CHAPTER 2

2.1 Limits of Sequences.

2.1.0. a) True. If x_{n} converges, then there is an $M>0$ such that $\left|x_{n}\right| \leq M$. Choose by Archimedes an $N \in \mathbf{N}$ such that $N>M / \varepsilon$. Then $n \geq N$ implies $\left|x_{n} / n\right| \leq M / n \leq M / N<\varepsilon$.
b) False. $x_{n}=\sqrt{n}$ does not converge, but $x_{n} / n=1 / \sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$.
c) False. $x_{n}=1$ converges and $y_{n}=(-1)^{n}$ is bounded, but $x_{n} y_{n}=(-1)^{n}$ does not converge.
d) False. $x_{n}=1 / n$ converges to 0 and $y_{n}=n^{2}>0$, but $x_{n} y_{n}=n$ does not converge.
2.1.1. a) By the Archimedean Principle, given $\varepsilon>0$ there is an $N \in \mathbf{N}$ such that $N>1 / \varepsilon$. Thus $n \geq N$ implies

$$
|(2-1 / n)-2| \equiv|1 / n| \leq 1 / N<\varepsilon
$$

b) By the Archimedean Principle, given $\varepsilon>0$ there is an $N \in \mathbf{N}$ such that $N>\pi^{2} / \varepsilon^{2}$. Thus $n \geq N$ implies

$$
|1+\pi / \sqrt{n}-1| \equiv|\pi / \sqrt{n}| \leq \pi / \sqrt{N}<\varepsilon .
$$

c) By the Archimedean Principle, given $\varepsilon>0$ there is an $N \in \mathbf{N}$ such that $N>3 / \varepsilon$. Thus $n \geq N$ implies

$$
|3(1+1 / n)-3| \equiv|3 / n| \leq 3 / N<\varepsilon
$$

d) By the Archimedean Principle, given $\varepsilon>0$ there is an $N \in \mathbf{N}$ such that $N>1 / \sqrt{3 \varepsilon}$. Thus $n \geq N$ implies

$$
\left|\left(2 n^{2}+1\right) /\left(3 n^{2}\right)-2 / 3\right| \equiv\left|1 /\left(3 n^{2}\right)\right| \leq 1 /\left(3 N^{2}\right)<\varepsilon .
$$

2.1.2. a) By hypothesis, given $\varepsilon>0$ there is an $N \in \mathbf{N}$ such that $n \geq N$ implies $\left|x_{n}-1\right|<\varepsilon / 2$. Thus $n \geq N$ implies

$$
\left|1+2 x_{n}-3\right| \equiv 2\left|x_{n}-1\right|<\varepsilon .
$$

b) By hypothesis, given $\varepsilon>0$ there is an $N \in \mathbf{N}$ such that $n \geq N$ implies $x_{n}>1 / 2$ and $\left|x_{n}-1\right|<\varepsilon / 4$. In particular, $1 / x_{n}<2$. Thus $n \geq N$ implies

$$
\left|\left(\pi x_{n}-2\right) / x_{n}-(\pi-2)\right| \equiv 2\left|\left(x_{n}-1\right) / x_{n}\right|<4\left|x_{n}-1\right|<\varepsilon
$$

c) By hypothesis, given $\varepsilon>0$ there is an $N \in \mathbf{N}$ such that $n \geq N$ implies $x_{n}>1 / 2$ and $\left|x_{n}-1\right|<\varepsilon /(1+2 e)$. Thus $n \geq N$ and the triangle inequality imply

$$
\left|\left(x_{n}^{2}-e\right) / x_{n}-(1-e)\right| \equiv\left|x_{n}-1\right|\left|1+\frac{e}{x_{n}}\right| \leq\left|x_{n}-1\right|\left(1+\frac{e}{\left|x_{n}\right|}\right)<\left|x_{n}-1\right|(1+2 e)<\varepsilon
$$

2.1.3. a) If $n_{k}=2 k$, then $3-(-1)^{n_{k}} \equiv 2$ converges to 2 ; if $n_{k}=2 k+1$, then $3-(-1)^{n_{k}} \equiv 4$ converges to 4 .
b) If $n_{k}=2 k$, then $(-1)^{3 n_{k}}+2 \equiv(-1)^{6 k}+2=1+2=3$ converges to 3 ; if $n_{k}=2 k+1$, then $(-1)^{3 n_{k}}+2 \equiv$ $(-1)^{6 k+3}+2=-1+2=1$ converges to 1 .
c) If $n_{k}=2 k$, then $\left(n_{k}-(-1)^{n_{k}} n_{k}-1\right) / n_{k} \equiv-1 /(2 k)$ converges to 0 ; if $n_{k}=2 k+1$, then $\left(n_{k}-(-1)^{n_{k}} n_{k}-1\right) / n_{k} \equiv$ $\left(2 n_{k}-1\right) / n_{k}=(4 k+1) /(2 k+1)$ converges to 2 .
2.1.4. Suppose x_{n} is bounded. By Definition 2.7, there are numbers M and m such that $m \leq x_{n} \leq M$ for all $n \in \mathbf{N}$. Set $C:=\max \{1,|M|,|m|\}$. Then $C>0, M \leq C$, and $m \geq-C$. Therefore, $-C \leq x_{n} \leq C$, i.e., $\left|x_{n}\right|<C$ for all $n \in \mathbf{N}$.

Conversely, if $\left|x_{n}\right|<C$ for all $n \in \mathbf{N}$, then x_{n} is bounded above by C and below by $-C$.
2.1.5. If $C=0$, there is nothing to prove. Otherwise, given $\varepsilon>0$ use Definition 2.1 to choose an $N \in \mathbf{N}$ such that $n \geq N$ implies $\left|b_{n}\right| \equiv b_{n}<\varepsilon /|C|$. Hence by hypothesis, $n \geq N$ implies

$$
\left|x_{n}-a\right| \leq|C| b_{n}<\varepsilon
$$

By definition, $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
2.1.6. If $x_{n}=a$ for all n, then $\left|x_{n}-a\right|=0$ is less than any positive ε for all $n \in \mathbf{N}$. Thus, by definition, $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
2.1.7. a) Let a be the common limit point. Given $\varepsilon>0$, choose $N \in \mathbf{N}$ such that $n \geq N$ implies $\left|x_{n}-a\right|$ and $\left|y_{n}-a\right|$ are both $<\varepsilon / 2$. By the Triangle Inequality, $n \geq N$ implies

$$
\left|x_{n}-y_{n}\right| \leq\left|x_{n}-a\right|+\left|y_{n}-a\right|<\varepsilon .
$$

By definition, $x_{n}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$.
b) If n converges to some a, then given $\varepsilon=1 / 2,1=|(n+1)-n|<|(n+1)-a|+|n-a|<1$ for n sufficiently large, a contradiction.
c) Let $x_{n}=n$ and $y_{n}=n+1 / n$. Then $\left|x_{n}-y_{n}\right|=1 / n \rightarrow 0$ as $n \rightarrow \infty$, but neither x_{n} nor y_{n} converges.
2.1.8. By Theorem 2.6, if $x_{n} \rightarrow a$ then $x_{n_{k}} \rightarrow a$. Conversely, if $x_{n_{k}} \rightarrow a$ for every subsequence, then it converges for the "subsequence" x_{n}.

