 0 5 0 00056. . . ( )  

3.15 If f1 = 7600 Hz and f2 = 2100 Hz then the following equation may be used, 

 f2  2x = f1 where x = # octaves 
Substituting, 
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3.9 

3.16 fc = 1kHz = 1000Hz , Butterworth 
Rolloff = 24 dB/octave 
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Since Rolloff = 24 dB/octave = 6n dB/octave, 

 n = 4 
From Eq. 3.20, 
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From Eq. 3.20, 
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3.17  Using Eq. 3.2, )6.5/(log202 10 oV . Solving, Vo = 4.45 

 
 
3.18    We want a low-pass filter with a constant gain up to 10 Hz but a gain of 
0.1 at 60 Hz. Using Eq. 3.20: 
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Solving for n, we get 1.28. Since this is not an integer, we select n = 2. With this 
filter, the 10 Hz signal will be attenuated 3 dB. If this is a problem, then a higher 
corner frequency and possibly a higher filter order might be selected. 
 
 
 
 
 



3.10 

3.19  We want a low-pass filter with a constant gain up to 100 Hz but an 
attenuation at 1000 Hz of 20log10 0.01= -40 dB (G = 0.01). Using Eq. 3.20: 
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Solving for n, we get n = 2 
 
With the selected corner frequency, the 100 Hz signal will be attenuated 3dB. If 
this were to be a problem, a higher corner frequency would be required and also 
a higher order filter. 
 
3.20  fc = 1500 Hz 

f = 3000 Hz 
 
a) For a fourth-order Butterworth filter 
 n = 4 
From Eq. 3.20, 
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b) For a fourth-order Chebeshev filter with 2 dB ripple width 
 
n = 4 
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From Fig. 3.18 we see that for n = 4 and f/fc = 2, 

 G(dB) = 34dB 
 
c) For a fourth-order Bessel filter 
 
n = 4 
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From Fig. 3.20 we see that for n = 4 and f/fc = 2, 

 G(dB) = 14 dB 



3.11 

3.21 
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At dc, Eqs. 3.21 and 3.17 are equivalent. Since we require no gain, set R1 = R2. 

Thus, R1 = R2 = 1000 
From Eq. 3.26, we can calculate C, 

 

f
R C

kHz
C

C F

c 



 

1

2

12
1

2 1000

0 013

2




( )

.

 

 
3.22 It would not be possible to solve problem 3.16 using a simple Butterworth 
filter based on the inverting amplifier. This is because R1 would have to be on the 

order 10 M. Such  a resistance is higher than resistances normally used for 
such circuits because it is on the order of various capacitive impedances 
associated with the circuit. The signal should first be input to an amplifier with a 
very high input impedance such as a non-inverting amplifier and the signal then 
passed through a filter. 
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From Eq. 3.20, 
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GdB = 20log10(1.310-5) 
 
 

3.24  VdivVDeflectionVin 6.823.4/   

 



3.12 

3.25 mVmVdivVDeflectionMaximumRange 8001008/   

 
3.26 The visual resolution is on the order of the beam thickness (for thick beams 
is may be on the order of ½ the beam thickness since one can interpolate within 
the beam. Taking the resolution as the beam thickness, the fractional error in 
reading is 0.05/1 = 0.05 (5%).  In volts the resolution is 0.05x5 mV = 0.25 mV. 
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At dc, Eqs. 3.21 and 3.17 are equivalent. Since we require no gain, set R1 = R2. 

Thus, R1 = R2 = 1000 
From Eq. 3.26, we can calculate C, 
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3.22  It would not be possible to solve problem 3.16 using a simple Butterworth 
filter based on the inverting amplifier. This is because R1 would have to be on the 

order 10 M. Such  a resistance is higher than resistances normally used for 
such circuits because it is on the order of various capacitive impedances 
associated with the circuit. The signal should first be input to an amplifier with a 
very high input impedance such as a non-inverting amplifier and the signal then 
passed through a filter. 
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From Eq. 3.20, 
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GdB = 20log10(1.310-5) 

       = 97.7 dB 
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