
Chapter 1 
Problem Solutions 

 
Concept Problems 
1. What is the difference between the transient response and the sinusoidal steady state response 
of a digital filter. 
Solution 
The transient response of a filter is generally taken to be the response to a unit impulse.  If the 
filter is stable the response goes to zero in finite time.  The sinusoidal steady state response is the 
response to sinusoids of unit amplitude at some set of frequencies.  For a linear system the 
response is always sinusoidal and is usually expressed as a gain and a phase response. Any 
transient startup of a sinusoidal signal is ignored. 
 
2. Give at least three applications in which linear phase is a requirement. 
Solution 

•Any data transmission in which phase is used to encode information. 
• Any signal which is to be passed through a filter which must not distort the wave shape 
• Interpolators or decimators in which a linear phase FIR filter can be made more efficient 

than a comparable IIR filter.  
• Anywhere signals are filtered and added. 

 
3. In the introduction to this chapter a digital filter was designed that approximated an analog 
filter consisting of a resistor and a capacitor.  Since it is clear that the digital filter was much 
more complex in terms of hardware what kind of advantages might be gained by creating a 
digital filter to replace an analog filter.  Consider flexibility of the design, the design effort, cost 
of the hardware, long term stability, and quality of the filter. 
Solution 
• Flexibility – While digital filters can be implemented in hardware using all hardware 
components, the more typical implementation uses mostly software.  Software makes a filter 
much more flexible in terms of changes, error correction, scaling, or duplication. 
• Design effort – Much of filter design, both analog and digital, comes from existing designs that 
are modified to meet needs.  If we were starting from scratch, the analog filter which does not 
require an A/D or D/A converter is probably easier.  In terms of the filter itself analog and digital 
filters are roughly the same amount of design effort. 
• Cost – Digital filters become much more cost effective as the order increases as compared to 
analog filters.  In terms of component cost for example, a second or third order analog filter can 
be much cheaper than a standalone digital counterpart.  But as the order gets higher, analog 
filters become more expensive since parts precision and temperature compensation becomes 
important. 
• Long term stability – This is decidedly in favor of the digital filter which does not suffer from 
aging or temperature drift to the degree that an analog counterpart does. 
• Quality of the filter – At higher orders, digital filters are decidedly higher in quality than analog 
counterparts.  At lower orders the two can be competitive depending on what one is willing to 
spend on hardware. 
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4. Explain why one would expect an IIR filter to be computationally more efficient for a given 
algorithm than an FIR filter. 
Solution 
An FIR filter has all of its poles at the origin.  In terms of frequency space, it's as if the filter has 
a fixed gain and we locate zeros are specific locations where we want to drive the gain toward 
zero.  The IIR filter, on the other hand, has poles located anywhere inside the unit circle.  The 
designer can use poles and zeros together to adjust the gain up or down as needed.  The poles 
located inside the unit circle for the IIR filter provide feedback terms in the difference equation.  
Thus, the output is fed back and can be used to further alter the gain.   
 
The ability to locate poles anywhere inside the unit circle which provides feedback terms gives 
the IIR filter a slight advantage in altering the gain curve over an FIR filter of the same order. 
 
5. FIR filters do not have a feedback path.  What are the implications of this for system stability?  
Is oscillation possible?  Why or why not? 
Solution 
FIR systems are always stable.  A system is stable if its impulse response falls to zero in a finite 
amount of time.  For an FIR system, once an impulse has passed through the system, the output 
must be exactly zero so all FIR systems are inherently stable.   
 
Likewise, oscillation is not possible with an FIR filter.  An oscillator has an output when there is 
not input.  For an FIR filter the output must eventually drop to zero once the input goes to zero.  
Oscillation is not possible. 
 
6. IIR filters have a feedback path and FIR filters do not.  What would you expect to be the result 
of small errors in the formulation of the coefficients for these two systems?  Would the impact of 
such an error be greater or less for an IIR filter?  Explain. 
Solution 
For and IIR system a small error can be fed back to the input to reverberate through the system.  
Some frequencies caused by errors may be amplified.  In general, IIR systems are more sensitive 
to coefficient quantization errors than are FIR systems which have no feedback. 
 