2.2 Limit Theorems.

2.2.0. a) False. Let $x_{n}=n^{2}$ and $y_{n}=-n$ and note by Exercise 2.2.2a that $x_{n}+y_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
b) True. Let $\varepsilon>0$. If $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, then choose $N \in \mathbf{N}$ such that $n \geq N$ implies $x_{n}<-1 / \varepsilon$. Then $x_{n}<0$ so $\left|x_{n}\right|=-x_{n}>0$. Multiply $x_{n}<-1 / \varepsilon$ by $\varepsilon /\left(-x_{n}\right)$ which is positive. We obtain $-\varepsilon<1 / x_{n}$, i.e., $\left|1 / x_{n}\right|=-1 / x_{n}<\varepsilon$.
c) False. Let $x_{n}=(-1)^{n} / n$. Then $1 / x_{n}=(-1)^{n} n$ has no limit as $n \rightarrow \infty$.
d) True. Since $\left(2^{x}-x\right)^{\prime}=2^{x} \log 2-1>1$ for all $x \geq 2$, i.e., $2^{x}-x$ is increasing on $[2, \infty)$. In particular, $2^{x}-x \geq 2^{2}-2>0$, i.e., $2^{x}>x$ for $x \geq 2$. Thus, since $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we have $2^{x_{n}}>x_{n}$ for n large, hence

$$
2^{-x_{n}}<\frac{1}{x_{n}} \rightarrow 0
$$

as $n \rightarrow \infty$.
2.2.1. a) $\left|x_{n}\right| \leq 1 / n \rightarrow 0$ as $n \rightarrow \infty$ and we can apply the Squeeze Theorem.
b) $2 n /\left(n^{2}+\pi\right)=(2 / n) /\left(1+\pi / n^{2}\right) \rightarrow 0 /(1+0)=0$ by Theorem 2.12 .
c) $(\sqrt{2 n}+1) /(n+\sqrt{2})=((\sqrt{2} / \sqrt{n})+(1 / n)) /(1+(\sqrt{2} / n)) \rightarrow 0 /(1+0)=0$ by Exercise 2.2.5 and Theorem 2.12 .
d) An easy induction argument shows that $2 n+1<2^{n}$ for $n=3,4, \ldots$ We will use this to prove that $n^{2} \leq 2^{n}$ for $n=4,5, \ldots$. It's surely true for $n=4$. If it's true for some $n \geq 4$, then the inductive hypothesis and the fact that $2 n+1<2^{n}$ imply

$$
(n+1)^{2}=n^{2}+2 n+1 \leq 2^{n}+2 n+1<2^{n}+2^{n}=2^{n+1}
$$

so the second inequality has been proved.
Now the second inequality implies $n / 2^{n}<1 / n$ for $n \geq 4$. Hence by the Squeeze Theorem, $n / 2^{n} \rightarrow 0$ as $n \rightarrow \infty$.
2.2.2. a) Let $M \in \mathbf{R}$ and choose by Archimedes an $N \in \mathbf{N}$ such that $N>\max \{M, 2\}$. Then $n \geq N$ implies $n^{2}-n=n(n-1) \geq N(N-1)>M(2-1)=M$.
b) Let $M \in \mathbf{R}$ and choose by Archimedes an $N \in \mathbf{N}$ such that $N>-M / 2$. Notice that $n \geq 1$ implies $-3 n \leq-3$ so $1-3 n \leq-2$. Thus $n \geq N$ implies $n-3 n^{2}=n(1-3 n) \leq-2 n \leq-2 N<M$.
c) Let $M \in \mathbf{R}$ and choose by Archimedes an $N \in \mathbf{N}$ such that $N>M$. Then $n \geq N$ implies $\left(n^{2}+1\right) / n=$ $n+1 / n>N+0>M$.
d) Let $M \in \mathbf{R}$ satisfy $M \leq 0$. Then $2+\sin \theta \geq 2-1=1$ implies $n^{2}\left(2+\sin \left(n^{3}+n+1\right)\right) \geq n^{2} \cdot 1>0 \geq M$ for all $n \in \mathbf{N}$. On the other hand, if $M>0$, then choose by Archimedes an $N \in \mathbf{N}$ such that $N>\sqrt{M}$. Then $n \geq N$ implies $n^{2}\left(2+\sin \left(n^{3}+n+1\right)\right) \geq n^{2} \cdot 1 \geq N^{2}>M$.
2.2.3. a) Following Example 2.13,

$$
\frac{2+3 n-4 n^{2}}{1-2 n+3 n^{2}}=\frac{\left(2 / n^{2}\right)+(3 / n)-4}{\left(1 / n^{2}\right)-(2 / n)+3} \rightarrow \frac{-4}{3}
$$

as $n \rightarrow \infty$.
b) Following Example 2.13,

$$
\frac{n^{3}+n-2}{2 n^{3}+n-2}=\frac{1+\left(1 / n^{2}\right)-\left(2 / n^{3}\right)}{2+\left(1 / n^{2}\right)-\left(2 / n^{3}\right)} \rightarrow \frac{1}{2}
$$

as $n \rightarrow \infty$.
c) Rationalizing the expression, we obtain

$$
\sqrt{3 n+2}-\sqrt{n}=\frac{(\sqrt{3 n+2}-\sqrt{n})(\sqrt{3 n+2}+\sqrt{n})}{\sqrt{3 n+2}+\sqrt{n}}=\frac{2 n+2}{\sqrt{3 n+2}+\sqrt{n}} \rightarrow \infty
$$

as $n \rightarrow \infty$ by the method of Example 2.13. (Multiply top and bottom by $1 / \sqrt{n}$.)
d) Multiply top and bottom by $1 / \sqrt{n}$ to obtain

$$
\frac{\sqrt{4 n+1}-\sqrt{n}}{\sqrt{9 n+1}-\sqrt{n+2}}=\frac{\sqrt{4+1 / n}-\sqrt{1-1 / n}}{\sqrt{9+1 / n}-\sqrt{1+2 / n}} \rightarrow \frac{2-1}{3-1}=\frac{1}{2} .
$$

2.2.4. a) Clearly,

$$
\frac{x_{n}}{y_{n}}-\frac{x}{y}=\frac{x_{n} y-x y_{n}}{y y_{n}}=\frac{x_{n} y-x y+x y-x y_{n}}{y y_{n}}
$$

