Heat and Mass Transfer, SI Edition
 Solutions Manual Second Edition

This solutions manual sets down the answers and solutions for the Discussion Questions, Class Quiz Questions, and Practice Problems. There will likely be variations of answers to the discussion questions as well as the class quiz questions. For the practice problems there will likely be some divergence of solutions, depending on the interpretation of the processes, material behaviors, and rigor in the mathematics. It is the author's responsibility to provide accurate and clear answers. If you find errors please let the author know of them at rolle@uwplatt.edu.

Chapter 2

Discussion Questions

Section 2-1

1. Describe the physical significance of thermal conductivity.

Thermal conductivity is a parameter or coefficient used to quantitatively describe the amount of conduction heat transfer occurring across a unit area of a bounding surface, driven by a temperature gradient.
2. Why is thermal conductivity affected by temperature?

Conduction heat transfer seems to be the mechanism of energy transfer between adjacent molecules or atoms and the effectiveness of these transfers is strongly dependent on the temperatures. Thus, to quantify conduction heat transfer with thermal conductivity means that thermal conductivity is strongly affected by temperature.
3. Why is thermal conductivity not affected to a significant extent by material density? Thermal conductivity seems to not be strongly dependent on the material density since thermal conductivity is an index of heat or energy transfer between adjacent molecules and while the distance separating these molecules is dependent on density, it is not strongly so.

Section 2-2

4. Why is heat of vaporization, heat of fusion, and heat of sublimation accounted as energy generation in the usual derivation of energy balance equations?

Heats of vaporization, fusion, and sublimation are energy measures accounting for phase changes and not directly to temperature or pressure changes. It is
convenient, therefore, to account these phase change energies as lumped terms, or energy generation.

Section 2-3

5. Why are heat transfers and electrical conduction similar?

Heat transfer and electrical conduction both are viewed as exchanges of energy between adjacent moles or atoms, so that they are similar.
6. Describe the difference among thermal resistance, thermal conductivity, thermal resistivity, and R-Values.

Thermal Resistance is the distance over which conduction heat transfer occurs times the inverse of the area across which conduction occurs and the thermal conductivity, and thermal resistivity is the distance over which conduction occurs times the inverse of the thermal conductivity. The R-Value is the same as thermal resistivity, with the stipulation that in countries using the English unit system, 1 R-Value is $1 \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot{ }^{0} \mathrm{~F}$ per Btu.

Section 2-4

7. Why do solutions for temperature distributions in heat conduction problems need to converge?

Converge is a mathematical term used to describe the situation where an answer approaches a unique, particular value.
8. Why is the heat conduction in a fin not able to be determined for the case where the base temperature is constant, as in Figure 2-9?

The fin is an extension of a surface and at the edges where the fin surface coincides with the base, it is possible that two different temperatures can be ascribed at the intersection, which means there is no way to determine precisely what that temperature is. Conduction heat transfer can then not be completely determined at the base.
9. What is meant by an isotherm?

An isotherm is a line or surface of constant or the same temperature.
10. What is meant by a heat flow line?

A heat flow line is a path of conduction heat transfer. Conduction cannot cross a heat flow line.

Section 2-5

11. What is a shape factor?

The shape factor is an approximate, or exact, incorporating the area, heat flow paths, isotherms, and any geometric shapes that can be used to quantify conduction heat flow between two isothermal surfaces through a heat conducting media. The product of the shape factor, thermal conductivity, and temperature difference of the two surfaces predicts the heat flow.
12. Why should isotherms and heat flow lines be orthogonal or perpendicular to each other?

Heat flow occurs because of a temperature difference and isotherms have no temperature difference. Thus heat cannot flow along isotherms, but must be perpendicular or orthogonal to isotherms.

Section 2-6

13. Can you identify a physical situation when the partial derivatives from the left and right (see Equations 2-85 and 2-86) are not the same?

Often at a boundary between two different conduction materials the left and the right gradients could be different. Another situation could be if radiation or convection heat transfer occurs at a boundary and then again the left and right gradients or derivatives could be different.

Section 2-7

14. Can you explain when fins may not be advantageous in increasing the heat transfer at a surface?

Fins may not be a good solution to situations where a highly corrosive, extremely turbulent, or fluid having many suspended particles is in contact with the surface.
15. Why should thermal contact resistance be of concern to an engineer?

Thermal contact resistance inhibits good heat transfer, can mean a significant change in temperature at a surface of conduction heat transfer, and can provide a surface for potential corrosion.

Class Quiz Questions

1. What is the purpose of the negative sign in Fourier's law of conduction heat transfer?

The negative sign provides for assigning a positive heat transfer for negative temperature gradients.
2. If a particular $20-\mathrm{cm}$ thick material has a thermal conductivity of $17 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, what is its R-value?

The R-value is the thickness times the inverse thermal conductivity;

$$
R-\text { Value }=\frac{\text { thick }}{\kappa}=\left(20 \times 10^{-2} \mathrm{~m}\right) /(17 \mathrm{~W} / m \cdot K)=0.012 \mathrm{~m} \cdot \mathrm{~K} / \mathrm{W}
$$

3. What is the thermal resistance of a $10-\mathrm{m}^{2}$ insulation board, 30 cm thick, and having thermal conductivity of $0.03 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$?

The thermal resistance is
$\Delta x / A \cdot \kappa=(0.3 m) /\left(10 m^{2}\right)(0.03 W / m \cdot K)=1.0 K / W$
4. What is the difference between heat conduction in series and in parallel between two materials?

The thermal resistance, or thermal resistivity are additive for series. In parallel the thermal resistance needs to be determined with the relationship

$$
R_{e q}=\left(R_{1}\right)\left(R_{2}\right) /\left(R_{1}+R_{2}\right)
$$

5. Write the conduction equation for radial heat flow of heat through a tube that has inside diameter of D_{i} and outside diameter of D_{0}.

$$
\dot{Q}=2 \pi \kappa L \frac{\Delta T}{\ln \left(D_{0} / D_{i}\right)}
$$

6. Write the Laplace equation for two-dimensional conduction heat transfer through a homogeneous, isotropic material that has constant thermal conductivity.

$$
\frac{\partial^{2} T(\mathrm{x}, \mathrm{y})}{\partial x^{2}}+\frac{\partial^{2} T(\mathrm{x}, \mathrm{y})}{\partial y^{2}}=0
$$

7. Estimate the heat transfer from an object at $40^{\circ} \mathrm{C}$ to a surface at $5^{\circ} \mathrm{C}$ through a heat conducting media having thermal conductivity of $8.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ if the shape factor is 30 cm .

$$
\dot{Q}=S \kappa \Delta T=(0.3 \mathrm{~m})(8.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(35^{\circ} \mathrm{C}\right)=89.25 \mathrm{~W}
$$

8. Sketch five isotherms and appropriate heat flow lines for heat transfer per unit depth through a $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ square where the heat flow is from a high temperature corner to the four sides at a uniform lower temperature. Use one isothermal as the corner and another isothermal as the side of the square.

9. If the thermal contact resistance between a clutch surface and a driving surface is $0.0023 \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}$, estimate the temperature drop across the contacting surfaces, per unit area when $200 \mathrm{~W} / \mathrm{m}^{2}$ of heat is desired to be dissipated.

The temperature drop is

$$
\Delta T=\dot{Q} R_{T C R}=\left(200 \mathrm{~W} / \mathrm{m}^{2}\right)\left(0.0023 \mathrm{~m}^{2} \cdot{ }^{0} \mathrm{C} / \mathrm{W}\right)=0.46^{\circ} \mathrm{C}
$$

10. Would you expect the wire temperature to be greater or less for a 0.14 cm dia. copper wire as compared to a 0.18 cm dia. copper wire, both conducting the same electrical current?

A 0.14 cm dia. copper wire has a smaller diameter and a greater electrical resistance per unit length. Therefore it would be expected to have a higher temperature than the 0.18 cm dia. copper wire.

Practice Problems

Section 2-1

1. Compare the value for thermal conductivity of Helium at $20^{\circ} \mathrm{C}$ using Equation $2-3$ and the value from Appendix Table B-4.

Solution

Using Equation 2-3 for helium

$$
\begin{aligned}
& \kappa=0.8762 \times 10^{-4} \sqrt{T}=0.0015 \mathrm{~W} / \mathrm{c} m \cdot K=0.15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K} \quad \text { From Appendix Table B-4 } \\
& \kappa=0.152 \mathrm{~W} / \mathrm{m} \cdot K
\end{aligned}
$$

2. Predict the thermal conductivity for neon gas at $95^{\circ} \mathrm{C}$. Use a value of 3.9 Á for the collision diameter for neon.

Solution

Assuming neon behaves as an ideal gas, with MW of 20, and 367K, and using Equation 21

$$
\kappa=8.328 \times 10^{-4} \sqrt{\frac{T}{M W \cdot \Gamma}}=8.328 \times 10^{-4} \sqrt{\frac{367 \mathrm{~K}}{(20)(3.9)}}=18.05 \times 10^{-4} \mathrm{~W} / \mathrm{c} \mathrm{~m} \cdot \mathrm{~K}
$$

3. Show that thermal conductivity is proportional to temperature to the $1 / 6$ th power for a liquid according to Bridgeman's equation (2-6).

Solution

From Bridgeman's equation $\kappa=3.865 \times 10^{-23}\left(V_{s} / x_{m}^{2}\right)$ Also, V_{s} (sonic velocity) $\sim \sqrt{E_{b} / \rho}$ $\sim^{-1 / 2}$ the mean separation distance between molecules $x_{m}^{2}=(\mathrm{mm} / \rho)^{2 / 3} \sim \rho^{-2 / 3}$ so that $\kappa \sim \rho^{-2 / 3+1 / 2}=\rho^{-1 / 6} \sim T^{1 / 6}$
4. Predict a value for thermal conductivity of liquid ethyl alcohol at 300 K . Use the equation suggested by Bridgman's equation (2-6).

Solution

Bridgeman's equation (2-6) uses the sonic velocity in the liquid, $\sqrt{E_{b} / \rho}$, which for ammonia at 300 K is nearly $1.14 \times 10^{5} \mathrm{~cm} / \mathrm{s}$. The equation also uses the mean distance between molecules, assuming a uniform cubic arrangement of the molecules, which is $\sqrt[3]{\mathrm{mm} / \rho}, \mathrm{mm}$ being the mass of one molecule in grams, the molecular mass divided by Avogadro's number. Using data from a chemistry handbook the value of x_{m} is nearly $0.459 \times 10^{-7} \mathrm{~cm}$. Using Equation 2-6, $\kappa=3.865 \times 10^{-23}\left(V_{s} / x_{m}^{2}\right)=20.9 \times 10^{-4} \mathrm{~W} / \mathrm{c} \mathrm{m} \cdot \mathrm{K}=0.209 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$
5. Plot the value for thermal conductivity of copper as a function of temperature as given by Equation 2-10. Plot the values over a range of temperatures from $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Solution

Using Equation 2-10 and coefficients from Appendix Table B-8E

$$
\kappa=\kappa_{T O}+\alpha\left(T-T_{0}\right)=393 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{k}}-0.019 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}^{2}}(T-273 \mathrm{~K})
$$

This can be plotted on a spreadsheet or other modes.
6. Estimate the thermal conductivity of platinum at $-100^{\circ} \mathrm{C}$ if its electrical conductivity is 6 x $10^{7} \mathrm{mhos} / \mathrm{m}$, based on the Wiedemann-Franz law. Note: $1 \mathrm{mho}=1 \mathrm{amp} / \mathrm{volt}=1$ coulomb/s, $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1$ volt-coulomb.

Solution

Using the Wiedemann-Franz law, Equation 2-9 gives

$$
\kappa=L z \cdot T=\left(2.43 \times 10^{-8} V^{2} / K^{2}\right)\left(6 x 10^{7} \mathrm{amp} / V \cdot \mathrm{~m}\right)(173 \mathrm{~K})=252.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}
$$

7. Calculate the thermal conductivity of carbon bisulfide using Equation 2-6 and compare this result to the listed value given in Table 2-2.

Solution

Equation 2-6 uses the sonic velocity in the material. This is $V_{s}=\sqrt{E_{b} / \rho}=$ $1.18 \times 10^{5} \mathrm{~cm} / \mathrm{s}$, where E_{b} is the bulk modulus. The mean distance between adjacent molecules, assuming a uniform cubic arrangement, is also used. This is $x_{m}=\sqrt{m m / \rho}$ where mm is the mass of one molecule; MW/Avogadro's number. This gives $x_{m}=$
$0.466 \times 10^{-7} \mathrm{~cm}$. then

$$
\kappa=3.865 \times 10^{-23} \frac{V_{s}}{x_{m}^{2}}=0.0021 \mathrm{~W} / \mathrm{cm} \cdot{ }^{0} \mathrm{C}
$$

Section 2-2

8. Estimate the temperature distribution in a stainless steel rod, 2.5 cm in diameter, that is 1 meter long with 7.5 cm of one end submerged in water at $5^{\circ} \mathrm{C}$ and the other end held by a person. Assume the person's skin temperature is $28^{\circ} \mathrm{C}$, the temperature in the rod is uniform at any point in the rod, and steady state conditions are present.

