Exam
Name

MATCHING. Choose the item in column 2 that best matches each item in column 1.
Please select the best match for each term

1) Haploid

Answer: C
2) Diploid

Answer: E
3) Euploid

Answer: A
B) Possessing too few or too many copies of a single chromosome
2) \qquad
C) One complete set of chromosomes
3) \qquad
D) Several complete sets of chromosomes
4) Polyploid

Answer: D
E) Two complete sets of chromosomes
5)

Aneuploid
A) Possessing the correct number of chromosomes

1) \qquad
)

Answer: B

Please select the most appropriate match.
6) Monohybrid cross
A) 9:3:3:1

Answer: C
B) Test cross
7) Dihybrid cross

Answer: A
C) $3: 1$
8)
$A A \times a a \quad$ D) monohybrid F_{2}
E) parental cross
F) dihybrid cross
10)

Aaxaa
G) dihybrid F_{2}
10) \qquad
Answer: B
11) $1: 2: 1$
11) \qquad
Answer: D
12) $A a B b \times A a B b$
12) \qquad
Answer: F

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
13) In lilies, white flowers (W) are dominant to purple flowers (w). If two plants that are
13) \qquad heterozygous for flower color are mated, the offspring might have which genotype?
A) $W w$
B) $w w$
C) $W W$
D) All of the above
E) None of the above
14) In a pea plant that is heterozygous for seed color, what proportion of gametes will carry the recessive allele?
A) $1 / 4$
B) $3 / 4$
C) $1 / 2$
D) All of the gametes
E) None of the gametes

Answer: C
15) In his experiments, Mendel noted that when two traits are involved in a genetic cross, they are inherited independently of each other. The reason for this is that
A) genes on different chromosomes separate during the formation of gametes.
B) genes on the same chromosome separate during the formation of gametes.
C) alleles on the same chromosome separate during the formation of gametes.
D) chromosomes often recombine.
E) alleles on the same gene separate during the formation of gametes.

Answer: A
16) In a test cross between an individual with an unknown genotype that exhibits the dominant phenotype and a known homozygous recessive individual, the progeny showed a 1:1 ratio of dominant to recessive phenotypes. The individual of unknown genotype is therefore \qquad for that gene.
A) unizygous
B) homogeneous
C) heterozygous
D) hemizygous
E) homozygous

Answer: C
17) The chi-squared statistic can best be described as
A) a statistical test that compares observed and expected population means.
B) a statistically significant test.
C) the standardized deviation of observed data from expected data.
D) a statistical test used in genetics.
E) none of the above.

Answer: C
18) In the F_{2} generation, how many genotypic classes are possible from a dihybrid cross of two heterozygotes in which the genes involved show complete dominance?
A) 3
B) 4
C) 8
D) 9
E) 12

Answer: D
19) In the F_{2} generation, how many genotypic classes are possible from a trihybrid cross of two heterozygotes in which the genes involved show complete dominance?
A) 2
B) 8
C) 16
D) 27
E) 61

Answer: D
20) If the results of a chi-square test of a given set of data show a P value greater than 0.05 , then the
20) \qquad null hypothesis
A) must be rejected.
B) cannot be accepted.
C) cannot be rejected.
D) must be accepted.
E) must be rephrased.

Answer: C
21) A P value in statistics is
21) \qquad
22) \qquad
23) \qquad
24) \qquad
A) $1 / 2$
B) $1 / 32$
C) $1 / 8$
D) $1 / 16$
E) $1 / 4$

Answer: D
25) A couple with three girls is expecting a fourth child. The probability that this child is also a girl is
A) $1 / 4$
B) $1 / 8$
C) $1 / 16$
D) $1 / 2$
E) $1 / 32$

Answer: D
26) Net or overall probabilities are obtained by multiplying separate independent probabilities. This is formally known as
A) the probability rule.
B) the product rule.
C) the chi-square test.
D) the sign test.
E) the sum rule.

Answer: B
27) Which of the following is true concerning the inheritance of a dominant trait?
27) \qquad
A) The trait is observed in every generation.
B) Every affected person must have at least one affected parent.
C) An affected heterozygote will transmit the allele to half of his or her offspring on average.
D) All of the above
E) None of the above

Answer: D
28) Which of the following is a useful characteristic for a candidate for Mendelian studies?
28) \qquad
A) Slow growing, late to reproduce, and producing many offspring
B) Fast growing, late to reproduce, and producing few offspring
C) Slow growing, early to reproduce, and producing few offspring.
D) Fast growing, early to reproduce, and producing many offspring
E) Fast growing and nonreproductive

Answer: D
29) In his monohybrid crosses for seed color in peas, Mendel reported 6,022 yellow seeds and 2,001 green seeds. How many of each color class were expected?
A) All should be yellow
B) 2,006 yellow and 6,017 green
C) All should be green
D) 4,011 green and 4,011 yellow
E) 6,017 yellow and 2,006 green