Thus

$$
\left|\frac{x_{n}}{y_{n}}-\frac{x}{y}\right| \leq \frac{1}{\left|y_{n}\right|}\left|x_{n}-x\right|+\frac{|x|}{\left|y y_{n}\right|}\left|y_{n}-y\right|
$$

Since $y \neq 0,\left|y_{n}\right| \geq|y| / 2$ for large n. Thus

$$
\left|\frac{x_{n}}{y_{n}}-\frac{x}{y}\right| \leq \frac{2}{|y|}\left|x_{n}-x\right|+\frac{2|x|}{|y|^{2}}\left|y_{n}-y\right| \rightarrow 0
$$

as $n \rightarrow \infty$ by Theorem 2.12 i and ii. Hence by the Squeeze Theorem, $x_{n} / y_{n} \rightarrow x / y$ as $n \rightarrow \infty$.
b) By symmetry, we may suppose that $x=y=\infty$. Since $y_{n} \rightarrow \infty$ implies $y_{n}>0$ for n large, we can apply Theorem 2.15 directly to obtain the conclusions when $\alpha>0$. For the case $\alpha<0, x_{n}>M$ implies $\alpha x_{n}<\alpha M$. Since any $M_{0} \in \mathbf{R}$ can be written as αM for some $M \in \mathbf{R}$, we see by definition that $x_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.
2.2.5. Case 1. $x=0$. Let $\epsilon>0$ and choose N so large that $n \geq N$ implies $\left|x_{n}\right|<\epsilon^{2}$. By (8) in 1.1, $\sqrt{x_{n}}<\epsilon$ for $n \geq N$, i.e., $\sqrt{x_{n}} \rightarrow 0$ as $n \rightarrow \infty$.

Case 2. $x>0$. Then

$$
\sqrt{x_{n}}-\sqrt{x}=\left(\sqrt{x_{n}}-\sqrt{x}\right)\left(\frac{\sqrt{x_{n}}+\sqrt{x}}{\sqrt{x_{n}}+\sqrt{x}}\right)=\frac{x_{n}-x}{\sqrt{x_{n}}+\sqrt{x}}
$$

Since $\sqrt{x_{n}} \geq 0$, it follows that

$$
\left|\sqrt{x_{n}}-\sqrt{x}\right| \leq \frac{\left|x_{n}-x\right|}{\sqrt{x}}
$$

This last quotient converges to 0 by Theorem 2.12. Hence it follows from the Squeeze Theorem that $\sqrt{x_{n}} \rightarrow \sqrt{x}$ as $n \rightarrow \infty$.
2.2.6. By the Density of Rationals, there is an r_{n} between $x+1 / n$ and x for each $n \in \mathbf{N}$. Since $\left|x-r_{n}\right|<1 / n$, it follows from the Squeeze Theorem that $r_{n} \rightarrow x$ as $n \rightarrow \infty$.
2.2.7. a) By Theorem 2.9 we may suppose that $|x|=\infty$. By symmetry, we may suppose that $x=\infty$. By definition, given $M \in \mathbf{R}$, there is an $N \in \mathbf{N}$ such that $n \geq N$ implies $x_{n}>M$. Since $w_{n} \geq x_{n}$, it follows that $w_{n}>M$ for all $n \geq N$. By definition, then, $w_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
b) If x and y are finite, then the result follows from Theorem 2.17. If $x=y= \pm \infty$ or $-x=y=\infty$, there is nothing to prove. It remains to consider the case $x=\infty$ and $y=-\infty$. But by Definition 2.14 (with $M=0$), $x_{n}>0>y_{n}$ for n sufficiently large, which contradicts the hypothesis $x_{n} \leq y_{n}$.
2.2.8. a) Take the limit of $x_{n+1}=1-\sqrt{1-x_{n}}$, as $n \rightarrow \infty$. We obtain $x=1-\sqrt{1-x}$, i.e., $x^{2}-x=0$. Therefore, $x=0,1$.
b) Take the limit of $x_{n+1}=2+\sqrt{x_{n}-2}$ as $n \rightarrow \infty$. We obtain $x=2+\sqrt{x-2}$, i.e., $x^{2}-5 x+6=0$. Therefore, $x=2,3$. But $x_{1}>3$ and induction shows that $x_{n+1}=2+\sqrt{x_{n}-2}>2+\sqrt{3-2}=3$, so the limit must be $x=3$.
c) Take the limit of $x_{n+1}=\sqrt{2+x_{n}}$ as $n \rightarrow \infty$. We obtain $x=\sqrt{2+x}$, i.e., $x^{2}-x-2=0$. Therefore, $x=2,-1$. But $x_{n+1}=\sqrt{2+x_{n}} \geq 0$ by definition (all square roots are nonnegative), so the limit must be $x=2$.

This proof doesn't change if $x_{1}>-2$, so the limit is again $x=2$.
2.2.9. a) Let $E=\left\{k \in \mathbf{Z}: k \geq 0\right.$ and $\left.k \leq 10^{n+1} y\right\}$. Since $10^{n+1} y<10, E \subseteq\{0,1, \ldots, 9\}$. Hence $w:=\sup E \in$ E. It follows that $w \leq 10^{n+1} y$, i.e., $w / 10^{n+1} \leq y$. On the other hand, since $w+1$ is not the supremum of E, $w+1>10^{n+1} y$. Therefore, $y<w / 10^{n+1}+1 / 10^{n+1}$.
b) Apply a) for $n=0$ to choose $x_{1}=w$ such that $x_{1} / 10 \leq x<x_{1} / 10+1 / 10$. Suppose

$$
s_{n}:=\sum_{k=1}^{n} \frac{x_{k}}{10^{k}} \leq x<\sum_{k=1}^{n} \frac{x_{k}}{10^{k}}+\frac{1}{10^{n}} .
$$

Then $0<x-s_{n}<1 / 10^{n}$, so by a) choose x_{n+1} such that $x_{n+1} / 10^{n+1} \leq x-s_{n}<x_{n+1} / 10^{n+1}+1 / 10^{n+1}$, i.e.,

$$
\sum_{k=1}^{n+1} \frac{x_{k}}{10^{k}} \leq x<\sum_{k=1}^{n+1} \frac{x_{k}}{10^{k}}+\frac{1}{10^{n+1}}
$$

c) Combine b) with the Squeeze Theorem.
d) Since an easy induction proves that $9^{n}>n$ for all $n \in \mathbf{N}$, we have $9^{-n}<1 / n$. Hence the Squeeze Theorem implies that $9^{-n} \rightarrow 0$ as $n \rightarrow \infty$. Hence, it follows from Exercise 1.4.4c and definition that

$$
.4999 \cdots=\frac{4}{10}+\lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{9}{10^{k}}=\frac{4}{10}+\lim _{n \rightarrow \infty} \frac{1}{10}\left(1-\frac{1}{9^{n}}\right)=\frac{4}{10}+\frac{1}{10}=0.5 .
$$