7. Trapezoidal integration was used to approximate an integral and convert a differential 
equation to a difference equation.  What would be the consequences of using an approximation 
based on a second order equation such as a parabola rather than the straight line fit of the 
trapezoidal method? 
Solution 
A second order approximation will likely give a better approximation to an integral but it will 
also double the order of the system.  Higher order approximations are not used because of the 
increased computational complexity of the result. 
 
8. Since it is often difficult in practice to approximate an impulse, describe another method of 
finding the impulse response indirectly from say, a step function which is readily available on 
most signal generators. 
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Solution 
Since the impulse is the derivative of the step the impulse response is the derivative of the step 
response for a linear system.  In practice, we can measure the step response, fit a curve to the 
response so that we have it in closed form, and take the derivative of the fitted curve to get the 
impulse response. 
 
9. When a computer is used to evaluate a difference equation, the coefficients are represented as 
binary numbers where the number of bits used is limited.  This causes the coefficient to have a 
small error called the quantization error.  The same kind of error occurs in the A/D converter.  
What other errors are likely in the evaluation of a difference equation? 
Solution 
The evaluation of a difference equation is the summing of the products of the coefficients and 
input or output terms.  When two N-bit numbers are multiplied a 2N-bit product is produced 
which must be rounded or truncated to N-bits.  This is another source of error that can be 
mitigated by using extra bits for products called guard bits.   
 
Overflow is another source of error.  Filters can have overflow in a single stage at a particular 
frequency and must be properly scaled to avoid this error. 
 
Aliasing is another source of error.  Aliasing most often come into play by way of high 
frequency noise which comes with the input signal.   
 
Finally, there can be error in the D/A and reconstruction process as the signal is converted from 
digital back to analog.   
 
10.  Suppose that in the evaluation of a difference equation the coefficients of the input variable 
and the delayed versions of the input variable are multiplied by a constant.  What is the 
consequence of this multiplication in the frequency domain? 
Solution 
The input variable and its delayed versions appear in the numerator of the transfer function.  If 
these are multiplied by a constant the effect will be go increase the gain of the filter by that 
constant. 
 
11. In problem 1.7 the impulse response of the FIR filters is given by 

},,,,,{)( 543210 bbbbbbnTh   

Redraw the filter diagram so that the impulse response is given by  
},,,,,,0,0,0{)( 543210 bbbbbbnTh   

What are the consequences of adding these zeros to the impulse response on the magnitude vs 
frequency plot?  What are the consequences on the phase vs frequency plot? 
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Solution 

 
The magnitude plot will be unchanged but the phase plot will be the same shape but shifted by 
three time periods across all frequencies. 
 
12.  Suppose the impulse response function for an FIR difference equation is symmetric.  For 
example the response might be given by  

},,,,,,,,,,{)( 01234543210 bbbbbbbbbbbnTh  . 

How can the difference equation be written to use this symmetry to reduce the number of 
multiplications necessary for its evaluation? 
Solution 
The difference equation can be written as: 

)10(...)6()5()4(...)1()()( 045410  nxbnxbnxbnxbnxbnxbny  

Because of the symmetry we can factor out some of the coefficients to write: 
)5()]6()4([...)]9()1([)]10()([)( 5410  nxbnxnxbnxxbnxnxbny  

Thus, instead of doing 11 multiplications we can do the additions first and do only 6 
multiplications. 
 
13. When the coefficients of a difference equation are implemented in real time we would like to 
represent the coefficients with as many bits as possible since this reduces the quantization error.  
Give three reasons why increasing the number of bits has negative consequences on the 
implementation of a difference equation. 
Solution 
• The coefficients are stored in registers or memory and increasing the number of bits forces the 
use of longer registers and more memory.   
• The data path (busses) inside the DSP processor unit need to be as wide as the coefficients or at 
least some integer multiple of the coefficient size.  Increasing the number of bits makes the data 
path wider and increases the hardware cost and complexity. 
• Multiplication time will be longer since multiplication time is usually done on a bit by bit basis.  
For cases where multiplication is done in parallel hardware, the cost and complexity of this 
hardware is increased. 
 