Answer: E
30) Mendel's monohybrid crosses for round vs. wrinkled peas yielded $7,324 \mathrm{~F}_{2}$ offspring from
30) \qquad crosses of 253 plants, as reported in a famous 1867 letter to the botanist Carl $N^{\text {ä }}$ geli. How many of these were expected to be wrinkled \square the recessive trait?
A) 0
B) 7,324
C) 1,831
D) 5,493
E) 3,662

Answer: C

TRUE/FALSE. Write ' T ' if the statement is true and ' F ' if the statement is false.
31) A test cross with a heterozygous dominant individual will yield only heterozygous dominant offspring.
Answer: True o False
32) Two individuals can be phenotypically identical yet have different genotypes for a given trait.

Answer: © True False
32) \qquad
33) The genotypic F_{2} ratio expected in a dihybrid cross is $9: 3: 3: 1$.

Answer: True o False
34) The phenotype determines the genotype.

Answer: True o False
35) True-breeding individuals are produced by repeated backcrossing.

Answer: © True False
36) Mendel was the first to describe dominant, recessive, and codominant traits.

Answer: True o False
37) Mendel's work immediately revolutionized the study of inheritance.
31) \qquad
29) \qquad
)
that led 38)
him to
this
conclusio
n.

Answer: The F_{1} and F_{2} phenotypic ratios that Mendel observed in different crosses led him to conjecture that each parent contributes one version of a "unit factor" for each trait during reproduction. Each individual thus possesses two such factors (diploidy), and it is combinations of unit factors that constitute the genotype.
39) Mendel selected seven traits to analyze in his famous pea plant crosses, and all of these traits yielded expected 3:1 phenotypic F_{2} ratios in monohybrid crosses. He was fortunate in his selection of these traits. How so? What problem might he have encountered that may have yielded confusing ratios?
Answer: By chance, some of the traits he selected might not have been assorting independently, owing to linkage (occurring on the same chromosome).
40) Mendel's insights started with his approach of analyzing discrete traits, leading to the idea of "particulate" rather than "blending" inheritance. Yet this was an uncommon way to view the inheritance of traits, as many found it counterintuitive or contrary to experience. How so?
Answer: Experience with breeding pets or livestock, or even having children, suggests that parental traits seem to blend together in the offspring. This is because most traits that breeders considered are complex, polygenic traits. By focusing on simple discrete traits, Mendel was able to show that his "unit factors" simply combined and recombined in pairs each generation and were not blended away.
41) What are the steps involved in setting up a dihybrid F_{3} cross?
39) \qquad
40) \qquad

Answer: True-breeding parentals doubly homozygous for different alleles for each of two traits are crossed, yielding F_{1} s that are heterozygous for both traits. Two of these are then crossed to yield F_{2} s. Two of these, when crossed, will yield the F_{3} generation.
42) A monohybrid cross is made for flower color, where purple is dominant to white. Fifteen hundred F_{2} offspring are analyzed. How many white flowers are expected?
Answer: One-quarter of the offspring should be homozygous recessive, thus: (0.25) $\times 1,500$ $=375$ white flowers.
43) Speculate on the molecular basis for dominance and recessiveness, using flower color as an example, where red is dominant over white.
Answer: If the trait is controlled by a gene responsible for synthesizing red pigment, the recessive allele could be a dysfunctional mutant. Red pigment would be made as long as there was at least one functional copy of the gene present \square this is the essence of dominance, where the presence of a single allele is sufficient to mask the recessive allele.
44) You observe an individual of your favorite study organism expressing the dominant
44) phenotype for a certain trait. How would you go about determining if the individual was homozygous dominant or heterozygous for that trait?
Answer: Perform a test cross with a recessive homozygous individual: If $A a \times a a \rightarrow$ offspring are $A a: a a$ in a 1:1 ratio, and if $A A \times a a \rightarrow$ all offspring are $A a$ heterozygotes.
45) An albino man and a nonalbino woman have several children, one of whom is albino. (a)
45) \qquad What can you conclude about the genotype of the mother? (b) What is the probability that the nonalbino children are heterozygous?
Answer: (a) The mother must be heterozygous (a carrier) in order to have even one albino offspring. (b) With parents of genotype $A a \times a a$, any nonalbino offspring must be heterozygous, so the probability is 100 percent.
46) A nonalbino man and a nonalbino woman have several children, one of whom is albino.
(a) What can you conclude about the genotype of the mother? (b) What is the probability that the nonalbino children are heterozygous?
Answer: (a) Both parents must be heterozygous (a carrier) in order to have an albino offspring. (b) With parents of genotype $A a \times A a$, the nonalbino offspring genotypes possible are $A A, A a$, and $a A$. Two of these three are carriers, so there is a $2 / 3$ (66 percent) chance that a nonalbino child is a carrier.
47) A dihybrid cross yields $200 \mathrm{~F}_{2}$ offspring. How many are expected to resemble the
47) \qquad homozygous recessive parental?
Answer: In a dihybrid cross, $1 / 16$ of the offspring are expected to be homozygous recessive. Thus, $1 / 16 \times 200=12.5$ offspring.
48) A monohybrid (1-gene) cross yields 4 genotypic classes, and a dihybrid (2-gene) cross yields 16 . How many classes are expected from a tetrahybrid (4-gene) cross?
Answer: Following the simple relationship $41=4$ and $4^{2}=16,44=256$ expected genotypic classes.
49) Explain why heterozygotes are expected to be produced twice as frequently as either
48) \qquad
49) \qquad homozygote in a monohybrid F_{1} cross.
Answer: Combinatorials. Each individual offspring genotype has an equal likelihood of together they occur with a $1 / 4+1 / 4=1 / 2$ frequency, twice that of either homozygote, which occur at a frequency of $1 / 4$ each.
50) State the key difference between Mendel's principle of segregation and independent
\qquad