Similarly,

$$
.999 \cdots=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{9}{10^{k}}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{9^{n}}\right)=1 .
$$

2.3 The Bolzano-Weierstrass Theorem.

2.3.0. a) False. $x_{n}=1 / 4+1 /(n+4)$ is strictly decreasing and $\left|x_{n}\right| \leq 1 / 4+1 / 5<1 / 2$, but $x_{n} \rightarrow 1 / 4$ as $n \rightarrow \infty$.
b) True. Since $(n-1) /(2 n-1) \rightarrow 1 / 2$ as $n \rightarrow \infty$, this factor is bounded. Since $\left|\cos \left(n^{2}+n+1\right)\right| \leq 1$, it follows that $\left\{x_{n}\right\}$ is bounded. Hence it has a convergent subsequence by the Bolzano-Weierstrass Theorem.
c) False. $x_{n}=1 / 2-1 / n$ is strictly increasing and $\left|x_{n}\right| \leq 1 / 2<1+1 / n$, but $x_{n} \rightarrow 1 / 2$ as $n \rightarrow \infty$.
d) False. $x_{n}=\left(1+(-1)^{n}\right) n$ satisfies $x_{n}=0$ for n odd and $x_{n}=2 n$ for n even. Thus $x_{2 k+1} \rightarrow 0$ as $k \rightarrow \infty$, but x_{n} is NOT bounded.
2.3.1. Suppose that $-1<x_{n-1}<0$ for some $n \geq 0$. Then $0<x_{n-1}+1<1$ so $0<x_{n-1}+1<\sqrt{x_{n-1}+1}$ and it follows that $x_{n-1}<\sqrt{x_{n-1}+1}-1=x_{n}$. Moreover, $\sqrt{x_{n-1}+1}-1 \leq 1-1=0$. Hence by induction, x_{n} is increasing and bounded above by 0 . It follows from the Monotone Convergence Theorem that $x_{n} \rightarrow a$ as $n \rightarrow \infty$. Taking the limit of $\sqrt{x_{n-1}+1}-1=x_{n}$ we see that $a^{2}+a=0$, i.e., $a=-1,0$. Since x_{n} increases from $x_{0}>-1$, the limit is 0 . If $x_{0}=-1$, then $x_{n}=-1$ for all n. If $x_{0}=0$, then $x_{n}=0$ for all n.

Finally, it is easy to verify that if $x_{0}=\ell$ for $\ell=-1$ or 0 , then $x_{n}=\ell$ for all n, hence $x_{n} \rightarrow \ell$ as $n \rightarrow \infty$.
2.3.2. If $x_{1}=0$ then $x_{n}=0$ for all n, hence converges to 0 . If $0<x_{1}<1$, then by 1.4.1c, x_{n} is decreasing and bounded below. Thus the limit, a, exists by the Monotone Convergence Theorem. Taking the limit of $x_{n+1}=1-\sqrt{1-x_{n}}$, as $n \rightarrow \infty$, we have $a=1-\sqrt{1-a}$, i.e., $a=0$, 1 . Since $x_{1}<1$, the limit must be zero.

Finally,

$$
\frac{x_{n+1}}{x_{n}}=\frac{1-\sqrt{1-x_{n}}}{x_{n}}=\frac{1-\left(1-x_{n}\right)}{x_{n}\left(1+\sqrt{1-x_{n}}\right)} \rightarrow \frac{1}{1+1}=\frac{1}{2}
$$

2.3.3. Case 1. $x_{0}=2$. Then $x_{n}=2$ for all n, so the limit is 2 .

Case 2. $2<x_{0}<3$. Suppose that $2<x_{n-1} \leq 3$ for some $n \geq 1$. Then $0<x_{n-1}-2 \leq 1$ so $\sqrt{x_{n-1}-2} \geq x_{n-1}-2$, i.e., $x_{n}=2+\sqrt{x_{n-1}-2} \geq x_{n-1}$. Moreover, $x_{n}=2+\sqrt{x_{n-1}-2} \leq 2+1=3$. Hence by induction, x_{n} is increasing and bounded above by 3. It follows from the Monotone Convergence Theorem that $x_{n} \rightarrow a$ as $n \rightarrow \infty$. Taking the limit of $2+\sqrt{x_{n-1}-2}=x_{n}$ we see that $a^{2}-5 a+6=0$, i.e., $a=2,3$. Since x_{n} increases from $x_{0}>2$, the limit is 3 .

Case 3. $x_{0} \geq 3$. Suppose that $x_{n-1} \geq 3$ for some $n \geq 1$. Then $x_{n-1}-2 \geq 1$ so $\sqrt{x_{n-1}-2} \leq x_{n-1}-2$, i.e., $x_{n}=2+\sqrt{x_{n-1}-2} \leq x_{n-1}$. Moreover, $x_{n}=2+\sqrt{x_{n-1}-2} \geq 2+1=3$. Hence by induction, x_{n} is decreasing
and bounded above by 3 . By repeating the steps in Case 2 , we conclude that x_{n} decreases from $x_{0} \geq 3$ to the limit 3 .
2.3.4. Case 1. $x_{0}<1$. Suppose $x_{n-1}<1$. Then

$$
x_{n-1}=\frac{2 x_{n-1}}{2}<\frac{1+x_{n-1}}{2}=x_{n}<\frac{2}{2}=1 .
$$

Thus $\left\{x_{n}\right\}$ is increasing and bounded above, so $x_{n} \rightarrow x$. Taking the limit of $x_{n}=\left(1+x_{n-1}\right) / 2$ as $n \rightarrow \infty$, we see that $x=(1+x) / 2$, i.e., $x=1$.

Case 2. $x_{0} \geq 1$. If $x_{n-1} \geq 1$ then

$$
1=\frac{2}{2} \leq \frac{1+x_{n-1}}{2}=x_{n} \leq \frac{2 x_{n-1}}{2}=x_{n-1}
$$

Thus $\left\{x_{n}\right\}$ is decreasing and bounded below. Repeating the argument in Case 1 , we conclude that $x_{n} \rightarrow 1$ as $n \rightarrow \infty$.
2.3.5. The result is obvious when $x=0$. If $x>0$ then by Example 2.2 and Theorem 2.6,

$$
\lim _{n \rightarrow \infty} x^{1 /(2 n-1)}=\lim _{m \rightarrow \infty} x^{1 / m}=1
$$