14. In general a sinusoid can be represented by the equation )2sin( ftAy   where A is the 
amplitude and f is the frequency.  This equation has two unknowns so that at least two values for 
y at two different time samples are needed in order to determine A and f.  What other 
information do I need in order to uniquely determine values for A and f? 
Solution 
You need to know that the two samples are both within a single cycle of the sinusoid. 
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15. A given low pass filter has a cutoff frequency fc and a sample frequency fs.  The sample 
period is T = 1/fs.  In implementing the filter it is essential that the evaluation of the difference 
equation be completed in less than T seconds.  What are the consequences with regard to fc if this 
is not the case.  For example, suppose it takes 1.2T to do the evaluation of the difference 
equation.   
Solution 
This effectively decreases the sample frequency and there will be a corresponding decrease in the 
cut off frequency of a low pass filter.  In addition, if the sample frequency is slower than the 
design called for, aliasing could be a problem. 
 
Analysis and Design Problems 
1.1 Using the numerical integration by trapezoids outlined in this chapter find the difference 
equation for a digital filter to approximate the analog filter below. 

 
Figure P1.1 
An analog filter. 
Solution 
The loop equation for the circuit is 

0vvv ci   

But  and iRv 0

  dtvRCidtCvc 0)/1()/1(  

The loop equation can be written as 

  oi vvdtvRC 0)/1(  

Using (1.8) for trapezoidal integration we get 
)]1()()[2/()1()1()()(  nvnvRCTnvnvnvnv oooioi  

Which simplifies to 
)1()]1()([)( 210  nvKnvnvKnv oii  

Where 
TRC

RC
K




2

2
1   and 

TRC

TRC
K





2

2
2  

 
1.2 A typical computer program for a digital filter was given as: 
Initialize Variables 
DO Forever 

Call AtoD(Vi)       ;Get a sample from the A to D 
Vo = K1*Vi + K2*Vo1 
Call DtoA(Vo)       ;Output Vo to D to A 
Vo1 = Vo            ;Reset the value of the old variable. 
Wait for T seconds to pass 

Loop 
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End 
 
Answer the following questions about the program: 

A) What is the purpose of the statement “Wait for T seconds to pass.”  What are the 
consequences of removing this statement. 

B) What variable(s) need to be initialized by the “Initialize Variables” statement. 
C) If the A to D converter takes 10 microseconds to complete a conversion, the computer 

requires 8 microseconds for each multiply and .5 microseconds for each add and the D to 
A converter requires .1 microsecond, approximately what is the maximum sample 
frequency for this filter with this difference equation. 

Solution 
A) This statement forces the loop to complete every T seconds.  If it is removed, the sampling 
frequency will change. 
B) K1 and Vo1 
C) There are 2 multiplies and 1 add = 16.5 µsec plus the A/D = 8 µsec plus the D/A = 0.1 µsec 
comes to 24.6 µsec.  Maximum sample frequency s 1/24.6µsec = 40.65 KHz. 
 
1.3 For the difference equation given by: 

TnvTnvnTvnTv oiio )1(3333.0)1(3333.0)(3333.0)(   

The sample frequency is 1 KHz. 
A) Find and tabulate the impulse response. 
B) Find and tabulate the step response. 
C) Express the frequency response of the output/input in terms of sines and cosines. 
D) Plot the magnitude and phase of the frequency response for the frequency range 0 to fs/2. 
E) Does this filter represent a FIR or an IIR filter?  Explain. 

Solution 
A)  
n vi vi/3 vi(n-1)/3 vo(n-1)/3 vo 
0 1 1/3 0 0 1/3 
1 0 0 1/3 1/9 4/9 
2 0 0 0 4/27 4/27 
3 0 0 0 4/81 4/81 
4 0 0 0 4/243 4/243 

… … … … … … 
 
B)  
n vi vi/3 vi(n-1)/3 vo(n-1)/3 vo 
0 1 1/3 0 0 1/3 
1 1 1/3 1/3 1/9 7/9 
2 1 1/3 1/3 7/27 25/27 
3 1 1/3 1/3 25/81 79/81 
4 1 1/3 1/3 79/243 241/243
… … … … … … 
 
C) The difference equation is 

TnvTnvnTvnTv oiio )1(3333.0)1(3333.0)(3333.0)(   
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Let , , and  nTj
i enTv )( Tnj

i eTnv )1()1(   nTj
o AenTv )( Tnj

o AeTnv )1()1(  

This gives 
TnjTnjnTjnTj AeeeAe )1()1( )3/1()3/1()3/1(     

Divide both sides by  nTje 

TjTj AeeA    )3/1()3/1()3/1(  
Solve this for A to get 

Tj

Tj

e

e
A 











1

)1)(3/1(
 

A
e

Ae

ev

ev
nTj

nTj

nTj
i

nTj
o  







)(

)(
 

Applying Euler's identity we get 

)sin()cos(1

)]sin(1))[cos(3/1(

)(

)(

TjT

TjT

ev

ev
nTj

i

nTj
o











  