Solution

Assuming the heat flow to be axial and not radial and also $5^{\circ} \mathrm{C}$ for the first 7.5 cm of the rod, the temperature distribution between $x=7.5 \mathrm{~cm}$ and out to $x=1 \mathrm{~m}$ we can use Fourier's law of conduction and then for $7.5 \leq x \leq 100 \mathrm{~cm}$, identifying the slope and x intercept $T(x)=0.249 x+3.135$ The sketched graph is here included. One could now predict the heat flow axially through the rod, using Fourier's law and using a thermal conductivity for stainless steel.

9. Derive the general energy equation for conduction heat transfer through a homogeneous, isotropic media in cylindrical coordinates, Equation 2-19.

Solution

Referring to the cylindrical element sketch, you can apply an energy balance, Energy in Energy Out = Energy Accumulated in the Element. Then, accounting the energies in and out as conduction heat transfer we can write

$$
\left[\dot{q}_{r}\right]_{r}=\left[-\kappa r \Delta z \Delta \theta \frac{\partial T}{\partial r}\right]_{r} \quad \text { an in energy } \quad\left[\dot{q}_{\theta}\right]_{\theta}=\left[-\kappa \Delta r \Delta z \frac{1}{r} \frac{\partial T}{\partial \theta}\right]_{\theta}
$$

an in energy $\left[\dot{q}_{z}\right]_{z}=\left[-\kappa\left(r+\frac{\Delta r}{2}\right) \Delta \theta \Delta r \frac{\partial T}{\partial z}\right]_{z}$
an in energy

$$
\left[\dot{q}_{r}\right]_{r+\Delta r}=\left[-\kappa(r+\Delta r) \Delta z \Delta \theta \frac{\partial T}{\partial r}\right]_{r+\Delta r}
$$

an out energy

$$
\left[q_{\theta+\Delta \theta}^{\cdot}\right]_{\theta+\Delta \theta}=\left[-\kappa \Delta r \Delta z \frac{1}{r} \frac{\partial T}{\partial \theta}\right]_{\theta+\Delta \theta}
$$

an out energy

$$
\left[q_{z+\Delta z}\right]_{z+\Delta z}=\left[-\kappa\left(r+\frac{\Delta r}{2}\right) \Delta \theta \Delta r \frac{\partial T}{\partial x}\right]_{z+\Delta z}
$$

an out energy
$\rho\left(r+\frac{\Delta r}{2}\right)(\Delta \theta \cdot \Delta z \cdot \Delta r) c_{p} \frac{\partial T}{\partial t}$

The rate of energy accumulated in the element. If you put the three energy in terms and the three out terms on the left side of the energy balance and the accumulated energy on the right, divide all terms by $(r+r / 2)(\Delta \theta \cdot \Delta z \cdot \Delta r)$, and take the limits as $\Delta r \rightarrow 0$,
$\Delta z \rightarrow 0$, and $\Delta \vartheta \rightarrow 0$ gives, using calculus, Equation 2-19
$\frac{1}{r} \frac{\partial}{\partial r} \kappa r \frac{\partial T}{\partial r}+\frac{1}{r^{2}} \frac{\partial}{\partial \theta} \kappa \frac{\partial T}{\partial \theta}+\frac{\partial}{\partial z} \kappa \frac{\partial T}{\partial z}=\rho c_{p} \frac{\partial T}{\partial t}$
10. Derive the general energy equation for conduction heat transfer through a homogeneous, isotropic media in spherical coordinates, Equation 2-20.

Solution

Referring to the sketch of an element for conduction heat transfer in spherical coordinates, you can balance the energy in - the energy out equal to the energy accumulated in the element. Using Fourier's law of conduction

$$
\begin{aligned}
& {\left[\dot{Q}_{r}\right]_{r}=\left[-\kappa r \Delta \theta r \sin \theta \Delta \phi \frac{\partial T}{\partial r}\right]_{r}} \\
& {\left[\dot{Q}_{\theta}\right]_{\theta}=\left[-\kappa \frac{1}{r} \Delta r \cdot r \sin \theta \Delta \phi \frac{\partial T}{\partial \theta}\right]_{\theta} \quad \text { an in term }} \\
& {\left[\dot{Q}_{\phi}\right]_{\phi}=\left[-\kappa r \Delta \theta \Delta r \frac{1}{r \sin \theta} \frac{\partial T}{\partial \phi}\right]_{\phi} \quad \text { an in term }} \\
& {\left[Q_{r+\Delta r}\right]_{r+\Delta r}=\left[-\kappa(r+\Delta r) \Delta \theta(r+\Delta r) \sin \theta \Delta \phi \frac{\partial T}{\partial r}\right]_{r+\Delta r} \text { an out }} \\
& {\left[Q_{\theta+\Delta \theta} \cdot\right.} \\
& {\left[\begin{array}{l}
\text { an in term }
\end{array}\right.} \\
& \\
& {\left[-\kappa \frac{1}{r} r \sin \theta \Delta \phi r \Delta \theta \frac{\partial T}{\partial \theta}\right]_{\theta+\Delta \theta} \quad \text { an out term }}
\end{aligned}
$$

$$
\left[Q_{\phi+\Delta \phi}^{\cdot}\right]_{\phi+\Delta \phi}=\left[-\kappa r \Delta \theta \frac{\Delta r}{r \sin \theta} \frac{\partial T}{\partial \phi}\right]_{\phi+\Delta \phi}
$$

an out term
$\rho \Delta V c_{p} \frac{\partial T}{\partial t}=\rho(r \sin \theta \Delta \phi) \cdot \Delta r \cdot r \Delta \theta \frac{\partial T}{\partial t}$
Which is the accumulated energy. Inserting the three in terms as positive on the left side of the energy balance, inserting the three out terms as negative on the left side of the balance, inserting the accumulated term on the right side, and dividing all terms by the quantity $(r \sin \theta \Delta \varphi) \cdot \Delta r \cdot \Delta \theta$ gives the following
$\underline{\kappa(r+\Delta r)^{2} \sin \theta \Delta \theta \Delta \phi\left(\frac{\partial T}{\partial r}\right)_{r+\Delta r}-\kappa(r)^{2} \sin \theta \Delta \theta \Delta \phi\left(\frac{\partial T}{\partial r}\right)_{r}}+$

$$
r^{r} \sin \theta \Delta r \Delta \theta \Delta \phi
$$

$\frac{\kappa r \sin \theta \Delta \phi \Delta \theta\left(\frac{\partial T}{\partial \theta}\right)_{\theta+\Delta \theta}-\kappa r \sin \theta \Delta \phi \Delta \theta\left(\frac{\partial T}{\partial \theta}\right)_{\theta}}{r^{2} \sin \theta \Delta r \Delta \theta \Delta \phi}+$
$\frac{\frac{\kappa r \Delta \theta \Delta r}{r \sin \theta}\left(\frac{\partial T}{\partial \phi}\right)_{\phi+\Delta \phi}-\frac{\kappa \Delta \theta \Delta r}{\mathrm{r} \sin \theta}\left(\frac{\partial T}{\partial \phi}\right)_{\phi}}{r^{2} \sin \theta \Delta r \Delta \theta \Delta \phi}=\rho c_{p} \frac{\partial T}{\partial t}$
Taking the limits as $\Delta r \rightarrow 0, \Delta \vartheta \rightarrow 0, \Delta \varphi \rightarrow 0$ and reducing
$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\kappa r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\kappa \sin \theta \frac{\partial T}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi}\left(\kappa \frac{\partial T}{\partial \phi}\right)=\rho c_{p} \frac{\partial T}{\partial t}$
which is Equation 2-20, conservation of energy for conduction heat transfer in spherical coordinates.
11. Determine a relationship for the volume element in spherical coordinates.

Solution

Referring to the sketch for an element in spherical coordinates, and guided by the concept of a volume element gives,
$\Delta V=(r \sin \theta \Delta \phi) \cdot(\Delta r) \cdot(r \Delta \theta)$

Section 2-3

12. An ice-storage facility uses sawdust as an insulator. If the outside walls are 60 cm thick sawdust and the sideboard thermal conductivity is neglected, determine the Revalue of the walls. If the inside temperature is $-5^{\circ} \mathrm{C}$ and the outside is $30^{\circ} \mathrm{C}$, estimate the heat gain of the storage facility per square foot of outside wall.

Solution

Assuming steady state conditions and that the thermal conductivity is the value listed in Appendix Table B-2,

$$
\begin{gathered}
R-\text { Value }=\frac{\Delta x}{\kappa}=\frac{0.6 \mathrm{~m}}{0.059 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}}=10.17 \frac{\mathrm{~m}^{2} \cdot \mathrm{~K}}{\mathrm{~W}} \\
\dot{q}_{A}=\kappa \frac{\Delta T}{\Delta x}=\frac{\Delta T}{R-\text { Value }}=\frac{30^{\circ} \mathrm{C}-\left(-5^{\circ} \mathrm{C}\right)}{10.17}=3.44 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}=1.09 \frac{\mathrm{Btu}}{\mathrm{hr} \cdot f t^{2}}
\end{gathered}
$$

13. The combustion chamber of an internal combustion engine is at $800^{\circ} \mathrm{C}$ when fuel is burned in the chamber. If the engine is made of cast iron with an average thickness of 6.5 cm between the combustion chamber and the outside surface, estimate the heat transfer per unit area if the outside surface temperature is $50^{\circ} \mathrm{C}$ and the outside air temperature is $30^{\circ} \mathrm{C}$.

Solution

Assuming steady state one-dimensional conduction and using a thermal conductivity that is assumed constant and has a value from Table B-2,

$$
q_{A}=\kappa \frac{\Delta T}{\Delta x}=\left(39 \frac{W}{m \cdot K}\right) \frac{800^{0}-50^{\circ} K}{0.065 m}=450 \mathrm{~kW} / \mathrm{m}^{2}
$$

14. Triple-pane window glass has been used in some building construction. Triple pane glass is a set of three glass panels, each separated by a sealed air gap as shown in Figure 2-49. Estimate the R -Value for triple pane windows and compare this to the R -Value for single pane glass. Note that the air within the gap is sealed and cannot move so that it acts as a conducting medium only.
FIG 2-49 Triple pane window.

Solution

Assume the air in the gaps do not move so that they are essentially conducting media. Then the R-Value is

$$
R-\text { Value }=3\left(\frac{\Delta x}{\kappa}\right)_{\text {glass }}+2\left(\frac{\Delta x}{\kappa}\right)_{\text {air }}=3\left(\frac{0.002}{1.4}\right)+2\left(\frac{0.006}{0.026}\right)=0.4658 \mathrm{~m}^{2} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}
$$

The R-Value for a single pane window is

$$
R-\text { Value }=\left(\frac{\Delta x}{\kappa}\right)_{\text {glass }}=\frac{0.002 \mathrm{~m}}{1.4 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}}=0.1429 \mathrm{~m}^{2} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}
$$

The ratio of the R -Value for the triple pane to the R -Value for a single pane is roughly 324
15. For the outside wall shown in Figure 2-50, determine the R-Value, the heat transfer through the wall per unit area and the temperature distribution through the wall if the outside surface temperature is $36^{\circ} \mathrm{C}$ and the inside surface temperature is $15^{\circ} \mathrm{C}$.

Solution

The R-Value is the sum of the three materials; pine, plywood, and limestone, with thermal conductivity

$$
R-\text { Value }=R_{V}=\left(\frac{\Delta x}{\kappa}\right)_{\text {pine }}+\left(\frac{\Delta x}{\kappa}\right)_{\text {plywood }}+\left(\frac{\Delta x}{k}\right)_{\text {limestone }}=\frac{0.04}{0.15}+\frac{0.02}{0.12}+\frac{0.06}{2.15}=0.462 \mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}
$$

values obtained from Appendix Table B-2.The conversion to English units is 0.176 $\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}=1$ R-Value so that $R-$ Value $=2.62$. The heat transfer per unit area is

$$
q_{A}=\frac{\Delta T}{R_{V}}=\frac{36-15}{0.462}=45.45 \mathrm{~W} / \mathrm{m}^{2}
$$

The temperature distribution is determined by noting that the heat flow is the same through each material. For the pine,

$$
\dot{q}_{A, p i n e}=45.45 \mathrm{~W} / m^{2}=\frac{T_{1}-15^{0} C}{R_{V \cdot p \text { ine }}}=\frac{T_{1}-15}{0.04 / 0.15}
$$ so that T_{1} at the surface between the pine and the plywood, is $27.1^{\circ} \mathrm{C}$. Similarly, to determine the temperature between the plywood and the limestone, again noting that the heat flow is the same as before

$$
\dot{q}_{A}=45.45=\frac{T_{2}-T_{1}}{R_{V, \text { plywood }}}=\frac{T_{2}-27.1}{0.02 / 0.12}
$$

so that T_{2} is $34.6^{\circ} \mathrm{C}$. This is sketched in the figure.

16. Determine the heat transfer per foot of length through a copper tube having an outside diameter of 5 cm and an inside diameter of 3.8 cm . The pipe contains $80^{\circ} \mathrm{C}$ ammonia and is surrounded by $25^{\circ} \mathrm{C}$ air.