If $x<0$ then since $2 n-1$ is odd, we have by the previous case that $x^{1 /(2 n-1)}=-(-x)^{1 /(2 n-1)} \rightarrow-1$ as $n \rightarrow \infty$.
2.3.6. a) Suppose that $\left\{x_{n}\right\}$ is increasing. If $\left\{x_{n}\right\}$ is bounded above, then there is an $x \in \mathbf{R}$ such that $x_{n} \rightarrow x$ (by the Monotone Convergence Theorem). Otherwise, given any $M>0$ there is an $N \in \mathbf{N}$ such that $x_{N}>M$. Since $\left\{x_{n}\right\}$ is increasing, $n \geq N$ implies $x_{n} \geq x_{N}>M$. Hence $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
b) If $\left\{x_{n}\right\}$ is decreasing, then $-x_{n}$ is increasing, so part a) applies.
2.3.7. Choose by the Approximation Property an $x_{1} \in E$ such that $\sup E-1<x_{1} \leq \sup E$. Since $\sup E \notin E$, we also have $x_{1}<\sup E$. Suppose $x_{1}<x_{2}<\cdots<x_{n}$ in E have been chosen so that $\sup E-1 / n<x_{n}<\sup E$. Choose by the Approximation Property an $x_{n+1} \in E$ such that $\max \left\{x_{n}, \sup E-1 /(n+1)\right\}<x_{n+1} \leq \sup E$. Then $\sup E-1 /(n+1)<x_{n+1}<\sup E$ and $x_{n}<x_{n+1}$. Thus by induction, $x_{1}<x_{2}<\ldots$ and by the Squeeze Theorem, $x_{n} \rightarrow \sup E$ as $n \rightarrow \infty$.
2.3.8. a) This follows immediately from Exercise 1.2.6.
b) By a), $x_{n+1}=\left(x_{n}+y_{n}\right) / 2<2 x_{n} / 2=x_{n}$. Thus $y_{n+1}<x_{n+1}<\cdots<x_{1}$. Similarly, $y_{n}=\sqrt{y_{n}^{2}}<\sqrt{x_{n} y_{n}}=$ y_{n+1} implies $x_{n+1}>y_{n+1}>y_{n} \cdots>y_{1}$. Thus $\left\{x_{n}\right\}$ is decreasing and bounded below by y_{1} and $\left\{y_{n}\right\}$ is increasing and bounded above by x_{1}.
c) By b),

$$
x_{n+1}-y_{n+1}=\frac{x_{n}+y_{n}}{2}-\sqrt{x_{n} y_{n}}<\frac{x_{n}+y_{n}}{2}-y_{n}=\frac{x_{n}-y_{n}}{2}
$$

Hence by induction and a), $0<x_{n+1}-y_{n+1}<\left(x_{1}-y_{1}\right) / 2^{n}$.
d) By b), there exist $x, y \in \mathbf{R}$ such that $x_{n} \downarrow x$ and $y_{n} \uparrow y$ as $n \rightarrow \infty$. By c), $|x-y| \leq\left(x_{1}-y_{1}\right) \cdot 0=0$. Hence $x=y$.
2.3.9. Since $x_{0}=1$ and $y_{0}=0$,

$$
\begin{aligned}
x_{n+1}^{2}-2 y_{n+1}^{2} & =\left(x_{n}+2 y_{n}\right)^{2}-2\left(x_{n}+y_{n}\right)^{2} \\
& =-x_{n}^{2}+2 y_{n}^{2}=\cdots=(-1)^{n}\left(x_{0}-2 y_{0}\right)=(-1)^{n}
\end{aligned}
$$

Notice that $x_{1}=1=y_{1}$. If $y_{n-1} \geq n-1$ and $x_{n-1} \geq 1$ then $y_{n}=x_{n-1}+y_{n-1} \geq 1+(n-1)=n$ and $x_{n}=x_{n-1}+2 y_{n-1} \geq 1$. Thus $1 / y_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $x_{n} \geq 1$ for all $n \in \mathbf{N}$. Since

$$
\left|\frac{x_{n}^{2}}{y_{n}^{2}}-2\right|=\left|\frac{x_{n}^{2}-2 y_{n}^{2}}{y_{n}^{2}}\right|=\frac{1}{y_{n}^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$, it follows that $x_{n} / y_{n} \rightarrow \pm \sqrt{2}$ as $n \rightarrow \infty$. Since $x_{n}, y_{n}>0$, the limit must be $\sqrt{2}$.
2.3.10. a) Notice $x_{0}>y_{0}>1$. If $x_{n-1}>y_{n-1}>1$ then $y_{n-1}^{2}-x_{n-1} y_{n-1}=y_{n-1}\left(y_{n-1}-x_{n-1}\right)>0$ so $y_{n-1}\left(y_{n-1}+x_{n-1}\right)<2 x_{n-1} y_{n-1}$. In particular,

$$
x_{n}=\frac{2 x_{n-1} y_{n-1}}{x_{n-1}+y_{n-1}}>y_{n-1} .
$$

It follows that $\sqrt{x_{n}}>\sqrt{y_{n-1}}>1$, so $x_{n}>\sqrt{x_{n} y_{n-1}}=y_{n}>1 \cdot 1=1$. Hence by induction, $x_{n}>y_{n}>1$ for all $n \in \mathbf{N}$.

Now $y_{n}<x_{n}$ implies $2 y_{n}<x_{n}+y_{n}$. Thus

$$
x_{n+1}=\frac{2 x_{n} y_{n}}{x_{n}+y_{n}}<x_{n}
$$

Hence, $\left\{x_{n}\right\}$ is decreasing and bounded below (by 1). Thus by the Monotone Convergence Theorem, $x_{n} \rightarrow x$ for some $x \in \mathbf{R}$.

On the other hand, y_{n+1} is the geometric mean of x_{n+1} and y_{n}, so by Exercise 1.2.6, $y_{n+1} \geq y_{n}$. Since y_{n} is bounded above (by x_{0}), we conclude that $y_{n} \rightarrow y$ as $n \rightarrow \infty$ for some $y \in \mathbf{R}$.
b) Let $n \rightarrow \infty$ in the identity $y_{n+1}=\sqrt{x_{n+1} y_{n}}$. We obtain, from part a), $y=\sqrt{x y}$, i.e., $x=y$. A direct calculation yields $y_{6}>3.141557494$ and $x_{7}<3.14161012$.