)(sin)cos(1(

)(sin)1)(cos(
)3/1(

22

22

TT

TT

ev

ev
nTj

i

nTj
o











  





















 

)cos(1

)sin(
tan

1)cos(

)sin(
tan)( 11

T

T

T

T
T





  

D) Using MATLAB® 
fs = 1000;T = 1/fs; 
f = 0:fs/2; 
w = 2*pi*f; 
A = (1/3)*(1+exp(-j*w*T))./(1-(1/3)*exp(-j*w*T)); 
figure(1);clf; 
subplot(2, 1, 1); 
plot(f, abs(A)); 
title('Magnitude of A'); 
xlabel('frequency in Hz'); 
ylabel('Gain'); 
subplot(2, 1, 2); 
plot(f, angle(A)*180/pi); 
title('Phase of A'); 
xlabel('frequency in Hz'); 
ylabel('Angle in degrees'); 
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E) This represents an IIR filter since it has feedback. 
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1.4 The algorithm used in this chapter relied on a discrete approximation to the integral using 
trapezoids.  

A)  Find the difference equation to approximate the integral if rectangles are used in place of 
trapezoids. 

B) Plot the frequency response of a trapezoidal and a rectangular integrator. 
Solution 
A)  

 
If we take the variable y to represent the integral we can write: 

 
nT

dttfnTy
0

)()(   

This equation can be broken into two separate parts and rewritten as: 

 





Tn nT

Tn

dttfdttfnTy
)1(

0 )1

)()()(
(

which can be written as

   

( 1)

( ) ([ 1] ) ( )
nT

n T

y nT y n T f t dt


     

If we approximate the integral with the area under the rectangle this equation becomes 
)()]1([)( nTTfTnynTy   

 

B) To find the frequency response we let and we take  nTjenTf )( nTjAenTy )(
Putting these values into the difference equation from part A gives: 

nTjTnjnTj TeAeAe    )1(  
Solve this equation for A to get 

TeA Tj   )1(   or 

Tje

T
A 


1
  Rectangular integration sinusoidal gain equation. 

For the trapezoidal integrator (1.8) gives the difference equation: 
( ) ([ 1] ) ( / 2)[ ( ) ([ 1] )]y nT y n T T f nT f n T      

Let and we take to get nTjenTf )( nTjAenTy )(

])[2/( )1()1( TnjnTjTnjnTj eeTAeAe     
Solve for A to get 

Tj

Tj

e

e
TA 











1

1
2/  Trapezoidal integration sinusoidal gain equation 

-8- 
 



Use MATLAB® to plot the gain of the rectangular and trapezoidal gain equations. 
fs = 1;T = 1

w*T)); 
-j*w*T))./(1-exp(-j*w*T)); 

; 

l integrators'); 
y in Hz'); 

]); 
  

/fs; 
f = 0:.001:fs/2; 
w = 2*pi*f; 
Ar = T./(1-exp(-j*
At = (T/2)*(1+exp(
figure(1);clf
plot(f, abs(Ar)); 
title('Magnitude of rectangular and trapezoida
xlabel('frequenc
ylabel('Gain'); 
hold on; 
plot(f, abs(At), 'r'); 
axis([0 fs/2 0 10
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1.5 Describe in detail how you could use a sinusoidal signal generator and an oscilloscope to 

etermine the gain vs. frequency plot or a digital filter. 

ng a dual trace oscilloscope observe 

 
 

1.6

d  f
Solution 
•  Set up the function generator for sinusoidal outputs with a 1 volt amplitude. 

e function generator to the digital filter and usi• Apply th
both the input and the output. 

• The gain is the amplitude of the output divided by the amplitude of the input and the phase is
the phase shift with the input as the reference.  Measure the gain and phase for frequencies
from near zero to fs/2. 

 
 Show that the difference equation for the second order IIR filter Figure P1.6 is given by  

 xbxbxb 221122110   kkkkkk yaya  y
where yk is the output variable at time k and uk is the input variable at time k. 