$$
\text { occurring }(=1 / 4) \text {, but since there are two ways to make heterozygotes }(A a \text { and } a A) \text {, }
$$

50) \qquad assortment.
Answer: Segregation refers to separation of alleles into gametes, while independent assortment refers to random combinations of such alleles from different genes occurring in gametes.
51) C
52) E
53) A
54) D
55) B
56) C
57) A
58) E
59) G
60) B
61) D
62) F
63) D
64) C
65) A
66) C
67) C
68) D
69) D
70) C
71) A
72) C
73) B
74) D
75) D
76) B
77) D
78) D
79) E
80) C
81) FALSE
82) TRUE
83) FALSE
84) FALSE
85) TRUE
86) FALSE
87) FALSE
88) The F_{1} and F_{2} phenotypic ratios that Mendel observed in different crosses led him to conjecture that each parent contributes one version of a "unit factor" for each trait during reproduction. Each individual thus possesses two such factors (diploidy), and it is combinations of unit factors that constitute the genotype.
89) By chance, some of the traits he selected might not have been assorting independently, owing to linkage (occurring on the same chromosome).
90) Experience with breeding pets or livestock, or even having children, suggests that parental traits seem to blend together in the offspring. This is because most traits that breeders considered are complex, polygenic traits. By focusing on simple discrete traits, Mendel was able to show that his "unit factors" simply combined and recombined in pairs each generation and were not blended away.
91) True-breeding parentals doubly homozygous for different alleles for each of two traits are crossed, yielding F_{1} s that are heterozygous for both traits. Two of these are then crossed to yield F_{2} s. Two of these, when crossed, will yield the F_{3} generation.
92) One-quarter of the offspring should be homozygous recessive, thus: $(0.25) \times 1,500=375$ white flowers.
93) If the trait is controlled by a gene responsible for synthesizing red pigment, the recessive allele could be a
dysf onal mutant. Red pigment would be made as long as there was at least one functional copy of the gene present \square this uncti is the essence of dominance, where the presence of a single allele is sufficient to mask the recessive allele.
94) Perform a test cross with a recessive homozygous individual: If $A a \times a a \rightarrow$ offspring are Aa:aa in a 1:1 ratio, and if $A A \times a a \rightarrow$ all offspring are $A a$ heterozygotes.
95) (a) The mother must be heterozygous (a carrier) in order to have even one albino offspring. (b) With parents of genotype $A a \times a a$, any nonalbino offspring must be heterozygous, so the probability is 100 percent.
96) (a) Both parents must be heterozygous (a carrier) in order to have an albino offspring. (b) With parents of genotype $A a \times A a$, the nonalbino offspring genotypes possible are $A A, A a$, and $a A$. Two of these three are carriers, so there is a $2 / 3$ (66 percent) chance that a nonalbino child is a carrier.
97) In a dihybrid cross, $1 / 16$ of the offspring are expected to be homozygous recessive. Thus, $1 / 16 \times 200=12.5$ offspring.
98) Following the simple relationship $4^{1}=4$ and $4^{2}=16,4^{4}=256$ expected genotypic classes.
99) Combinatorials. Each individual offspring genotype has an equal likelihood of occurring (=1/4), but since there are two ways to make heterozygotes $(A a$ and $a A$), together they occur with a $1 / 4+1 / 4=1 / 2$ frequency, twice that of either homozygote, which occur at a frequency of $1 / 4$ each.
100) Segregation refers to separation of alleles into gametes, while independent assortment refers to random combinations of such alleles from different genes occurring in gametes.