2.4 Cauchy sequences.

2.4.0. a) False. $a_{n}=1$ is Cauchy and $b_{n}=(-1)^{n}$ is bounded, but $a_{n} b_{n}=(-1)^{n}$ does not converge, hence cannot be Cauchy by Theorem 2.29.
b) False. $a_{n}=1$ and $b_{n}=1 / n$ are Cauchy, but $a_{n} / b_{n}=n$ does not converge, hence cannot be Cauchy by Theorem 2.29.
c) True. If $\left(a_{n}+b_{n}\right)^{-1}$ converged to 0 , then given any $M \in \mathbf{R}, M \neq 0$, there is an $N \in \mathbf{N}$ such that $n \geq N$ implies $\left|a_{n}+b_{n}\right|^{-1}<1 /|M|$. It follows that $n \geq N$ implies $\left|a_{n}+b_{n}\right|>|M|>0>M$. In particular, $\left|a_{n}+b_{n}\right|$ diverges to ∞. But if a_{n} and b_{n} are Cauchy, then by Theorem $2.29, a_{n}+b_{n} \rightarrow x$ where $x \in \mathbf{R}$. Thus $\left|a_{n}+b_{n}\right| \rightarrow|x|$, NOT ∞.
d) False. If $x_{2^{k}}=\log k$ and $x_{n}=0$ for $n \neq 2^{k}$, then $x_{2^{k}}-x_{2^{k-1}}=\log (k /(k-1)) \rightarrow 0$ as $k \rightarrow \infty$, but x_{k} does not converge, hence cannot be Cauchy by Theorem 2.29.
2.4.1. Since $\left(2 n^{2}+3\right) /\left(n^{3}+5 n^{2}+3 n+1\right) \rightarrow 0$ as $n \rightarrow \infty$, it follows from the Squeeze Theorem that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence by Theorem 2.29, x_{n} is Cauchy.
2.4.2. If x_{n} is Cauchy, then there is an $N \in \mathbf{N}$ such that $n \geq N$ implies $\left|x_{n}-x_{N}\right|<1$. Since $x_{n}-x_{N} \in \mathbf{Z}$, it follows that $x_{n}=x_{N}$ for all $n \geq N$. Thus set $a:=x_{N}$.
2.4.3. Suppose x_{n} and y_{n} are Cauchy and let $\varepsilon>0$.
a) If $\alpha=0$, then $\alpha x_{n}=0$ for all $n \in \mathbf{N}$, hence is Cauchy. If $\alpha \neq 0$, then there is an $N \in \mathbf{N}$ such that $n, m \geq N$ implies $\left|x_{n}-x_{m}\right|<\varepsilon /|\alpha|$. Hence

$$
\left|\alpha x_{n}-\alpha x_{m}\right| \leq|\alpha|\left|x_{n}-x_{m}\right|<\varepsilon
$$

for $n, m \geq N$.
b) There is an $N \in \mathbf{N}$ such that $n, m \geq N$ implies $\left|x_{n}-x_{m}\right|$ and $\left|y_{n}-y_{m}\right|$ are $<\varepsilon / 2$. Hence

$$
\left|x_{n}+y_{n}-\left(x_{m}+y_{m}\right)\right| \leq\left|x_{n}-x_{m}\right|+\left|y_{n}-y_{m}\right|<\varepsilon
$$

for $n, m \geq N$.
c) By repeating the proof of Theorem 2.8 , we can show that every Cauchy sequence is bounded. Thus choose $M>0$ such that $\left|x_{n}\right|$ and $\left|y_{n}\right|$ are both $\leq M$ for all $n \in \mathbf{N}$. There is an $N \in \mathbf{N}$ such that $n, m \geq N$ implies $\left|x_{n}-x_{m}\right|$ and $\left|y_{n}-y_{m}\right|$ are both $<\varepsilon /(2 M)$. Hence

$$
\left|x_{n} y_{n}-\left(x_{m} y_{m}\right)\right| \leq\left|x_{n}-x_{m}\right|\left|y_{m}\right|+\left|x_{n}\right|\left|y_{n}-y_{m}\right|<\varepsilon
$$

for $n, m \geq N$.
2.4.4. Let $s_{n}=\sum_{k=1}^{n-1} x_{k}$ for $n=2,3, \ldots$. If $m>n$ then $s_{m+1}-s_{n}=\sum_{k=n}^{m} x_{k}$. Therefore, s_{n} is Cauchy by hypothesis. Hence s_{n} converges by Theorem 2.29.
2.4.5. Let $x_{n}=\sum_{k=1}^{n}(-1)^{k} / k$ for $n \in \mathbf{N}$. Suppose n and m are even and $m>n$. Then

$$
S:=\sum_{k=n}^{m} \frac{(-1)^{k}}{k} \equiv \frac{1}{n}-\left(\frac{1}{n+1}-\frac{1}{n+2}\right)-\cdots-\left(\frac{1}{m-1}-\frac{1}{m}\right)
$$

Each term in parentheses is positive, so the absolute value of S is dominated by $1 / n$. Similar arguments prevail for all integers n and m. Since $1 / n \rightarrow 0$ as $n \rightarrow \infty$, it follows that x_{n} satisfies the hypotheses of Exercise 2.4.4. Hence x_{n} must converge to a finite real number.
2.4.6. By Exercise 1.4 .4 c , if $m \geq n$ then

$$
\left|x_{m+1}-x_{n}\right|=\left|\sum_{k=n}^{m}\left(x_{k+1}-x_{k}\right)\right| \leq \sum_{k=n}^{m} \frac{1}{a^{k}}=\left(1-\frac{1}{a^{m}}-\left(1-\frac{1}{a^{n}}\right)\right) \frac{1}{a-1}
$$

Thus $\left|x_{m+1}-x_{n}\right| \leq\left(1 / a^{n}-1 / a^{m}\right) /(a-1) \rightarrow 0$ as $n, m \rightarrow \infty$ since $a>1$. Hence $\left\{x_{n}\right\}$ is Cauchy and must converge by Theorem 2.29.
2.4.7. a) Suppose a is a cluster point for some set E and let $r>0$. Since $E \cap(a-r, a+r)$ contains infinitely many points, so does $E \cap(a-r, a+r) \backslash\{a\}$. Hence this set is nonempty. Conversely, if $E \cap(a-s, a+s) \backslash\{a\}$ is always nonempty for all $s>0$ and $r>0$ is given, choose $x_{1} \in E \cap(a-r, a+r)$. If distinct points x_{1}, \ldots, x_{k} have been chosen so that $x_{k} \in E \cap(a-r, a+r)$ and $s:=\min \left\{\left|x_{1}-a\right|, \ldots,\left|x_{k}-a\right|\right\}$, then by hypothesis there is an $x_{k+1} \in E \cap(a-s, a+s)$. By construction, x_{k+1} does not equal any x_{j} for $1 \leq j \leq k$. Hence x_{1}, \ldots, x_{k+1} are distinct points in $E \cap(a-r, a+r)$. By induction, there are infinitely many points in $E \cap(a-r, a+r)$.
b) If E is a bounded infinite set, then it contains distinct points x_{1}, x_{2}, \ldots Since $\left\{x_{n}\right\} \subseteq E$, it is bounded. It follows from the Bolzano-Weierstrass Theorem that x_{n} contains a convergent subsequence, i.e., there is an $a \in \mathbf{R}$ such that given $r>0$ there is an $N \in \mathbf{N}$ such that $k \geq N$ implies $\left|x_{n_{k}}-a\right|<r$. Since there are infinitely many $x_{n_{k}}$'s and they all belong to E, a is by definition a cluster point of E.
2.4.8. a) To show $E:=[a, b]$ is sequentially compact, let $x_{n} \in E$. By the Bolzano-Weierstrass Theorem, x_{n} has a convergent subsequence, i.e., there is an $x_{0} \in \mathbf{R}$ and integers n_{k} such that $x_{n_{k}} \rightarrow x_{0}$ as $k \rightarrow \infty$. Moreover, by the Comparison Theorem, $x_{n} \in E$ implies $x_{0} \in E$. Thus E is sequentially compact by definition.
b) $(0,1)$ is bounded and $1 / n \in(0,1)$ has no convergent subsequence with limit in $(0,1)$.
c) $[0, \infty)$ is closed and $n \in[0, \infty)$ is a sequence which has no convergent subsequence.