 
Figure P1.6 
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An IIR filter. 
Solution 

 
)1()()( 20211  kxbkxbkx  )( 2 bky

)()1( 21 kxkx   
)()()1( 21122 kxakxakx   

k x(k) x2(k+1) x2(k) x1(k) y(k) 
0 1 1 0 0 b0 

1 0 -a1 1 0 -b0a1+b1 

2 0 -a2+a1
2 -a1 1 b2-b1a1+b0(-a2+a1

2) 
3 0 a1a2 + a1a2-a1

3 -a2+a1
2 -a1 -b2a1+b1(-a2+a1

2)+b0(a1a2 + a1a2-a1
3) 

 
We can also get the impulse response from the difference equation: 

k x(k) x(k-1) x(k-2) y(k) y(k-1) y(k-2) 
0 1 0 0 b0 0 0 

0 0a1+ b1 b0 0 
1 +b0(-a2+a1

2) -b0a1+ b1 b0 

 0 0 - 1+b1(-a 1
2)+b0(a1a2 + a1a2-a

3 -b1a1+b0(-a2+a1
2) -b0a1+ b1 

ce e di tio e e res  evaluation of the 
ate diagram the two forms must represent the same system. 

ys finite in length and has a length no greater than n+1 where n is 
 s  f fficient. 

221122110   kkkkkk yayaxbxbxby  

1 
2 

0 
0 

1 
0 

-b
b2-b a11

+a3 0 b a2 2 1 ) b2

 
Sin  th ffe ence equar  n as thh sam ponse to an impulse as does the
st
 
1.7 Find the general expression for the impulse response for the FIR filter shown in Figure P1.7.  
Show that this response is alwa
the ubscript of the inal coe
 

 
Figure P1.7 
An FIR filter. 
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Solution 
h(nT) = {b0, b1, b2, b3, b4, b5, 0, 0, 0, …} 
 
1.8 Answer the questions below for the difference equation given by: 

TkvTkvkTvkTv iio )1(825.0)1(035.)(5.0)( 0   

A) Does this equation represent an IIR or an FIR system?  Explain. 
B) Write the first 5 terms of the impulse response for this system. 
C) Write the expression for the frequency response for this system if the sample frequency is 

1,000 Hz. 

R system since it has feedback. 

-1) 
 

3 0 0 -0.3046 0.3692 
4 

 
C) 

Solution 
A) This is an II
B) k vi(k) vi(k-1) vo(k) vo(k
0 1 0 0.5 0
1 0 1 -0.4475 0.5 

2 0 0 0.3692 -0.4475 

0 0 0.2513 -0.3046 

The difference equation is: 
TnvTnvnTvnT i )1(825.0)1(035.)(5.0)v io ( 0 

nTj
 

Let i nTv ( e) , 
This gives 

Tnj
i eTnv )1()1(  

, 
nTj

o AenTv )( and 

 for A o get 

Tnj
o AeTnv )1()1(    

TnjTnjnTjnTj )1()1( 8.0035.05.     Ae Ae25e
nT

e 0
Divide both sides by je   

TjTj   0035.05.0  Ae825.eA  
Solve this  t

Tj

Tj

e

e5
A 










825.01

)03.00(
 

5.

A
e

Aeev nTjnTj
o

 )(

ev nTjnTj
i

  )(
 

ying Euler's identity we get Appl

)sin(825.0)cos(825.01

)]sin(035.0)cos(035.05.0[

)(

)(ev nTj
o




TjT

TjT

ev nTj
i 


 



  
The magnitude response is:

)(sin825.0)cos(825.01(

)(sin035.0))cos(035.05.0(
)3/1(

ev
nTj

nTj
o



 


222

222

TT

T

evi 







 

The phase response is:

T

 





















 

)cos(825.01

)sin(825.0
tan

)cos(035.05.0

)sin(035.0
tan)( 11

T

T

T

T
T





  

T = 0.001. 
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1.9 Consider the difference equation given by 

TnKynTxnTy )1()()(   
A) Find the expression for the frequency response for y/x in terms of K.  Take T = 1. 
B) Use MATLAB® to plot the frequency response for two cases: K = 0.8 and K = 1/0.8 = 