Solution

Assuming steady state and only conduction heat transfer, for a tube cylindrical coordinates is the appropriate means of analysis. Then

$$
\begin{aligned}
\dot{q}_{l}=\frac{2 \pi \kappa \Delta T}{\ln \left(D_{o} / D_{i}\right)} & =\frac{2 \pi(400 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(80^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)}{\ln \left(\frac{5 \mathrm{~cm}}{3.8 \mathrm{~cm}}\right)}=503,690 \mathrm{~W} / \mathrm{m} \\
= & 523,980 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}
\end{aligned}
$$

17. A steam line is insulated with 15 cm of rock wool. The steam line is a $5 \mathrm{~cm} O D$ iron pipe with a 5 mm thick wall. Estimate the heat loss through the pipe per meter length if steam at $120^{\circ} \mathrm{C}$ is in the line and the surrounding temperature is $20^{\circ} \mathrm{C}$. Also determine the temperature distribution through the pipe and insulation.

Solution

Assume heat flow is one-dimensional radial and steady state. The heat flow is then the overall temperature difference divided by the sum of the radial thermal resistances. We have
$\dot{q}_{l}=\frac{(\Delta T)_{\text {overall }}}{\left(\frac{\ln \left(D_{0} / D_{i}\right)}{2 \pi \kappa}\right)_{\text {pipe }}+\left(\frac{\ln \left(D_{0} / D_{i}\right)}{2 \pi \kappa}\right)_{\text {wool }}}=\frac{(120-20)}{\left(\frac{\ln (5 / 4)}{2 \pi \cdot 51}\right)+\left(\frac{\ln (35 / 5)}{2 \pi \cdot 0.04}\right)}=12.91 \mathrm{~W} / \mathrm{m}^{2}$
To determine the temperature distribution through the pipe and wool insulation the radial heat flow will be same through the iron pipe and the wool insulation. The temperature at the interface between the iron pipe and the insulation is determined by
$\dot{q}_{l}=1\left(20-T_{\text {pipeOD }}\right) \frac{2 \pi(51)}{\ln (5 / 4)}$
From this the interface temperature, $T_{\text {pipeod }}=119.991^{\circ} \mathrm{C}$ $=T_{\text {woolld }}$ The temperature in a homogeneous radial section is $(r)=T_{0}+C l n r$. For the iron pipe, the two boundary conditions 1.) $T=120^{\circ} \mathrm{C} @ r=2 \mathrm{~cm}$ and 2.) $T=119.991^{\circ} \mathrm{C} @$ $r=2.5 \mathrm{~cm}$ can be used to solve for $T(r)$ and resulting in two separate equations. Solving these two simultaneously gives that $T_{0}=120.028^{\circ} \mathrm{C}$ and $C=-0.040$. For the iron pipe then $T(r)=120.928-0.040 \mathrm{lnr}$. For the wool insulation the two boundary conditions 1.$) T$ $=119.991^{\circ} \mathrm{C} @ r=2.5 \mathrm{~cm}$ and 2 .) $T=20^{\circ} \mathrm{C} @ r=17.5 \mathrm{~cm}$ can be substituted into the equation to solve for $T(r)$. Solving these two equations simultaneously for T_{o} and C gives that $T_{0}=167.07$ and $C=-51.385$. For the wool insulation $T(r)=157.07-51.385 \ln r$. the following sketch indicates the character of the temperature distribution.

18. Evaporator tubes in a refrigerator are constructed of 2.5 cm OD aluminum tubing with 3 mm thick walls. The air surrounding the tubing is at $-5^{\circ} \mathrm{C}$ and the refrigerant in the evaporator is at $-10^{\circ} \mathrm{C}$. Estimate the heat transfer to the refrigerant over 30 cm of length.

Solution

Assume steady state one-dimensional radial conduction heat transfer and using a thermal conductivity value from Appendix Table B-2

$$
\begin{gathered}
\dot{Q}=\frac{2 \pi \kappa L}{\ln \left(r_{o} / r_{i}\right)}\left(T_{o}-T_{i}\right)=\frac{2 \pi(236 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})(0.3 \mathrm{~m})}{\ln (1.25 \mathrm{~cm} /(0.95 \mathrm{~cm}))}\left(-5^{\circ} \mathrm{C}-\left(-10^{\circ} \mathrm{C}\right)\right) \\
=8,105 \mathrm{~W}
\end{gathered}
$$

19. Teflon tubing of 4 cm OD and 2.7 cm ID conducts $1.9 \mathrm{~W} / \mathrm{m}$ when the outside temperature is $80^{\circ} \mathrm{C}$. Estimate the inside temperature of the tubing. Also predict the thermal resistance per unit length.

Solution

Assume steady state one-dimensional radial conduction heat transfer. Reading the thermal conductivity from Appendix Table B-2, applying the Fourier's Law of conduction
for radial heat flow $\dot{q}_{l}=\frac{2 \pi \kappa}{\ln \left(r_{0} / r_{i}\right)}\left(T_{i}-T_{0}\right)=1.9 \mathrm{~W} / \mathrm{m} \quad$ and solving for T_{i}

$$
T_{i}=T_{0}+\frac{(1.9 \mathrm{~W} / \mathrm{m}) \ln (2 \mathrm{~cm} / 1.35 \mathrm{~cm})}{2 \pi\left(0.35 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)}=80.34^{0} \mathrm{C}
$$

and the thermal resistance per unit of length is
$R_{T L}=\frac{\ln \left(r_{0} / r_{i}\right)}{2 \pi \kappa}=\frac{\ln (4 / 2.7)}{2 \pi(0.35)}=0.1787 \mathrm{~m} \cdot \mathrm{~K} / \mathrm{W}$
20. A spherical flask, 4 m in diameter with a 5 mm thick wall, is used to heat grape juice. During the heating process the outside surface of the flask is $100^{\circ} \mathrm{C}$ and the inside surface is $80^{\circ} \mathrm{C}$. Estimate the thermal resistance of the flask; the heat transfer through the flask, if it is assumed that only the bottom half is heated; and the temperature distribution through the flask wall.

Solution

Assume steady state one-dimensional, radial conduction heat transfer with constant properties. Since only the bottom half is heated you need to recall that a surface area of
a hemisphere is $2 \pi r^{2}$ rather than $4 \pi r^{2}$. Then

$$
\dot{Q}=\frac{2 \pi \kappa\left(T_{0}-T_{i}\right)}{\frac{1}{r_{i}}-\frac{1}{r_{0}}}=\frac{2 \pi(1.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})\left(100-80^{\circ} \mathrm{C}\right)}{\frac{1}{1.905 \mathrm{~m}}-\frac{1}{2 m}}=7056 \mathrm{~W}
$$

The thermal resistance for the full flask would be

$$
R_{T}=\left(\frac{1}{r_{i}}-\frac{1}{r_{0}}\right)\left(\frac{1}{4 \pi \kappa}\right)=\left(\frac{1}{1.905 m}-\frac{1}{2 m}\right)\left(\frac{1}{4 \pi(1.4 W / m \cdot K)}\right)=0.001417 m \cdot K / W
$$

For such a small thermal resistance, the temperature distribution will be nearly constant through the wall. Yet for the bottom half of the flask we can write

$$
\begin{aligned}
& T(r)=T_{i}+\frac{\dot{Q}}{2 \pi \kappa}\left(\frac{1}{r_{i}}-\frac{1}{r}\right)=80^{\circ} \mathrm{C}+\frac{7056 \mathrm{~W}}{2 \pi\left(1.4 \mathrm{~W} / \mathrm{m}^{0} \mathrm{C}\right)}\left(\frac{1}{1.905 m}-\frac{1}{r}\right) \\
& T(\mathrm{r})=80^{\circ} \mathrm{C}+401 \mathrm{~m} \cdot{ }^{0} C\left(0.525 \mathrm{~m}^{-1}-\frac{1}{r}\right)
\end{aligned}
$$

21. A Styrofoam spherical container having a 2.5 cm thick wall and 60 cm diameter holds dry ice (solid carbon dioxide) at $-65^{\circ} \mathrm{C}$. If the outside temperature is $15^{\circ} \mathrm{C}$, estimate the heat gain in the container and establish the temperature distribution through the 2.5cm wall.

Solution

Assuming steady state one-dimensional radial conduction heat transfer and using the thermal conductivity value for Styrofoam from Appendix Table B-2

$$
\dot{Q}=\frac{4 \pi \kappa}{\frac{1}{r_{i}}-\frac{1}{r_{o}}}\left(T_{o}-T_{i}\right)=\frac{4 \pi(0.029 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})}{\frac{1}{0.275 \mathrm{~m}}-\frac{1}{0.3 \mathrm{~m}}}\left(15^{\circ} \mathrm{C}-\left(-65^{\circ} \mathrm{C}\right)\right)=96.2 \mathrm{~W}
$$

The temperature distribution for $\mathrm{T}(\mathrm{r})$ is

$$
\begin{aligned}
T(r)=-65^{\circ} \mathrm{C} & +\frac{96.2 \mathrm{~W}}{4 \pi(0.029 \mathrm{~W} / m \cdot K)}\left(\frac{1}{0.275 \mathrm{~m}}-\frac{1}{r}\right) \\
& =-65^{\circ} \mathrm{C}+264.11\left(\frac{1}{0.275 \mathrm{~m}}-\frac{1}{r}\right)
\end{aligned}
$$

where r is in meters.
22. Determine the overall thermal resistance per unit area for the wall shown in Figure 2-51. Exclude the thermal resistance due to convection heat transfer in the analysis. Then, if the heat transfer is expected to be $19.0 \mathrm{~W} / \mathrm{m}^{2}$ and the exposed brick surface is $10^{\circ} \mathrm{C}$, estimate the temperature distribution through the wall.

FIG 2-51 Structural wall.

Solution

The overall thermal resistance will be the sum of the thermal resistances of the three
components, $R_{V}=\frac{0.3 \mathrm{~m}}{1.6 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}}+\frac{0.025 \mathrm{~m}}{0.029 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}}+\frac{0.1 \mathrm{~m}}{0.7 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}}=1.192 \mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}$

Since there is expected to be $19.0 \mathrm{~W} / \mathrm{m}^{2}$ of conduction heat transfer through each of the three components, the temperatures at the inside surface and the two interface surfaces are $T_{\text {inside }}=\left(19.0 \mathrm{~W} / \mathrm{m}^{2}\right)\left(1.192 \mathrm{~m}^{2} .{ }^{0} \mathrm{C} / \mathrm{W}\right)+10^{\circ} \mathrm{C}=32.6^{\circ} \mathrm{C}$ which is the inside surface temperature. The temperature between the concrete and the Styrofoam
is $T_{c-\text { styr }}=T_{\text {inside }}-\dot{Q} \cdot R_{\text {concrete }}=32.6^{\circ} \mathrm{C}-\left(19 \mathrm{~W} / \mathrm{m}^{2}\right)\left(0.1875 \mathrm{~m}^{2} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right)=29.0^{\circ} \mathrm{C}$ and the temperature between the Styrofoam and the brick facing is
$T_{\text {styr-brick }}=T_{0}+\dot{Q} \cdot R_{\text {brick }}=10^{0} \mathrm{C}+\left(19 \mathrm{~W} / \mathrm{m}^{2}\right)\left(0.143 \mathrm{~m}^{2} .{ }^{0} \mathrm{C} / \mathrm{W}\right)=12.7^{0} \mathrm{C}$
23. Determine the thermal resistance per unit length of the tubing (nylon) shown in Figure 2-52. Then predict the heat transfer through the tubing if the inside ambient temperature is $-10^{\circ} \mathrm{C}$ and the outside is $20^{\circ} \mathrm{C}$.

FIG 2-52 Tubing.

Solution

The nylon tubing has properties of Teflon, the inside diameter is 40 mm , and the outside diameter is 60 mm . Then

$$
R_{T L}=\frac{\ln \left(D_{0} / D_{i}\right)}{2 \pi \kappa}=\frac{\ln \left(r_{0} / r_{i}\right)}{2 \pi \kappa}=\frac{\ln (60 \mathrm{~mm} / 40 \mathrm{~mm})}{2 \pi(0.35 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})}=0.184 \mathrm{~m} \cdot \mathrm{~K} / \mathrm{W}
$$

Assuming steady state one-dimensional radial conduction heat transfer,
$\dot{q}_{l}=\frac{\Delta T}{R_{T L}}=\frac{30^{\circ} \mathrm{C}}{0.184 \mathrm{~m} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}}=162.7 \mathrm{~W} / \mathrm{m}$
24. Determine the temperature distribution through the wall of Example Problem 2-5 if the thermal conductivity is affected by temperature through the relationship
$\kappa=0.638+0.00270 T \frac{\mathrm{~W} \cdot \mathrm{~cm}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$
where T is in Kelvin.

Solution

In Example 2-5 the wall is 40 cm thick, has a temperature of $12^{\circ} \mathrm{C}$ on one side and $40^{\circ} \mathrm{F}$ on the other. Assuming steady state one-dimensional conduction heat transfer
$\dot{q}_{A}=-\kappa \frac{d T}{d x}=-(0.638+0.00270 T) \frac{d T}{d x}$
separating variables and integrating

$$
\begin{aligned}
\dot{q}_{A} \int d x=\dot{q}_{A} & (40 \mathrm{~cm})=-\int(0.638+0.00270 T) d T \\
& =-9.2(12-40)-\frac{1}{2}(0.00270)\left(12^{2}-40^{2}\right)
\end{aligned}
$$

and then solving for the heat transfer per unit area gives

$$
\dot{q}_{A}=\frac{1}{40}\left[257.6 \frac{\mathrm{~W} \cdot \mathrm{~cm}}{\mathrm{~m}^{2}}+1.96 \frac{\mathrm{~W} \cdot \mathrm{~cm}}{\mathrm{~m}^{2}}\right]=6.49 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
$$

25. Determine the temperature distribution through a slab if $\mathrm{K}=a \mathrm{~T}^{0.001}, \mathrm{~T}$ is in Kelvin, and a is a constant. Then compare this to the case where $\mathrm{k}=a$.