2.5 Limits supremum and infimum.

2.5.1. a) Since $3-(-1)^{n}=2$ when n is even and 4 when n is odd, $\limsup _{n \rightarrow \infty} x_{n}=4$ and $\liminf _{n \rightarrow \infty} x_{n}=2$. b) Since $\cos (n \pi / 2)=0$ if n is odd, 1 if $n=4 m$ and -1 if $n=4 m+2, \lim \sup _{n \rightarrow \infty} x_{n}=1$ and $\liminf { }_{n \rightarrow \infty} x_{n}=$ -1 .
c) Since $(-1)^{n+1}+(-1)^{n} / n=-1+1 / n$ when n is even and $1-1 / n$ when n is odd, $\limsup _{n \rightarrow \infty} x_{n}=1$ and $\liminf _{n \rightarrow \infty} x_{n}=-1$.
d) Since $x_{n} \rightarrow 1 / 2$ as $n \rightarrow \infty$, $\lim \sup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=1 / 2$ by Theorem 2.36 .
e) Since $\left|y_{n}\right| \leq M,\left|y_{n} / n\right| \leq M / n \rightarrow 0$ as $n \rightarrow \infty$. Therefore, $\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=0$ by Theorem 2.36.
f) Since $n\left(1+(-1)^{n}\right)+n^{-1}\left((-1)^{n}-1\right)=2 n$ when n is even and $-2 / n$ when n is odd, $\lim \sup _{n \rightarrow \infty} x_{n}=\infty$ and $\liminf _{n \rightarrow \infty} x_{n}=0$.
g) Clearly $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Therefore, $\limsup _{n \rightarrow \infty} x_{n}=\lim _{\inf }^{n \rightarrow \infty}$ $x_{n}=\infty$ by Theorem 2.36.
2.5.2. By Theorem 1.20,

$$
\liminf _{n \rightarrow \infty}\left(-x_{n}\right):=\lim _{n \rightarrow \infty}\left(\inf _{k \geq n}\left(-x_{k}\right)\right)=-\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}\right)=-\limsup _{n \rightarrow \infty} x_{n}
$$

A similar argument establishes the second identity.
2.5.3. a) Since $\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}\right)<r$, there is an $N \in \mathbf{N}$ such that $\sup _{k \geq N} x_{k}<r$, i.e., $x_{k}<r$ for all $k \geq N$. b) Since $\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}\right)>r$, there is an $N \in \mathbf{N}$ such that $\sup _{k \geq N} x_{k}>r$, i.e., there is a $k_{1} \in \mathbf{N}$ such that $x_{k_{1}}>r$. Suppose $k_{\nu} \in \overline{\mathbf{N}}$ have been chosen so that $k_{1}<k_{2}<\cdots<\bar{k}_{j}$ and $x_{k_{\nu}}>r$ for $\nu=1,2, \ldots, j$. Choose $N>k_{j}$ such that $\sup _{k \geq N} x_{k}>r$. Then there is a $k_{j+1}>N>k_{j}$ such that $x_{k_{j+1}}>r$. Hence by induction, there are distinct natural numbers k_{1}, k_{2}, \ldots such that $x_{k_{j}}>r$ for all $j \in \mathbf{N}$.
2.5.4. a) Since $\inf _{k \geq n} x_{k}+\inf _{k \geq n} y_{k}$ is a lower bound of $x_{j}+y_{j}$ for any $j \geq n$, we have $\inf _{k \geq n} x_{k}+\inf _{k \geq n} y_{k} \leq$ $\inf _{j \geq n}\left(x_{j}+y_{j}\right)$. Taking the limit of this inequality as $n \rightarrow \infty$, we obtain

$$
\liminf _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n} \leq \liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)
$$

Note, we used Corollary 1.16 and the fact that the sum on the left is not of the form $\infty-\infty$. Similarly, for each $j \geq n$,

$$
\inf _{k \geq n}\left(x_{k}+y_{k}\right) \leq x_{j}+y_{j} \leq \sup _{k \geq n} x_{k}+y_{j}
$$

Taking the infimum of this inequality over all $j \geq n$, we obtain $\inf _{k \geq n}\left(x_{k}+y_{k}\right) \leq \sup _{k \geq n} x_{k}+\inf _{j \geq n} y_{j}$. Therefore,

$$
\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \limsup _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n}
$$

The remaining two inequalities follow from Exercise 2.5.2. For example,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n} & =-\liminf _{n \rightarrow \infty}\left(-x_{n}\right)-\limsup _{n \rightarrow \infty}\left(-y_{n}\right) \\
& \leq-\liminf _{n \rightarrow \infty}\left(-x_{n}-y_{n}\right)=\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)
\end{aligned}
$$

b) It suffices to prove the first identity. By Theorem 2.36 and a),

$$
\lim _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n} \leq \liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)
$$

To obtain the reverse inequality, notice by the Approximation Property that for each $n \in \mathbf{N}$ there is a $j_{n}>n$ such that $\inf _{k \geq n}\left(x_{k}+y_{k}\right)>x_{j_{n}}-1 / n+y_{j_{n}}$. Hence

$$
\inf _{k \geq n}\left(x_{k}+y_{k}\right)>x_{j_{n}}-\frac{1}{n}+\inf _{k \geq n} y_{k}
$$

for all $n \in \mathbf{N}$. Taking the limit of this inequality as $n \rightarrow \infty$, we obtain

$$
\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq \lim _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n}
$$

c) Let $x_{n}=(-1)^{n}$ and $y_{n}=(-1)^{n+1}$. Then the limits infimum are both -1 , the limits supremum are both 1 , but $x_{n}+y_{n}=0 \rightarrow 0$ as $n \rightarrow \infty$. If $x_{n}=(-1)^{n}$ and $y_{n}=0$ then

$$
\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=-1<1=\limsup _{n \rightarrow \infty} x_{n}+\liminf _{n \rightarrow \infty} y_{n}
$$

2.5.5. a) For any $j \geq n, x_{j} \leq \sup _{k \geq n} x_{k}$ and $y_{j} \leq \sup _{k \geq n} y_{k}$. Multiplying these inequalities, we have $x_{j} y_{j} \leq\left(\sup _{k \geq n} x_{k}\right)\left(\sup _{k \geq n} y_{k}\right)$, i.e.,

$$
\sup _{j \geq n} x_{j} y_{j} \leq\left(\sup _{k \geq n} x_{k}\right)\left(\sup _{k \geq n} y_{k}\right)
$$