1.25.  What is the same and what is different about these two responses?   
C) Use MATLAB pulse response for two cases: K = 0.8 and K = 1/0.8 = 1.25.  

erms. 
 the impulse response of these two difference equations that 

is not evident from the frequency response? 
Solution 

rence equation is: 

® to plot the im
Plot at least 10 t

D) What can you conclude from

A) The diffe
TnKynTxnT )1()()(y   

Let and 
Thi

Divide 

Solve t

nTjenTx )( nTjAenTy )( ny )1( , 
TnjAeT )1(    

s gives 
TnjnTjnTj KAee )1(    

both sides by nTje   

Ae

TjKAe 1  
his for A to get 

A 

Tje 

1
 

K1
A 

A
Aeey

nT

nTjnTj


 )(

 
eex jnTj  )(

s identity we get Applying Euler'

)sin()cos(1

1

)(

)(ey
nTj 

TTKex

nT





  

j

jK 
The magnitude response is:

)(sin)cos(1( Kxe nTj



1

222 TKT

ye

   

The phase response is:

 

nTj











 

)cos(1

)sin(
tan0)( 1

TK

TK
T


  

B) The magnitude plots have the same shape but when K = 0.8 the magnitude is overall slightly 
higher.  If both plots were normalized to a gain of unity at 0 Hz they would be the same.  The 
phase plots are very different.  For K = 0.8 the phase curve begins and ends at 0o.  It reaches a 
maximum of about -50o at about 0.1 Hz.  When K = 1.25 the phase curve begins at -180o and 

o. 
 
 
 

ends at 0o.  The total phase changes is about 180
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K = 0.8; 
A = 1./(1-K*exp(-j*w*T)); 
figure(1);clf; 
subplot(2, 1, 1); 
plot(f, abs(A)); 
title('Magnitude of A, K = 0.8'); 
abel('frequency in Hz'); 

frequency in Hz  

fs = 1;T = 1/fs; 
f = 0:.001:fs/2; 
w = 2*pi*f; 

abel('Gain'); 
bplot(2, 1, 2); 
ot(f, angle(A)*180/pi); 
tle('Phase of A, K = 0.8'); 

in Hz'); 
egrees'); 

xl
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A
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 d
eg
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yl
su
pl
ti
xlabel('frequency 
ylabel('Angle in d
 

 

]; %impulse in 

 
 

bplot(2, 1, 1); 
em(nT, y); 
le('Impluse Response, K = 0.8'); 
el('Time in seconds'); 

 
C)  
x = [1 zeros(1, 9)
y = zeros(1, 10); 
y(1) = x(1); 
K = 0.8; 
for i = 2:length(y)
    y(i) = x(i) + K*y(i-1);
end 
figure(4);clf; 
fs = 1;T = 1/fs; 
 = (0:9)*T; nT

su
st
ti
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0

0.5

1
Impluse Response, K = 0.8

Time in seconds

V
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ta
ge

0 1 2 3 4 5 6 7 8 9
0

2
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6

8
Impluse Response, K = 1.25

Time in seconds

V
ol

ta
ge

 t
xlab
ylabel('Voltage'); 
 
D) When K = 1.25 the system is unstable. 

as an impulse response given by 

tion can be viewed as a series of impulses beginning at nT = 0.  The step 
 series of impulse responses since we are dealing with linear systems.  Use 

 the first 5 terms of the step response of this system. 

ach shifted one place further to the right from the 
 of the shifted impulse responses. 

6 7 8 

0 0 0 0 

 
1.10 A certain difference equation h

) = {1.0, 0.5, 0.25, 0, 0, 0, …} h(nT
The step input func
output must then be a
this information to find
Solution 
We view the step as a sequence of impulses e
last.  The step response is the sum
 
 n 
 0 1 2 3 4 5 

0 1 0.5 0.25 0 0 0 0 0 0 
0 0 0 0 1 0 1 0.5 0.25 0 

2 0 0 1 0.5 0.25
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3 0 0 0 1 0.5 0.25 0 0 0 
4 0 0 0 0 1 0.5 0.25 0 0 
5 0 0 0 0 0 1 0.5 0.25 0 
          

.11 When a step input is applied to a certain difference equation, the output, or step response, is 
iven by 
nT) = .25 .5, 1  1.0 .0, …  