Solution

$\dot{q}_{A}=-\kappa \frac{d T}{d x}=-a T^{0.001} \frac{d T}{d x}$ If the variables are now separated and integrating
$\dot{q}_{A} \int d x=\dot{q}_{A} x=-a \int T^{0.001} d T=-\frac{a}{1.001} T^{1.001}-C \quad$ defining a boundary condition of T
$=T_{0} @ x=0$ allows the constant C to be defined as $C=-\frac{a}{1.001} T_{0}^{1.001}$ the temperature
distribution is then $T(\mathrm{x})=\sqrt[1.001]{T_{0}^{1.001}-q_{A} x\left(\frac{1.001}{a}\right)}$

For $\kappa=a$ and $T=T_{0} @ x=0 \quad T=T_{0}-\dot{q}_{A} \frac{x}{a}$

Section 2-4

26. Show that $T(x, y)=(a \sin p x+b \cos p x)\left(c e^{-p y}+d e^{p y}\right)$ satisfies Laplace's equation $\frac{\partial^{2} T(x, y)}{\partial x^{2}}+\frac{\partial^{2} T(x, y)}{\partial y^{2}}=0$.

Solution

Taking first and second derivatives $\frac{\partial T}{\partial x}=(a p \cos p x-b p \sin p x)\left(c e^{-p y}+d e^{p y}\right)$
and $\frac{\partial^{2} T}{\partial x^{2}}=-\left(a p^{2} \sin p x+b p^{2} \cos p x\right)\left(c e^{-p y}+d e^{p y}\right)$ taking the first and second
partial derivative with respect to y give, for the second derivative that
$\frac{\partial^{2} T}{\partial y^{2}}=(a \sin p x+b \cos p x) p^{2}\left(c e^{-p y}+d e^{p y}\right)$ summing these last two equations gives Laplace's equation.
27. For the wall of Example Problem 2-11, determine the heat transfer in the y-direction at 3 feet above the base. Then plot the temperature distribution at this level.

Solution

The solution to the wall temperature of example 2-11 is

$$
T(x, y)=\left(50^{0} F\right) e^{-\pi y / L} \sin \frac{\pi x}{L}
$$

The heat transfer in the y-direction can be determined,

$$
\dot{Q}_{y}=-\kappa A_{y} \frac{\partial T}{\partial y}=-\kappa W \int_{0}^{L} \frac{\partial T}{\partial y} d x=-\kappa W \int\left(-50^{0} F\right)\left(\frac{\pi}{L}\right) e^{-\pi y / L} \sin \frac{\pi x}{L} \quad \text { For } W=1 f t, L=
$$

$3 f t$, and $y=3 f t$ this equation can then be finalized

$$
\dot{Q}_{y}=-\left(50^{0} F\right)\left(\frac{\kappa \pi}{3 f t}\right)^{3 f t} \int_{0}^{-\pi} e^{-\pi} \frac{\pi x}{3 f t} d x=\left(50^{0} F\right)\left(\frac{\kappa \pi}{3 f t}\right) e^{-\pi}\left[\frac{3 f t}{\pi} \cos \frac{\pi x}{3 f t}\right]_{0}^{3 f t}=\left(50^{0} F\right)(\kappa) e^{-\pi}(2)
$$

For a thermal conductivity of $0.925 \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}^{\circ} \mathrm{F}$ from Appendix Table B-2E, the heat transfer is about $4.00 \mathrm{Btu} / \mathrm{hr}$. The temperature distribution at $\mathrm{y}=3 \mathrm{ft}$ for $0 \leq x \leq 3 f t$ is $T(x, y=3 f t)=2.15 \sin \frac{\pi x}{3 f t}$
28. Write the governing equation and the necessary boundary conditions for the problem of a tapered wall as shown in Figure 2-53.

FIG 2-53 Tapered wall with heat transfer.

Solution

For steady state conduction in two-dimensions the governing equation will be $\frac{\partial^{2} T}{\partial x^{2}}+$ $\frac{\partial^{2} T}{\partial y^{2}}=0$. Calling T_{g} the ground temperature the following four (4) boundary conditions may be used:
B.C. $1 T(x, 0)=T_{g} \quad$ for $0<x \leq X$
B.C. $2 T(X, y)=T_{g} \quad$ for $0 \leq y \leq L$
B.C. $3 T(x, L)=T_{0} \quad$ for $X-A \leq x \leq X$
B.C. $4 T(x, y)=T_{0} \quad$ for $0 \leq y \leq L \quad$ and $y=(L / X-A) x$
29. Write the governing equation and the necessary boundary conditions for the problem of a heat exchanger tube as shown in Figure 2-54.

FIG 2-54 Heat exchanger tube.

Solution

A heat exchanger tube with convection heat transfer at the inside and the outside surfaces can be analyzed for steady state one-dimensional radial heat transfer with the equation
$\frac{1}{r} \frac{d}{d r} \kappa r \frac{d T}{d r}=0$ and with, as a possibility, the following two boundary
conditions conditions
B.C. $1 \dot{q}_{r}=2 \pi r_{i} h_{i}\left(T_{i}-T\right) @ r=r_{i}$
B.C. $2 \dot{q}_{r}=2 \pi r_{0} h_{0}\left(T-T_{0}\right) @ r=r_{0}$
30. Write the governing equation and the necessary boundary conditions for the problem of a spherical concrete shell as sketched in Figure 2-55.

FIG 2-55 Spherical thick walled shell.

Solution

For steady state one-dimensional radial conduction heat transfer in spherical coordinates the governing equation for analyzing this and two suggested boundary
conditions are $\frac{1}{r^{2}} \frac{d}{d r} \kappa r^{2} \frac{d T}{d r}=0$
B.C. $1 T=T_{0} @ r=r_{0}$
B.C. $2 T=T_{i} @ r=r_{i}$
31. Determine the Fourier coefficient A_{n} for the problem resulting in a temperature distribution of $T(x, y)=\sum_{n=0}^{\infty} A_{n} e^{-n \pi y / L} \sin (n \pi x / L)$ involving a boundary temperature distribution given by $T(x, 0)=\cos (\pi x / L)$ for $0 \leq x \leq L$.

Solution

The Fourier coefficient is defined as

$$
A_{n}=\frac{2}{L} \int_{0}^{L} T(x, 0) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} \cos \left(\frac{\pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x
$$

and using an identity

$$
A_{n}=\frac{2}{L} \int_{0}^{L} \frac{1}{2}\left(\sin \left(\frac{n \pi x}{L}+\frac{\pi x}{L}\right)+\sin \left(\frac{n \pi x}{L}-\frac{\pi x}{L}\right)\right) d x=\frac{1}{L} \int_{0}^{L}\left[\sin \left(\frac{n \pi x}{L}+\frac{\pi x}{L}\right)+\sin \left(\frac{n \pi x}{L}-\frac{\pi x}{L}\right)\right] d x
$$

For $\mathrm{n}=0$ the Fourier coefficient, A_{0} becomes $A_{0}=\frac{1}{L} \int_{0}^{L}\left[\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{-\pi x}{L}\right)\right]=0$
For $\mathrm{n}=1$ the Fourier coefficient becomes

$$
\begin{aligned}
& A_{1}=\frac{1}{L} \int_{0}^{L} \sin \left(\frac{2 \pi x}{L}\right) d x=-\frac{L}{2 \pi L} \cos \left(\frac{2 \pi x}{L}\right)_{0}^{L}=0 \quad \text { For } \mathrm{n}=2 \text {, the Fourier coefficient is } \\
& A_{2}=\frac{1}{L} \int_{0}^{L}\left(\sin \left(\frac{3 \pi x}{L}\right)+\sin \left(\frac{\pi x}{L}\right)\right) d x=-\frac{1}{3 \pi} \cos \left(\frac{3 \pi x}{L}\right)-\frac{1}{\pi} \cos \left(\frac{\pi x}{L}\right)=\frac{2}{3 \pi}+\frac{2}{\pi} \\
& A_{4}=\frac{2}{5 \pi}+\frac{2}{3 \pi} \text { For any even integer of } \mathrm{n} \text {, such as } 6,8,10 \text {, etc. the Fourier }
\end{aligned}
$$

$$
\begin{aligned}
& A_{n}=\frac{2}{(n+1) \pi}+\frac{2}{(n-1) \pi} \text { By reviewing the first coefficient, } A_{1} \text { it turns out } \\
& \text { coefficient is }
\end{aligned}
$$ that for all odd integers of n, such as $3,5,7,9,11$, etc, the Fourier coefficient is zero, 0 .

32. Determine the Fourier coefficient A_{n} for the problem involving a boundary temperature distribution given by $T(x, 0)=T_{0}\left(1-\frac{x}{L}\right)$ and where the solution to the temperature field is $T(x, y)=\sum_{n=0}^{\infty} A_{n} e^{-n \pi y / L} \sin (n \pi x / L)$.

Solution

$$
A_{n}=\frac{2}{L} \int_{0}^{L} T(\mathrm{x}, 0) \sin \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} T_{0}\left(1-\frac{x}{L}\right) \sin \frac{n \pi x}{L} d x
$$

By inspection $A_{0}=0$ for $n=0$.
For $\mathrm{n}=1$

$$
\begin{aligned}
& A_{1}=\frac{2 T_{0}}{L} \int_{0}^{L} \sin \frac{\pi x}{L} d x-\frac{2 T_{0}}{L^{2}} \int_{0}^{L} x \sin \frac{\pi x}{L} d x \\
& A_{1}=\frac{2 T_{0}}{L}\left(-\frac{L}{\pi} \cos \frac{\pi x}{L}\right)_{0}^{L}-\frac{2 T_{0}}{L^{2}}\left(\frac{L^{2}}{\pi^{2}} \sin \frac{\pi x}{L}-\frac{L}{\pi} \cos \frac{\pi x}{L}\right)_{0}^{L}=\frac{4 T_{0}}{\pi}-\frac{2 T_{0}}{\pi}=\frac{2 T_{0}}{\pi}
\end{aligned}
$$

even, such as $2,4,6,8, \ldots$.

$$
\begin{aligned}
& A_{n}=\frac{2 T_{0}}{n \pi} \text { and for } \mathrm{n} \text { odd, such as } 3,5,7,9, \ldots . \\
& A_{n}=\frac{2 T_{0}}{n \pi} \text { which is the same as for } \mathrm{n} \text { even }
\end{aligned}
$$

33. Plot the Bessel's function of the first kind of zero and first order, J_{o} and J_{1}, for arguments from 0 to 10 .

Solution

Appendix Table A-10-1 tabulates the Bessel's Function of arguments from 0 to 10. The plot is shown.

34. Plot the Bessel's Function of the second kind of zero and first order, Y_{0} and Y_{1} for arguments from 0 to 10.

Solution

The Bessel's Functions of the second kind of zeroth and first order are tabulated in Appendix Table A-10-1, plotted in Appendix Figure A-10-2, and here shown.

35. A silicon rod 20 cm in diameter and 30 cm long is exposed to a high temperature at one end so that the end is at $400^{\circ} \mathrm{C}$ whereas the remaining surfaces are at $60^{\circ} \mathrm{C}$. Estimate the centerline temperature distribution through the rod.

Solution

The ratio of the length to radius, L / R is 3.0 so, using Figure 2-22 the following values can be read:

x / L	$\left(\mathrm{T}-\mathrm{T}_{0}\right) /\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{0}\right)$	$\mathrm{T}(\mathrm{x})^{0}$ Celsius
0.0	0.000	60.00
0.2	0.002	60.68
0.4	0.020	67.20
0.6	0.086	90.96
0.8	0.360	189.6
1.0	1.000	400.0

The values for $T(x)$ are computed from the equation

$$
T(\mathrm{x}, 0)=\left(\frac{T-T_{0}}{T_{f}-T_{0}}\right)\left(400-60^{\circ} \mathrm{C}\right)+60^{\circ} \mathrm{C}
$$

36. A Teflon rod 15 cm in diameter and 60 cm long is at $110^{\circ} \mathrm{C}$. It is then exposed at one end to cool air so that that end reaches $25^{\circ} \mathrm{C}$ whereas the cylindrical surface cools to $65^{\circ} \mathrm{C}$. The other end remains at $110^{\circ} \mathrm{C}$ at steady state. Determine the expected temperature distribution.