Taking the limit of this inequality as $n \rightarrow \infty$ establishes a). The inequality can be strict because if

$$
x_{n}=1-y_{n}= \begin{cases}0 & n \text { even } \\ 1 & n \text { odd }\end{cases}
$$

then $\lim \sup _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=0<1=\left(\limsup \operatorname{sum}_{n \rightarrow \infty} x_{n}\right)\left(\lim \sup _{n \rightarrow \infty} y_{n}\right)$.
b) By a),

$$
\liminf _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=-\limsup _{n \rightarrow \infty}\left(-x_{n} y_{n}\right) \geq-\limsup _{n \rightarrow \infty}\left(-x_{n}\right) \limsup _{n \rightarrow \infty} y_{n}=\liminf _{n \rightarrow \infty} x_{n} \limsup _{n \rightarrow \infty} y_{n}
$$

2.5.6. Case 1. $x=\infty$. By hypothesis, $C:=\limsup _{n \rightarrow \infty} y_{n}>0$. Let $M>0$ and choose $N \in \mathbf{N}$ such that $n \geq N$ implies $x_{n} \geq 2 M / C$ and $\sup _{n \geq N} y_{n}>C / 2$. Then $\sup _{k \geq N}\left(x_{k} y_{k}\right) \geq x_{n} y_{n} \geq(2 M / C) y_{n}$ for any $n \geq N$ and $\sup _{k \geq N}\left(x_{k} y_{k}\right) \geq(2 M / C) \sup _{n \geq N} y_{n}>M$. Therefore, $\lim \sup _{n \rightarrow \infty}\left(x_{n} y_{n}\right)=\infty$.

Case 2. $0 \leq x<\infty$. By Exercise 2.5.6a and Theorem 2.36,

$$
\limsup _{n \rightarrow \infty}\left(x_{n} y_{n}\right) \leq\left(\limsup _{n \rightarrow \infty} x_{n}\right)\left(\limsup _{n \rightarrow \infty} y_{n}\right)=x \limsup _{n \rightarrow \infty} y_{n}
$$

On the other hand, given $\epsilon>0$ choose $n \in \mathbf{N}$ so that $x_{k}>x-\epsilon$ for $k \geq n$. Then $x_{k} y_{k} \geq(x-\epsilon) y_{k}$ for each $k \geq n$, i.e., $\sup _{k \geq n}\left(x_{k} y_{k}\right) \geq(x-\epsilon) \sup _{k \geq n} y_{k}$. Taking the limit of this inequality as $n \rightarrow \infty$ and as $\epsilon \rightarrow 0$, we obtain

$$
\limsup _{n \rightarrow \infty}\left(x_{n} y_{n}\right) \geq x \limsup _{n \rightarrow \infty} y_{n}
$$

2.5.7. It suffices to prove the first identity. Let $s=\inf _{n \in \mathbf{N}}\left(\sup _{k \geq n} x_{k}\right)$.

Case 1. $s=\infty$. Then $\sup _{k \geq n} x_{k}=\infty$ for all $n \in \mathbf{N}$ so by definition,

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}\right)=\infty=s
$$

Case 2. $s=-\infty$. Let $M>0$ and choose $N \in \mathbf{N}$ such that $\sup _{k \geq N} x_{k} \leq-M$. Then $\sup _{k \geq n} x_{k} \leq \sup _{k \geq N} x_{k} \leq$ $-M$ for all $n \geq N$, i.e., $\limsup _{n \rightarrow \infty} x_{n}=-\infty$.

Case 3. $-\infty<s<-\infty$. Let $\epsilon>0$ and use the Approximation Property to choose $N \in \mathbf{N}$ such that $\sup _{k \geq N} x_{k}<s+\epsilon$. Since $\sup _{k \geq n} x_{k} \leq \sup _{k \geq N} x_{k}<s+\epsilon$ for all $n \geq N$, it follows that

$$
s-\epsilon<s \leq \sup _{k \geq n} x_{k}<s+\epsilon
$$

for $n \geq N$, i.e., $\limsup _{n \rightarrow \infty} x_{n}=s$.
2.5.8. It suffices to establish the first identity. Let $s=\liminf _{n \rightarrow \infty} x_{n}$.

Case 1. $s=0$. Then by Theorem 2.35 there is a subsequence k_{j} such that $x_{k_{j}} \rightarrow 0$, i.e., $1 / x_{k_{j}} \rightarrow \infty$ as $j \rightarrow \infty$. In particular, $\sup _{k \geq n}\left(1 / x_{k}\right)=\infty$ for all $n \in \mathbf{N}$, i.e., $\lim \sup _{n \rightarrow \infty}\left(1 / x_{n}\right)=\infty=1 / s$.

Case 2. $s=\infty$. Then $x_{k} \rightarrow \infty$, i.e., $1 / x_{k} \rightarrow 0$, as $k \rightarrow \infty$. Thus by Theorem 2.36, $\limsup _{n \rightarrow \infty}\left(1 / x_{n}\right)=0=1 / s$. Case 3. $0<s<\infty$. Fix $j \geq n$. Since $1 / \inf _{k \geq n} x_{k} \geq 1 / x_{j}$ implies $1 / \inf _{k \geq n} x_{k} \geq \sup _{j \geq n}\left(1 / x_{j}\right)$, it is clear that $1 / s \geq \limsup _{n \rightarrow \infty}\left(1 / x_{n}\right)$. On the other hand, given $\epsilon>0$ and $n \in \mathbf{N}$, choose $j>N$ such that $\inf _{k \geq n} x_{k}+\epsilon>x_{j}$, i.e., $1 /\left(\inf _{k \geq n} x_{k}+\epsilon\right)<1 / x_{j} \leq \sup _{k \geq n}\left(1 / x_{k}\right)$. Taking the limit of this inequality as $n \rightarrow \infty$ and as $\epsilon \rightarrow 0$, we conclude that $1 / s \leq \lim \sup _{n \rightarrow \infty}\left(1 / x_{n}\right)$.
2.5.9. If $x_{n} \rightarrow 0$, then $\left|x_{n}\right| \rightarrow 0$. Thus by Theorem 2.36, $\limsup _{n \rightarrow \infty}\left|x_{n}\right|=0$. Conversely, if $\lim \sup _{n \rightarrow \infty}\left|x_{n}\right| \leq$ 0 , then

$$
0 \leq \liminf _{n \rightarrow \infty}\left|x_{n}\right| \leq \limsup _{n \rightarrow \infty}\left|x_{n}\right| \leq 0,
$$

implies that the limits supremum and infimum of $\left|x_{n}\right|$ are equal (to zero). Hence by Theorem 2.36, the limit exists and equals zero.