A step function in discrete time can be viewed  a se enc f shifted impulses to the step 
response mus e a e  s ted sponses.  Use this information to derive the 
im ulse spo e fo is m
S tio
From th rev us p lem e se hat rm is always the previous 
term plus the present term the puls esp . an ite (from the solution of Problem 
10) 

 = (n
rom this we get 

 response is  

ider the difference equation given by 

agnitude and phase plots show that at an input 
 gain is approximately 0.54 and the phase is approximately -111o.  Using 

 x to be a sinusoid at 100 Hz with an amplitude of 1.0.  Apply x to the 
calculate the sequence for y(nT).  Verify the gain and phase shift that 
 the frequency response curves.  Note that you will have to produce 

reading since the first few cycles will contain the transient 
e steady state response. 

sum 1 1.5 1.75 1.75 1.75 1.75 1.75 1.75 1.75
 
1
g
s(  {0 , 0 .0, , 1 }

 as qu e o
t b  sequ nce of hif impulse re

p  re ns r th syste . 
olu n 

e p io rob  w e t  the next te  of the step response 
of im e r onse  We c  wr

stp(n)  stp -1) + h(n) 
F
h(n) = stp(n) – stp(n-1) 
If the step
s(nT) = {0.25, 0.5, 1.0, 1.0, 1.0, …} 
The impulse response is: 
h(nT) = {0.25, 0.25, 0.5, 0, 0, 0, …} 
 
1.12 Cons
y(nT) = 0.075x(nT) + 0.075x(n-1)T + 1.5y(n-1)T – 0.65y(n-2)T 
The frequency response for y/x for this equation is given in Figure P1.12.  The sample frequency 
is fs = 1000.  The exploded view of the m
frequency of 100 Hz the
MATLAB® allow
difference equation and 
were approximated from
several cycles of y to get an accurate 
start up terms as well as th
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Figure P1.12 
ponse curve left and a blow up right for a difference equation. 

olution 
1000;T = 1/fs; 

fsig*t); 
; 

1) + 1.5*y(1); 

(i-1) - .65*y(i-2); 

); 
1.2]); 

nusoids'); 

 

The frequency res
 
S

fs = 
t = 0:T:1; 

 fsig = 100;
x = sin(2*pi*
y = zeros(1, length(x))
y(1) = .075*x(1); 

 .075*x(y(2) = .075*x(2) +
for i = 3:length(y) 

 + .075*x(i-1) + 1.5*y    y(i) = .075*x(i)
end 

e(1);clf; figur
plot(t, x); 
hold on; 

 'r'plot(t, y,
axis([.2 .24 -1.2 
title('Input and output si
xlabel('Time in seconds'); 
ylabel('Voltage'); 

 
From the figure: and 54.0/ 21 AA ott 111360)/( 12   
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.13 In the difference equation below K is a real number greater than 0.   

A) Find the range of values of K that makes the impulse response grow without bound. 

Sol

Tabulate the impulse response.
) y(n-1) 

1+K 
K(1 + K) 1+K 

K(1 + K) 

K -1  K) K -2  K) 
If K ) + K s to gr und 

1
TnKyTnxnTxnTy )1()1()()(   

B) Find the range of values of K that makes the impulse response fall to zero. 
ution 

TnKyTnxnT )1()1()(    
xnTy )( 

n x(n) x(n-1) y(n
0 1 0 1 0 
1 0 1 1 
2 0 0 
3 0 0 K2(1 + K) 
4 0 0 K3(1 + K) K2(1 + K) 
… … … … 

(N
… 

(NN 0 0 )(1 + )(1 +
A) (N-1 N  i ow without bo then 1K  

B) In order for K(N-1) + KN to approach zero we need 1K  

 
1.14  An N-stage delay line is shown in Figure P1.15. 

ncy response is always 1 and the phase shift is 

A) Write the difference equation for the output. 
B) Write the frequency response for y/x. 
C) Show that the magnitude of the freque

linearly related to the frequency. 

 
Figure P1.14 

olution 

and 
 gives 

Divide both sides by 

C) Magnitude of A 

A delay line 
 
S
A) )(ny  )( Nnx   

B) nTjenTx )( nTjAenTy )(  

This
TNnj )(   nTj eAe 

nTje   
NTjeA   

1A  

Phase of A 
NTA   
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