Solution

To determine the centerline temperature distribution you can use Figure 2-22b. Since the L / R value is $60 / 7.5=8$ we need to extrapolate on the graph for approximate values. Also, the centerline temperature will not change significantly for values of z / L less than about 0.6. In addition, a principle of superposition will provide the rigorous solution. Yet, since the axial lengths are such that the distance from the $110^{\circ} \mathrm{C}$ end will be the total length minus the length from the $27^{\circ} \mathrm{F}$ end, $z_{110}=L-z_{27}$. Since the temperature of the center of the rod, axially, does not change significantly from the $65^{\circ} \mathrm{C}\left(T_{0}\right)$ for $z / L \leq 0.6$, we can just consider each end separately. For the model of a rod at $65^{\circ} \mathrm{C}$ with one end at $25^{\circ} \mathrm{C}$ we have, say at z / L of 0.8 , from Figure 2-22b that (T $\left.T_{0}\right) /\left(25^{\circ} F-T_{0}\right)=(T-65) /(25-65)=(T-27) /(-40)$ has a value of about 0.15 . Therefore, at $\mathrm{z}=12 \mathrm{~cm}$ (corresponding to $\mathrm{z}=48 \mathrm{~cm}$ from the $65^{\circ} \mathrm{C}$ end) from the $25^{\circ} \mathrm{C}$ end the centerline temperature is $\left.T(12 \mathrm{~cm}, 0)=(0.15)(25-65)+65=595^{\circ} \mathrm{C}\right)$. At say $\mathrm{z}=21$ $\mathrm{cm}\left(0.4 \mathrm{~m}\right.$ from the $65^{\circ} \mathrm{C}$ end), $\mathrm{z} / \mathrm{L}=0.65$, and from Figure $2-22 \mathrm{~b},\left(T-T_{0}\right) /\left(25^{\circ} \mathrm{F}-T_{0}\right) \approx$
0.03 and then the centerline temperature at 21 cm from the $25^{\circ} \mathrm{C}$ end is $T(21 \mathrm{~cm}, 0)=$ $(0.03)(25-65)+65=64.4^{\circ} \mathrm{C}$. Similarly, for the end at $110^{\circ} \mathrm{C}$ with the rod at $65^{\circ} \mathrm{C}$, at $\mathrm{z} / \mathrm{I}=0.8$, corresponding to 12 cm from the $110^{\circ} \mathrm{C}$ end, the centerline temperature is $T(12 \mathrm{~cm}, 0)=(0.15)(110-65)+65=72^{\circ} \mathrm{C}$). At $\mathrm{z} / \mathrm{L}=0.65$ (corresponding to 21 cm from the $110^{\circ} \mathrm{C}$ end) the centerline temperature is $T(21 \mathrm{~cm}, 0)=(0.03)(110-65)+$ $65=66.4^{\circ} \mathrm{C}$

Section 2-5

37. A water line of $5-\mathrm{cm}$ diameter is buried horizontally 1.2 m deep in earth. Estimate the heat loss per foot from the water line if water at $10^{\circ} \mathrm{C}$ flows through the line and the outside temperature of the line is assumed to be $10^{\circ} \mathrm{C}$. The surface temperature of the earth is $-30^{\circ} \mathrm{C}$.

Solution

Using the shape factor from Table 2-3, item 8, where L » r

$$
S=\frac{2 \pi L}{\cosh ^{-1} \frac{Y}{r}}=\frac{2 \pi L}{\cosh ^{-1} \frac{1.2 \mathrm{~m}}{2.5 \times 10^{-2} \mathrm{~m}}}=\frac{2 \pi L}{4.564}
$$

The thermal conductivity of earth is about $1.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ from Appendix Table $\mathrm{B}-2$ so that the heat transfer per unit length is

$$
\dot{q}_{l}=S \kappa \Delta T(1 / L)=\left(\frac{2 \pi}{4.654}\right)\left(1.5 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}\right)\left(40^{\circ} \mathrm{C}\right) \approx 81 \frac{\mathrm{w}}{\mathrm{~m}}
$$

38. A chimney is constructed of square concrete blocks with a round flue as shown in Figure 2-56. Estimate the heat loss through the cement blocks per meter of chimney if the outer surface temperature is $-10^{\circ} \mathrm{C}$ and the inner surface temperature is $150^{\circ} \mathrm{C}$.

FIG 2-56 Chimney and flue.

Solution

Assuming steady state conduction and using the shape factor from Table 2-3, item 4, the heat loss can be estimated. From Appendix Table B-2 the thermal conductivity of
concrete may be taken as $1.4 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ so that

$$
\frac{S}{L}=\frac{2 \pi}{\ln \left(0.54 \frac{W}{r}\right)}=\frac{2 \pi}{\ln (0.54(7))}=4.725
$$ The heat loss can then be calculated from

$$
\dot{q}_{l}=\frac{S}{L} \kappa \Delta T=(4.725)\left(1.4 \frac{W}{m \cdot K}\right)\left(150-(-10)^{0} C\right)=1.058 \frac{\mathrm{~kW}}{\mathrm{~m}}
$$

39. Nuclear waste is placed in drums 50 cm in diameter by 100 cm long and buried in sand. Water lines are buried adjacent to the drums to keep them cool. The suggested typical arrangement is shown in Figure 2-57. Estimate the heat transfer between a drum and the water line.

FIG 2-57 Nuclear waste drums.

Solution

Assume steady state, infinite media, and all heat transfer occurs between the 100 cm long drum and an adjacent 10 cm long water line. Using, item 11 from Table 2-3 with $r=$ $r_{1} / r_{2}=25 / 5=5$, and $L=50 \mathrm{~cm} / 5 \mathrm{~cm}=10$, gives

$$
S=\frac{2 \pi}{\cosh ^{-1}\left(\frac{L^{2}-1-r^{2}}{2 r}\right)}=\frac{2 \pi}{\cosh ^{-1}(7.4)}=2.336
$$

Assuming dry sand with a thermal
conductivity from Appendix Table $\mathrm{B}-2$ of $0.3 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, the heat transfer is $\dot{Q}=S \kappa L \Delta T=(2.336)\left(0.3 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}\right)(1 \mathrm{~m})(135 \mathrm{~K})=94.6 \mathrm{~W}$
40. Steel pins are driven into asphalt pavement as shown in Figure 2-58. Estimate the heat transfer between a pin when it is at $15^{\circ} \mathrm{C}$ and the surface when it is at $45^{\circ} \mathrm{C}$.

FIG 2-58 Steel pins in asphalt.

$$
T_{s}=45^{\circ} \mathrm{C}
$$

Solution

Assume steady state conduction. Using a value of $0.062 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ for the thermal conductivity of asphalt from Appendix Table B-2, a uniform pin temperature of $15^{\circ} \mathrm{C}$ and the asphalt surface is $45^{\circ} \mathrm{C}$,

$$
\begin{aligned}
\dot{Q}=S \kappa \Delta T= & \frac{2 \pi L}{\ln \frac{2 L}{R}} \kappa \Delta T=\frac{2 \pi(0.45 \mathrm{~m})}{\ln \frac{2(0.45 \mathrm{~m})}{0.025 \mathrm{~m}}}\left(0.062 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}\right)\left(45^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}\right) \\
& =1.47 \mathrm{~W}
\end{aligned}
$$

41. A heat treat furnace sketched in Figure 2-59 has an inside surface temperature of $1200^{\circ} \mathrm{C}$ and an outside surface temperature of $60^{\circ} \mathrm{C}$. If the walls are assumed to be homogeneous with thermal properties the same as asbestos, estimate the heat transfer from the walls, excluding the door.

FIG 2-59 Heat treat furnace.

Solution

The heat transfer between the inside and the outside is $\dot{Q}=\dot{Q}_{\text {top }}+\dot{Q}_{\text {bottom }}+$ $\dot{Q}_{\text {back }}+2 \dot{Q}_{\text {side }}+4 \dot{Q}_{\text {sideedge }}+2 \dot{Q}_{\text {backedge }}+2 \dot{Q}_{\text {uprightedges }}+4 \dot{Q}_{\text {corners }}$. All of these can be modeled with shape factors from Table 2-3. The first four terms are just onedimensional conduction through a sheet, or plate. The next three are edges and the last
is a corner. Combining all this $\dot{Q}=\frac{\kappa \Delta T}{\Delta x}\left[30 \times 65 \mathrm{~cm}^{2}+30 \times 65+30 \times 40+2 \times 40 \times 65\right]+$

$$
\kappa \Delta T[4(0.559)(65)+2(0.559)(30)+2(0.559)(40)+4(0.15)(15)]
$$

substituting the thermal conductivity, the thickness Δx, and the temperature difference

$$
\dot{Q}=1634.8 W
$$

42. A small refrigerator freezer, $40 \mathrm{~cm} \times 40 \mathrm{~cm} \times 45 \mathrm{~cm}$ outer dimensions, has an inside surface temperature of $-10^{\circ} \mathrm{C}$ and an outside surface temperature of $25^{\circ} \mathrm{C}$. If the walls are uniformly 7.5 cm thick, homogeneous, and with thermal properties the same as Styrofoam, estimate the heat transfer through the walls and door of the refrigerator.

Solution

Using shape factor methods we can list

The thermal conductivity of Styrofoam is $0.029 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, the temperature difference is $35^{\circ} \mathrm{C}$. The first five terms are just heat transfer through a flat plate, the next three are edges, and the last is a corner. Using items 1,17 , and 18 from Table 2-3 we get

$$
\begin{aligned}
\dot{Q}=\frac{\kappa \Delta T}{\Delta x}[0.25 & \times 0.25 \mathrm{~cm}^{2}+0.25 \times 0.25 \mathrm{~cm}^{2}+0.25 \times 0.3 \mathrm{~cm}^{2}+0.25 \times 0.3 \mathrm{~cm}^{2} \\
& \left.+2 \times 0.25 \times 0.3 \mathrm{~cm}^{2}\right]+\kappa \Delta T(0.559)(4 \times 0.3+4 \times 0.25+4 \times 0.25) \\
& +\kappa \Delta T(8 \times 0.0125 * 0.075)
\end{aligned}
$$

The total heat transfer is then
$\dot{Q}=10.3 W$
43. Using graphical methods, estimate the temperatue distribution and the heat transfer per meter depth between the two surfaces at the corner shown in Figure 2-60. Notice that the scale is 1 to 8 , or that the figure is only one-eighth the actual size.

FIG 2-60 Heat transfer at a corner.

Scale: 1 to 8

Solution

The sketch shown shows that there are 11 heat flow paths, $M=11$, and 4 temperature steps, $\mathrm{N}=4$. Thus, the shape factor is roughly $\mathrm{M} / \mathrm{N}=2.75$ and the heat transfer is $\dot{Q}=S_{K} \Delta T=(2.75)(0.029 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})(110 \mathrm{~K})=8.7725 \mathrm{~W} / \mathrm{m}$

44. Using graphical methods, estimate the temperature distribution through the phenolic disk surrounding the silicon chip sketched in Figure 2-61. Then estimate the heat transfer per millimeter of depth.

FIG 2-61 Silicon chip embedded in phenolic.

Scale: 100 to 1

Solution

Here we have that the shape factor is the heat flow paths, M , divided by the temperature steps, N, so that $S=M / N$. From the sketch shown there are about 25 heat flow paths and 4 temperature steps. Using a thermal conductivity of $0.35 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ for nylon as an approximation for phenolic from Appendix Table B-2, we have
$\dot{q}_{l}=S \kappa \Delta T=\frac{25}{4}\left(0.35 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}\right)\left(80^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)=120.3 \frac{\mathrm{~W}}{\mathrm{~m}}$

45. Using graphical techniques estimate the temperature distribution through the earth around the electrical power line shown in Figure 2-62. Then estimate the heat transfer necessary between the line and the ground surface for steady state conditions. Express your answer in W/m.

FIG 2-62 Buried high-power line.

Solution

The temperature distribution and the heat transfer can be approximated with a sketch of the heat flow lines and isotherms. These two sets of lines need to be orthogonal or perpendicular at all times and the spacing between adjacent isotherms and heat flow

lines need to approximate a square. The Shape factor, S , will be the ratio of the heat flow paths, M, to the isotherms, N. The sketch shows a possible approximate solution where the temperature steps or isotherms is seven (7) and the number of heat flow paths is twenty seven (27). Then

$$
\dot{q}_{l}=S \kappa \Delta T=\frac{M}{N} \kappa \Delta T=\frac{27}{7}\left(0.52 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}\right)(20 \mathrm{~K})=40.1 \frac{\mathrm{~W}}{\mathrm{~m}}
$$

Notice that the shape factor is $27 / 7=3.86$, which is a value in close agreement with item 8 of Table B-3 for a buried line,

$$
S=\frac{2 \pi}{\cosh ^{-1} \frac{Y}{R}}=\frac{2 \pi}{\cosh ^{-1} \frac{4}{2}}=4.77
$$

46. Using graphical techniques, estimate the temperature distribution through the cast iron engine block and head shown in Figure 2-63.

FIG 2-63 Sketch of a gasoline engine.

Scale 1 to 3

Solution

Referring to the sketch of the piston-cylinder and assuming symmetry, there are five (5) isothermal steps so $N=5$. Also there are estimated to be twenty-two (22) heat flow paths for one half the cylinder for heat exchange between the cylinder at $315^{\circ} \mathrm{C}$ and the
surroundings at $70^{\circ} \mathrm{C}$. From Appendix Table B-2 the thermal conductivity for cast iron may be taken as $39 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. Then the heat transfer is

$$
\dot{q}_{r}=\kappa \frac{M}{N} \Delta T=\left(39 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}\right)\left(\frac{22}{5}\right)\left(315^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right)=42042 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \text { radious }}
$$

and if we assume an effective radius of 0.09 m and rotate the 22 heat flow paths through one revolution, $2 \pi r$, then the heat transfer will be

$$
\dot{Q}=2 \pi r_{\text {effective }} \dot{q}_{r}=2 \pi(0.09 \mathrm{~m})\left(42042 \frac{\mathrm{~W}}{\mathrm{~m}}\right)=23,774 \mathrm{~W}
$$

47. A Bunsen burner is used to heat a block of steel. The surfaces of the steel may be taken as $50^{\circ} \mathrm{C}$ except on the bottom, where the burner is heating the block. Figure 2-64 shows the temperature profile at the bottom surface and the overall configuration of the heating process. Using graphical techniques, estimate the temperature profile through the block and the heat transfer through the block.

FIG 2-64 Bunsen burner and steel block.

Solution

Using graphical techniques requires that a web of approximately square elements are formed between adjacent heat flow lines and isotherms. An approximate solution is shown, noting that the $850^{\circ} \mathrm{C}$ is assumed to be in the block. The number of heat flow paths for one-half the block is nine (9) and the number of isotherms is five (5). Assuming a carbon steel the thermal conductivity is taken as $60.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ from Appendix Table B-
2. Since the block is 25 cm square
$\dot{Q}=\kappa L \frac{M}{N} \Delta T=\left(60.5 \frac{W}{m \cdot K}\right)(0.25 m)\left(\frac{9}{5}\right)(850-50 K)=21.78 \mathrm{~kW}$

Section 2-6

48. Estimate the heat transfer from the fin shown in Figure 2-65. Write the necessary node equations and then solve for the temperatures. Assume the fin is aluminum.

FIG 2-65 Fin heat transfer.

Solution

Referring to the sketch, assuming symmetry so that only 9 nodes need to be identified and using node neighborhoods of 2.5 cm squares ($\Delta x=\Delta y=2.5 \mathrm{~cm}$), and assuming the temperature of node 5 is $160^{\circ} \mathrm{C}$ the node equations can be written for steady state conduction two-dimensional heat transfer. The thermal conductivity of aluminum is 236 $\mathrm{W} / \mathrm{m} \cdot \mathrm{K}$ from Appendix Table B-2. For node 1:
$\kappa\left(\frac{\Delta y}{2}\right)\left(\frac{T_{5}-T_{1}}{\Delta x}\right)+\kappa\left(\frac{\Delta x}{2}\right)\left(\frac{T_{2}-T_{1}}{\Delta y}\right)+h_{\infty} \frac{\Delta y}{2}\left(T_{\infty}-T_{1}\right)=0$ substituting into this node equation, for the Temperature matrix

$$
T=\left[\begin{array}{c}
289.5 \\
293.3 \\
289.29 \\
289.09 \\
296.15 \\
290.78 \\
288.38 \\
284.56
\end{array}\right]
$$

49. Write the node equations for the model of heat transfer through the compressor housing section shown in Figure 2-66. Then solve for the node temperatures by using EES, Mathcad, or MATLAB.

Solution

Referring to Figure 2-66, which is a scale 1 to 6, the inner radius is assumed to be 21 cm and the outer radius is then 30 cm . The housing is cast iron so that the thermal conductivity is $39 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ from Appendix Table B-2 and assuming that the slots have quiescent fluid at with a thermal conductivity of $1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$, the node equations may be written out. Referring to the following sketches some of the nodes are identified, others need to be to be inferred, and node 1 is shown in some detail.

Node 1 neighborhood. The angular displacement between nodes is 11.25° or 0.196 radians. For node 1
$\kappa \frac{\Delta r}{2} \frac{1}{(0.196)(0.3 m)}\left(T_{5}-T_{1}\right)+\kappa \frac{(0.196 \mathrm{rad})(0.285 m)}{2}\left(\frac{T_{2}-T_{1}}{\Delta r}\right)+h_{0}\left(\frac{(0.196)(0.3 m)}{2}\right)\left(35^{\circ} C-T_{1}\right)=0$
Substituting the thermal conductivity, convective heat transfer coefficient, and radius change $9.95\left(T_{5}-T_{1}\right)+36.3\left(T_{2}-T_{1}\right)+5.292\left(35-T_{1}\right)=0$ which is the equation for node 1

An energy balance for node 2 gives
$\kappa \Delta r\left(\frac{T_{6}-T_{2}}{0.196(0.27 m)}\right)+\kappa\left(\frac{0.196(0.285 m)}{2}\right)\left(\frac{T_{1}-T_{2}}{\Delta r}\right)+\kappa\left(\frac{0.196(0.255 m)}{2}\right)\left(\frac{T_{3}-T_{2}}{\Delta r}\right)=0$
or $22.1\left(T_{6}-T_{2}\right)+36.309\left(T_{1}-T_{2}\right)+32.487\left(T_{3}-T_{2}\right)=0$ which is the equation for node 2 . An energy balance of the heat flows to each of the nodes can be made and the following equations result
$24.872\left(T_{7}-T_{3}\right)+32.487\left(T_{2}-T_{3}\right)+28.665\left(T_{4}-T_{3}\right)=0 \quad$ t which is the equation for
 for node 4. After applying energy balances to all of the 20 nodes the following set of equations result

$$
\begin{gathered}
51.542 T_{1}-36.3 T_{2}-9.95 T_{5}=185.22 \\
90.896 T_{2}-36.3 T_{1}-22.1 T_{6}-32.487 T_{3}=0 \\
86.024 T_{3}-32.487 T_{2}-28.665 T_{4}-24.872 T_{7}=0 \\
50.695 T_{4}-28.665 T_{3}-14.21 T_{8}=2346 \\
103.084 T_{5}-9.95 T_{1}-72.6 T_{6}-9.95 T_{9}=370.44 \\
142.077 T_{6}-22.1 T_{2}-72.6 T_{5}-36.32 T_{7}-11.057 T_{10}=0 \\
130.96 T_{7}-24.87 T_{3}-36.32 T_{6}-57.33 T_{8}-12.44 T_{11}=0 \\
101.39 T_{8}-14.21 T_{4}-57.33 T_{7}-14.21 T_{12}=4692 \\
103.084 T_{9}-9.95 T_{5}-72.6 T_{10}-9.95 T_{13}=370.44 \\
94.757 T_{10}-11.057 T_{6}-72.6 T_{9}-0.043 T_{11}-11.057 T_{14}=0 \\
82.253 T_{11}-12.44 T_{7}-0.043 T_{10}-57.33 T_{12}-12.44 T_{15}=0 \\
101.39 T_{12}-14.21 T_{8}-57.33 T_{11}-14.21 T_{16}=4692 \\
103.084 T_{13}-9.95 T_{9}-72.6 T_{14}-9.95 T_{17}=370.44 \\
22.114 T_{14}-11.057 T_{10}-72.6 T_{13}-0.043 T_{15}-11.057 T_{18}=0 \\
82.253 T_{15}-12.44 T_{11}-0.043 T_{14}-57.33 T_{16}-12.44 T_{19}=0 \\
101.39 T_{16}-14.21 T_{12}-57.33 T_{15}-14.21 T_{20}=4692 \\
51.542 T_{17}-9.95 T_{13}-36.3 T_{18}=185.22 \\
47.3785 T_{18}-11.057 T_{14}-36.3 T_{17}-0.0213 T_{19}=0 \\
41.126 T_{19}-12.44 T_{15}-0.0213 T_{18}-28.665 T_{20}=0 \\
50.695 T_{20}-14.21 T_{16}-28.665 T_{19}=2346 \\
10
\end{gathered}
$$

With this set of equations the temperatures can be determined. Using Mathcad, noting that the results are tabulated in the final column with node 1 being listed as 0 , node 2 as 1 , and so on.

Solving for the temperature field in an air compressor using Mathcad:

Guess Values	T1 : $=40$
	T2 : $=80$
	T3 : $=150$
	T4 : $=250$
	T5 :=40
	T6 : $=80$
	T7 : $=150$
	T8 : $=250$
	T9 : $=40$
	$\mathrm{T} 10:=70$
	$\mathrm{T} 11:=180$
	$\mathrm{T} 12:=260$
	T13:=40
	T14 : $=70$
	$\mathrm{T} 15:=200$
	$\mathrm{T} 16:=270$
	T 17 : $=40$
	$\mathrm{T} 18:=80$
	T19 : $=160$
	T20 : $=280$
Given	
$51.542 \cdot \mathrm{~T} 1-36.3 \cdot \mathrm{~T} 2-9.95 \cdot \mathrm{~T} 5=185.22$	
$90.896 \cdot \mathrm{~T} 2-36.3 \cdot \mathrm{~T} 1-22.1 \cdot \mathrm{~T} 6-32.487 \cdot \mathrm{~T} 3=0$	
$86.024 \cdot \mathrm{~T} 3-32.487 \cdot \mathrm{~T} 2-28.665 \cdot \mathrm{~T} 4-24.872 \cdot \mathrm{~T} 7=0$	
$50.695 \cdot \mathrm{~T} 4-28.665 \cdot \mathrm{~T} 3-14.21 \cdot \mathrm{~T} 8=2346$	
$103.084 \cdot \mathrm{~T} 5-9.95 \cdot \mathrm{~T} 1-72.6 \cdot \mathrm{~T} 6-9.95 \cdot \mathrm{~T} 9=370.44$	
$143.167 \cdot \mathrm{~T} 6-22.1 \cdot \mathrm{~T} 2-72.6 \cdot \mathrm{~T} 5-37.133 \cdot \mathrm{~T} 7-11.333 \cdot \mathrm{~T} 10=0$	
$132.093 \cdot \mathrm{~T} 7-24.87 \cdot \mathrm{~T} 3-37.133 \cdot \mathrm{~T} 6-57.33 \cdot \mathrm{~T} 8-12.76 \cdot \mathrm{~T} 11=0$	
$101.39 \cdot \mathrm{~T} 8-14.21 \cdot \mathrm{~T} 4-57.33 \cdot \mathrm{~T} 7-14.21 \cdot \mathrm{~T} 12=4692$	
103.084 T 9	- 72.6.T10

```
96.9.T10 - 11.333.T6 - 72.6.T9 - 1.65.T11 - 11.333.T14=0
84.5\cdotT11-12.76\cdotT7 - 1.65.T10 - 57.33\cdotT12 - 12.76.T15=0
101.39.T12 - 14.21\cdotT8 - 57.33.T11 - 14.21·T16=4692
103.084\cdotT13-9.95.T9 - 72.6·T14 - 9.95.T17=370.44
96.9.T14-11.333.T10 - 72.6.T13 - 1.65.T15 - 11.333.T18=0
84.5.T15 - 12.76\cdotT11 - 1.65.T14 - 57.33.T16 - 12.76\cdotT19=0
101.39.T16 14.21.T12 57.33.T15 14.21.T20-4692
51.542.T17 9.95.T13 36.3.T18 185.22
48.458.T18 11.333.T14 36.3.T17 0.825.T19 0
42.25\cdotT19 12.76.T15 0.825.T18 28.665.T20 0
50.695.T20 14.21.T16 28.665.T19 2346
Find(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20) =
\begin{tabular}{|c|c|}
\hline & 0 \\
\hline 0 & 149.086 \\
\hline 1 & 168.279 \\
\hline 2 & 196.333 \\
\hline 3 & 221.284 \\
\hline 4 & 139.743 \\
\hline 5 & 158.633 \\
\hline 6 & \(2 \overline{04.22}\) \\
\hline 7 & 228.297 \\
\hline 8 & 103.989 \\
\hline 9 & \(11 \overline{1.481}\) \\
\hline 10 & \(24 \overline{4.077}\) \\
\hline 11 & 253.53 \\
\hline 12 & 86.96 \\
\hline 13 & 92.856 \\
\hline 14 & 258.605 \\
\hline 15 & 265.758 \\
\hline 16 & 82.177 \\
\hline 17 & 87.743 \\
\hline 18 & 262.428 \\
\hline 19 & 269.157 \\
\hline
\end{tabular}
```

50. Write the node equations for describing heat transfer through the buried waste shown schematically in Figure 2-67. Notice that there is energy generation that occurs due to a pyrolytic reaction of the waste (slow chemical reaction) and that there are boundaries that require reference to Table 2-6.

Solution

For doing a finite difference analysis the following grid may be used. Then the heat from the waste mass per unit depth $(1 \mathrm{~m})$ is $\dot{E}_{g}=30 \mathrm{~kW} / \mathrm{m}^{2}(0.2 \mathrm{~m})^{2}=1.2 \mathrm{~kW}$. Estimate that the power or heat to node 1 is 0.6 kW and 0.3 kW to node 2 . Using a thermal conductivity of $0.52 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ for earth or soil from Appendix Table B-2, and utilizing symmetry in the x-direction, one-half of the neighborhood for node 1 will be 0.05 m wide and $\kappa\left(\frac{\Delta x}{2}\right)\left(\frac{T_{3}-T_{1}}{\Delta y}\right)+\kappa\left(\frac{\Delta y}{2}\right)\left(\frac{T_{2}-T_{1}}{\Delta x}\right)+600 W=0 \quad$ or, for node 1 $(0.52)\left(\frac{T_{3}-T_{1}}{2}\right)+(0.26)\left(T_{2}-T_{1}\right)+600 \mathrm{~W}=0$ Similarly, for the remaining nodes, $(0.26)\left(T_{1}-T_{2}\right)+(0.52)\left(T_{5}-T_{2}\right)+300 W=0$ which is for node 2,

$(0.26)\left(T_{1}-T_{3}\right)+(0.26)\left(T_{6}-T_{3}\right)+(0.52)\left(T_{4}-T_{3}\right)=0$ which is the node equation for node $34 T_{4}-T_{3}-T_{2}-T_{5}-T_{7}=0$

$$
\begin{aligned}
& 3 T_{6}-\frac{1}{2} T_{3}-T_{7}=6^{0} \mathrm{C} \\
& 4 T_{7}-T_{6}-T_{4}-T_{8}=12^{\circ} \mathrm{C} \\
& 4 T_{8}-T_{7}-T_{5}-T_{9}=12^{\circ} \mathrm{C} \\
& 2 T_{9}-T_{8}=12^{\circ} \mathrm{C}
\end{aligned}
$$

51. Write the node equations for determining the temperature distribution through the cast iron lathe slide shown in Figure 2-68. Notice that the sliding surface is assumed to be adiabatic and that there are irregular boundary profiles.

Solution

A proposed node layout is shown

The node neighborhoods are $\Delta x=\Delta y=2.5 \mathrm{~cm}$, assume the hole has air at $30^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $10.4 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$, and the thermal conductivity for cast iron may be taken as $39 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ from Appendix Table B-2. Applying an energy balance to node neighborhood 1 , the following equation results

$$
\kappa\left(T_{2}-T_{1}\right)+\kappa\left(T_{6}-T_{1}\right)+\Delta x\left(3154.6 \frac{W}{m^{2}}\right)=0
$$

Substituting for thermal conductivity and node neighborhood size,

$$
2 T_{1}-T_{2}-T_{6}=2.0^{0} F
$$

For nodes 2 through 6

$$
\begin{gathered}
3 T_{2}-T_{3}-T_{7}=-15.7^{0} F \\
1.044 T_{5}-T_{4}=3.5^{0} F \\
2 T_{6}-T_{1}-T_{7}-T_{10}=17.8
\end{gathered}
$$

Nodes 7, 8, 11, and 12 require some adjusting. Referring to the sketch for node 7

The energy balance can be approximated by

$$
\begin{gathered}
\kappa \frac{\Delta y}{\Delta x}\left(T_{6}-T_{7}\right)+\kappa \frac{\Delta y}{\Delta x}\left(T_{2}-T_{7}\right)+\kappa \frac{\Delta y}{2 \Delta x}\left(T_{8}-T_{7}\right)+\kappa \frac{\Delta x}{2 \Delta y}\left(T_{11}-T_{7}\right)+h_{\infty} \frac{\pi}{2}\left(\frac{\Delta x}{2}\right)\left(90^{0} F-T_{7}\right)=0 \\
\kappa \frac{\Delta y}{\Delta x}\left(T_{6}-T_{7}\right)+\kappa \frac{\Delta y}{\Delta x}\left(T_{2}-T_{7}\right)+\kappa \frac{\Delta y}{2 \Delta x}\left(T_{8}-T_{7}\right)+\kappa \frac{\Delta x}{2 \Delta y}\left(T_{11}-T_{7}\right) \\
+h_{\infty} \frac{\pi}{2}\left(\frac{\Delta x}{2}\right)\left(30^{\circ} \mathrm{C}-T_{7}\right)=0
\end{gathered}
$$

which becomes $\quad 3.017 T_{7}-T_{6}-T_{2}-0.5 T_{8}-0.5 T_{11}=0.57$
Similarly, for node $83.017 T_{8}-T_{2}-T_{9}-0.5 T_{7}-0.5 T_{12}=0.57$
And for nodes 11 and $123.017 T_{11}-T_{10}-T_{15}-0.5 T_{12}-0.5 T_{7}=0.57$

$$
3.017 T_{12}-T_{16}-T_{13}-0.5 T_{11}-0.5 T_{8}=0.57
$$

The remaining node equations are straightforward energy balances and are,
For node 9

$$
33.022 T_{9}-T_{4}-T_{8}-T_{13}=-536.2^{\circ} \mathrm{C}
$$

For node 10

$$
3 T_{10}-T_{6}-T_{11}-T_{14}=0
$$

For node 13
$33.022 T_{13}-T_{9}-T_{12}-T_{17}=-536.2^{\circ} \mathrm{C}$
For node 14

$$
3 T_{14}-T_{10}-T_{15}-T_{20}=0
$$

For node 15

$$
4 T_{15}-T_{11}-T_{14}-T_{16}-T_{21}=0
$$

For node 16

$$
4 T_{16}-T_{12}-T_{15}-T_{17}-T_{22}=0
$$

For node 17

$$
3.511 T_{17}-T_{13}-T_{16}-T_{23}-0.5 T_{18}=0.34^{\circ} \mathrm{C}
$$

For node 18

$$
2.022 T_{18}-T_{17}-T_{19}-T_{24}=18.5^{\circ} \mathrm{C}
$$

For node 19

For node 20
For node 21

For node 22
For node 23

For node 24

For node 25

$$
1.533 T_{19}-0.5 T_{18}-T_{25}=0.49^{\circ} \mathrm{C}
$$

$$
2 T_{20}-T_{14}-T_{21}=0
$$

$$
3 T_{21}-T_{15}-T_{20}-T_{22}=0
$$

$$
3 T_{22}-T_{16}-T_{21}-T_{23}=0
$$

$$
3 T_{23}-T_{17}-T_{22}-T_{24}=0
$$

$$
3 T_{24}-T_{18}-T_{23}-T_{25}=0
$$

$$
2.022 T_{25}-T_{19}-T_{24}=0.72^{\circ} \mathrm{C}
$$

52. A concrete chimney flue is surrounded by a Styrofoam insulator as shown in Figure 2-69. Construct an appropriate grid model and then write the node equations needed to determine the temperature distribution.
FIG 2-69 Chimney flue.

Solution

Assume symmetry for the chimney so that only one quarter of the section needs to be considered, as shown in the sketch

Writing the energy balance for node 1
$\kappa_{c o n} \frac{\Delta x}{2}\left(\frac{130-T_{1}}{\Delta y}\right)+\kappa_{c o n} \Delta y\left(\frac{T_{2}-T_{1}}{\Delta x}\right)+\kappa_{\text {con }} \frac{\Delta x}{2}\left(\frac{T_{5}-T_{1}}{\Delta y}\right)=0$
Which can be reduced to

$$
2 T_{1}-0.5 T_{5}-T_{2}=65^{\circ} C
$$

Fore node 2

$$
4 T_{2}-T_{1}-T_{6}-T_{3}=130^{\circ} \mathrm{C}
$$

For node 3

$$
4 T_{3}-T_{2}-T_{4}-T_{7}=130^{\circ} \mathrm{C}
$$

For node 4

$$
\text { 2. } 25 T_{4}-T_{3}-T_{8}=32.5^{0} C
$$

For nodes 5 through 9 the Styrofoam impacts the energy balance so

$$
\kappa_{\text {con }} \frac{\Delta x}{2}\left(\frac{T_{1}-T_{5}}{\Delta y}\right)+\kappa_{\text {con }} \Delta y\left(\frac{T_{6}-T_{5}}{\Delta x}\right)+\kappa_{s t y} \frac{\Delta x}{2}\left(\frac{30-T}{\Delta y / 2}\right)=0
$$

Also, since the boundary temperature between the Styrofoam and the concrete is not yet known we
write

$$
\dot{Q}_{30 C-\text { node } 5}=\kappa_{\text {con }} \frac{\Delta x}{2}\left(\frac{T_{s}-T_{5}}{\Delta y / 2}\right)=\kappa_{s t y} \frac{\Delta x}{2}\left(\frac{30-T_{s}}{\Delta y / 2}\right)
$$

and substituting back into the node equation gives

For node 6

$$
\left(1.5+\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\right) T_{5}-0.5 T_{1}-T_{6}=\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\left(30^{0}\right)
$$

$$
\left(3+\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\right) T_{6}-T_{5}-T_{2}-T_{7}=\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\left(30^{0}\right)
$$

For node 7

$$
\left(3+\frac{\kappa_{s t y}}{\kappa_{\text {con }}+\kappa_{s t y}}\right) T_{7}-T_{8}-T_{6}-T_{3}=\frac{\kappa_{s t y}}{\kappa_{\text {con }}+\kappa_{s t y}}\left(30^{0}\right)
$$

For node 8

$$
\left(3+\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\right) T_{8}-T_{7}-T_{4}-T_{9}=\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\left(30^{0}\right)
$$

For node 9

$$
\left(1+\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\right) T_{9}-T_{8}=\frac{\kappa_{s t y}}{\kappa_{c o n}+\kappa_{s t y}}\left(30^{0}\right)
$$

53. Consider the chimney flue of Figure 2-69. If the Styrofoam is removed and the outer boundary condition is the same, write the necessary node equations and solve for the node temperatures. What is the heat transfer through the chimney flue?

Solution

Using the same node arrangement as for Problem 2-52 and referring to the sketch, the node equation for node 1 is $\quad 2 T_{1}-0.5 T_{5}-T_{2}=65^{0} \mathrm{C}$

For node $2 \quad 4 T_{2}-T_{1}-T_{3}-T_{6}=130^{\circ} \mathrm{C}$
For node $3 \quad 4 T_{3}-T_{2}-T_{4}-T_{7}=130^{\circ} \mathrm{C}$
For node 4

$$
2.25 T_{4}-T_{3}-T_{8}=32.5^{0} C
$$

For node 5

$$
2.5 T_{5}-0.5 T_{1}-T_{6}=15^{0} C
$$

For node 6

$$
5 T_{6}-T_{2}-T_{5}-T_{7}=60^{\circ} C
$$

For node 7

$$
5 T_{7}-T_{3}-T_{6}-T_{8}=60^{\circ} C
$$

For node 8

$$
5 T_{8}-T_{4}-T_{7}-T_{9}=60^{0} \mathrm{C}
$$

For node 9

$$
3 T_{9}-T_{8}=60^{0} C
$$

The heat transfer can be approximated by the equation $8\left(\dot{Q}_{1-5}+\dot{Q}_{2-6}+\dot{Q}_{3-7}+\dot{Q}_{4-8}\right)$ which can be written

$$
\dot{Q}_{\text {total }}=8 \kappa\left[0.5 T_{1}+T_{2}+T_{3}+T_{4}-0.5 T_{5}-T_{6}-T_{7}-T_{8}\right]
$$

The temerature field is determined by solving for the nine node equations. Using Mathcad:

$$
\mathbf{M}:=\left[\begin{array}{ccccccccc}
2 & -1 & 0 & 0 & -0.5 & 0 & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & 4 & -1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 2.25 & 0 & 0 & 0 & -1 & 0 \\
-0.5 & 0 & 0 & 0 & 2.5 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & 5 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 5 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & -1 & 5 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 3
\end{array}\right]
$$

$\mathrm{v}:=\left[\begin{array}{c}65 \\ 130 \\ 130 \\ 32.5 \\ 15 \\ 60 \\ 60 \\ 60 \\ 60\end{array}\right]$
soln :=1solve(M,v)

$$
\text { soln }=\left[\begin{array}{c}
86.375 \\
86.7 \\
83.363 \\
70.233 \\
42.101 \\
47.064 \\
46.517 \\
42.161 \\
34.054
\end{array}\right]
$$

```
    k := 1.6
    T1 :=86.375
    T2 := 86.7
    T3 := 83.363
    T4 := 70.233
    T5 :=42.101
    T6 :=47.064
    T7 :=46.517
    T8 :=42.161
    Q :=8 k (0.5.T1 + T2 + T3 + T4 - 0.5.T5 - T6 - T7 - T8)
    Q=1.622\cdot10 3 W
```

54. Write the node equations for the nodes 1 and 2 of the model of the oak beam sketched in Figure 2-32.

Solution

The model of the round beam is such that axial symmetry is assumed so that a hemispherical section will suffice for nodes. In Figure 2-32 the node numbering scheme follows the pattern of number 1 is in the center, 2,3 , and 4 are radially outward to the outside surface. Then on a 22.5° rotation numbers 5,6 , and 7 occur. On the next 22.5° rotation numbers 8,9 , and 10 occur. Continuing in this pattern there are three nodes at every 22.5° rotation for the first 28 nodes. On the next hemisphere axially parallel to the first hemisphere node number 29 will be on the center position with numbers 30.31 . And 32 outward. Again at a 22.5° rotation numbers 33,34 , and 35 occur. Continuing, the pattern is such that nodes on the hemisphere parallel to the succeeding hemisphere will have a number of the previous node plus 28 . Thus, node 2 will be adjacent to nodes 29 , axially, and also to nodes 3,5 , and 1 . This model is sketched. Node 1 has nine (9) adjacent radial nodes; $2,5,8,11,14,17,20,23$, and 26 . Node 1 also has an adjacent node on the axis, number 29. This model is sketched.

For node 2 there four adjacent nodes with the thermal resistances of
$R_{T r, 1-2}=\frac{64}{\kappa \pi \Delta z}, R_{T r, 3-2}=\frac{32}{\kappa \pi \Delta z}, R_{T z, 30-2}=\frac{\Delta z}{\kappa \pi\left(\frac{1}{16}\right)\left(r^{2}-\frac{\Delta r^{2}}{4}\right)}=\frac{64}{\kappa \pi \Delta z^{\prime}}$ and
$R_{T \theta, 5-2}=\frac{\left(\frac{3}{4} \Delta r\right)(\pi / 8)}{(\Delta z / 2) \Delta r}=\frac{3 \pi}{16 \Delta z} \quad$ so that the node equation for node 2 can be formed.
Noting that $\dot{Q}=\Delta T / R_{T}$ the node equation becomes

$$
\frac{\kappa \pi}{64}\left(T_{1}-T_{2}\right)+\frac{\kappa \pi \Delta z}{32}\left(T_{3}-T_{2}\right)+\frac{3 \kappa \pi \Delta r}{64}\left(T_{30}-T_{2}\right)+\frac{16 \Delta z}{3 \pi}\left(T_{5}-T_{2}\right)=0
$$

The thermal resistances for conduction between node 1 and $3,5,8,11,14,17,20,23$, and 26 are

$$
R_{T r, 2-1}=R_{T r, 26-1}=\frac{64}{\kappa \pi \Delta z} \text { and }
$$

$$
R_{T r, 5-1}=R_{T r, 8-1}=R_{T r, 11-1}=R_{T r, 14-1}=R_{T r, 17-1}=R_{T r, 20-1}=R_{T r, 23=1}=\frac{32}{\kappa \pi \Delta z} \text { and for node } 29
$$

to $1 R_{T z, 29-1}=\frac{8 \Delta z}{\kappa \pi \Delta r^{2}}$ and the node equation or energy balance for node 1 is

$$
\frac{\kappa \pi \Delta z}{64}\left(T_{2}+T_{26}-2 T_{1}\right)+\frac{\kappa \pi \Delta z}{32}\left(T_{5}+T_{8}+T_{11}+T_{14}+T_{17}+T_{20}+T_{23}-7 T_{1}\right)+\frac{\kappa \pi \Delta r^{2}}{8 \Delta z}\left(T_{29}-T_{1}\right)=0
$$

55. Figure 2-70 shows a section of a large surface plate used for precision measurements. A person touches the surface and thereby induces heat transfer through the plate.
Neglecting radiation involved, write the node equations for nodes 1,5 , and 12 of the node model of the plate shown in the figure. Assume steady state conditions and that the plate is $65^{\circ} \mathrm{F}$ beyond the nodes indicated in the figure.

Solution

The sketch of the granite surface plate is shown.

For node 1, the energy balance becomes
$\kappa \frac{\Delta y}{2}\left(\frac{18^{\circ} \mathrm{C}-T_{1}}{\Delta x}\right)+\kappa \Delta x\left(\frac{T_{6}-T_{1}}{\Delta y}\right)+\kappa \frac{\Delta y}{2}\left(\frac{T_{2}-T_{1}}{\Delta x}\right)+h_{\infty} \Delta x\left(T_{\infty}-T_{1}\right)=0$
which reduces to
$3.035 T_{1}-0.05 T_{2}-T_{6}=28.15^{\circ} \mathrm{C}$
In a similar fashion, the node equations are
$3.035 T_{5}-0.05 T_{4}-T_{10}=28.15^{\circ} \mathrm{C}$
for node 5, and f or node 12
$4 T_{12}-T_{7}-T_{13}-T_{17}-T_{11}=0$
56. Write the complete set of node equations for the surface plate shown in Figure 2-70 and estimate the temperatures and the heat transfer through the plate.

Solution

Referring to the sketch for the nodes of the surface plate, shown in the solution to Problem 2-55, the twenty node equations become

$$
\begin{gathered}
3.035 T_{1}-0.5 T_{2}-T_{6}=28.15^{\circ} \mathrm{C} \\
3.035 T_{2}-0.5 T_{1}-0.5 T_{3}-T_{7}=37.04^{\circ} \mathrm{C} \\
3.035 T_{3}-0.5 T_{2}-0.5 T_{4}-T_{8}=37.04^{\circ} \mathrm{C} \\
3.035 T_{4}-0.5 T_{3}-0.5 T_{5}-T_{9}=19^{\circ} \mathrm{C} \\
3.035 T_{5}-0.5 T_{4}-T_{10}=28.15^{\circ} \mathrm{C} \\
4 T_{6}-T_{1}-T_{7}-T_{11}=18.33^{\circ} \mathrm{C} \\
4 T_{7}-T_{6}-T_{2}-T_{8}-T_{12}=0 \\
4 T_{8}-T_{7}-T_{3}-T_{9}-T_{13}=0 \\
4 T_{9}-T_{8}-T_{4}-T_{10}-T_{14}=0 \\
4 T_{10}-T_{9}-T_{5}-T_{15}=18.33^{\circ} \mathrm{C} \\
4 T_{11}-T_{12}-T_{16}-T_{6}=18.33^{\circ} \mathrm{C} \\
4 T_{12}-T_{11}-T_{7}-T_{13}-T_{17}=0 \\
4 T_{13}-T_{12}-T_{8}-T_{14}-T_{18}=0 \\
4 T_{14}-T_{13}-T_{9}-T_{15}-T_{19}=0 \\
4 T_{15}-T_{14}-T_{10}-T_{20}=18.33^{\circ} \mathrm{C} \\
2 T_{16}-0.5 T_{11}-T_{17}=9.17^{\circ} \mathrm{C} \\
2 T_{17}-T_{12}-0.5 T_{16}-0.5 T_{18}=0 \\
2 T_{18}-T_{13}-0.5 T_{17}-0.5 T_{19}=0 \\
2 T_{19}-T_{14}-0.5 T_{18}-0.5 T_{20}=0 \\
2 T_{20}-0.5 T_{19}-T_{15}=9.17^{\circ} \mathrm{C} \\
\end{gathered}
$$

This set of 20×20 matrix ca be solved with a computer

$$
T=\left[\begin{array}{c}
19.2 \\
21.1 \\
28.7 \\
21.1 \\
19.2 \\
19.5 \\
21 \\
22.9 \\
20.9 \\
19.4 \\
19.5 \\
20.5 \\
21.2 \\
20.4 \\
19.4 \\
19.6 \\
20.3 \\
20.7 \\
20.2 \\
19.3
\end{array}\right]
$$

57. A plutonium nuclear fuel rod shown in Figure 2-71 has energy generation in the amount of $112 \mathrm{MW} / \mathrm{m}^{3}$. For the grid model shown, write the node equations and solve for the temperatures. Assume $\mathrm{k}=10 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$.

FIG 2-71 Plutonium fuel rod.

$h_{\infty}=690 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$
$T_{\infty}=315^{\circ} \mathrm{C}$

Solution

From Figure 2-71, it can be assumed that the heat flow is radially outward and axially and angularly and axially symmetrical. The node model is sketched

Then for node 1 the adjacent nodes are 4 and 2 plus a convective heat transfer.
Referring to the sketch for node 1

The node equation is

$$
\begin{gathered}
\kappa \frac{\Delta r}{2} \pi(2)\left(\frac{\Delta z}{2}\right)\left(\frac{T_{2}-T_{1}}{\Delta r}\right)+\kappa \pi\left(\frac{\Delta r^{2}}{4}\right)\left(\frac{T_{4}-T_{1}}{\Delta z}\right)+h_{\infty} \pi\left(\frac{\Delta r^{2}}{4}\right)\left(T_{\infty}-T_{1}\right) \\
+\left(112 \times 10^{6} \frac{\mathrm{MW}}{\mathrm{~m}^{3}}\right)\left(\frac{\Delta z}{2}\right)\left(\frac{\pi \Delta r^{2}}{4}\right)=0
\end{gathered}
$$

Using the following values,
$h_{\infty}=690 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}, T_{\infty}=315^{\circ} \mathrm{C}, \kappa=10 \frac{\mathrm{~W}}{\mathrm{mK}}, \Delta r=0.0375 \mathrm{~m}$, and $\Delta z=0.3 \mathrm{~m}$
the following node equation results

$$
0.56586 T_{1}-0.5 T_{2}-0.0009766 T_{4}=528.3
$$

A similar analysis for node 2 , noting that it has three adjacent nodes, 1,3 , and 5 , plus a convective heat transfer and energy generation, yielding

$$
1.79417 T_{2}-0.5 T_{1}-9.75 T_{3}-0.0347 T_{5}=4386.7
$$

For node 3, the energy balance reduces to

$$
17.727 T_{3}-91.5 T_{2}-0.00684 T_{6}=10267
$$

For node 4,

$$
1.001954 T_{4}-0.000977 T_{1}-0.000977 T_{7}-T_{5}=1013.9
$$

Node 5 is a bit more complicated. Referring to the sketch the node equation becomes

$$
4.015625 T_{5}-T_{4}-3 T_{6}-0.0078125 T_{2}-0.0078125 T_{8}=4055.6
$$

Node 6 has three adjacent nodes plus convection and energy generation so its node equation is

$$
20.3 T_{6}-3 T_{5}-0.00684 T_{3}-0.00684 T_{9}=9754.2
$$

Node 7 energy balance similar to node 4, becomes

$$
1.001954 T_{7}-0.000977 T_{4}-0.000977 T_{10}-T_{8}=1013.9
$$

For the node 8 node equation, similar to node 5

$$
4.015625 T_{8}-T_{7}-3 T_{9}-0.0078125 T_{5}-0.0078125 T_{11}=4055.6
$$

For node 9, similar to node 6

$$
20.3 T_{9}-3 T_{8}-0.00684 T_{6}-0.00684 T_{12}=9754.2
$$

The energy balance for node 10 is similar to node 7 except it is only one-half as long as node 7 and there is no lower surface heat transfer.

$$
0.500977 T_{10}-0.000977 T_{7}-0.5 T_{11}=506.94
$$

Node 11 equation is

$$
1.328 T_{11}-0.5 T_{10}-0.75 T_{12}-0.0078125 T_{8}=4054.3
$$

And Node 12 is

$$
9.409 T_{12}-0.75 T_{11}-0.00684 T_{9}=6278.9
$$

Using Mathcad for the prediction of the 12 node temperatures, the results are

Section 2-7

58. Determine the heat transfer and fin efficiency for a copper fin shown in Figure 2-72. The fin can be assumed to be very long and its base temperature taken as $93^{\circ} \mathrm{C}$.

FIG 2-72 Problem 2-58.

Solution

For very long fins the fin efficiency is

$$
\begin{aligned}
& \begin{aligned}
& \eta_{\text {fin }}=\frac{1}{L} \sqrt{\frac{\kappa A}{h P}} \quad \text { where } L=10 \mathrm{~cm}=0.1 \mathrm{~m} \\
& \kappa=400 \mathrm{~W} / \mathrm{m} \cdot \mathrm{k} \quad \text { From Appendix Table B-2 } \\
& A=0.6 \mathrm{~m} \times(0.003 \mathrm{~mm})=0.0018 \mathrm{~m}^{2} \\
& h=120 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K} \\
& P=\text { perimeter }=1.2 \mathrm{~m} \\
& \text { Then } \quad 0.30=30 \%
\end{aligned}
\end{aligned}
$$

The heat transfer of the fin is

$$
\dot{Q}=\eta_{f i n} \dot{Q}_{o}=(0.3)\left(h A_{s}\right)\left(93-25^{\circ} \mathrm{C}\right)=0.293 \mathrm{~W} / \text { fin }
$$

59. A square bronze fin, 30 cm wide, 1 cm thick, and 5 cm long is surrounded by air at $27^{\circ} \mathrm{C}$ and $h=300 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. The base temperature of the fin is $170^{\circ} \mathrm{C}$. Determine the fin tip temperature, the fin heat transfer, and the fin efficiency.

Solution

For a finite length fin the temperature distribution is given by the equation

$$
\Theta(x)=T(x)-T_{0}=\Theta_{0}\left\{\frac{\cosh [m(L-x)]+\frac{h}{m \kappa} \sinh [m(L-x)]}{\cosh m L+\frac{h}{m \kappa} \sinh m L}\right\}
$$

For this fin $\quad h=300 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$

$$
\kappa=114 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}
$$

fin thickness, $Y=0.01 \mathrm{~m}, \quad$ fin width $W=0.3 \mathrm{~m}$
fin length $L=0.05 \mathrm{~m}$
perimeter, $P=2 W+2 Y=0.62 \mathrm{~m}, \quad$ Area, $A=W Y=0.003 \mathrm{~m}^{2}$
60. A square aluminum fin having base temperature of $100^{\circ} \mathrm{C}, 5 \mathrm{~mm}$ width, and 5 cm length is surrounded by water at $40^{\circ} \mathrm{C}$. Using h of $400 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$, compare the heat transfer of the fin predicted by the three conditions: a) very long fin, b) adiabatic tip, and c) uniform convection heat transfer over the fin, including the tip. Assume a width of 1 m .

Solution

From the Appendix Table B.2, $K_{\text {olum }}=236 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ Also,
$\Theta_{0}=100-40=60 \mathrm{~K}, \quad T_{\infty}=40^{\circ} \mathrm{C}, \quad h=400 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}, \quad t=0.005 \mathrm{~m}, \quad L=0.05 \mathrm{~m}, \quad \mathrm{~W}=1 \mathrm{~m}$ $P=2 t+2 W+2 W=2.01 \mathrm{~m}, \quad A=L W=0.05 \mathrm{~m}^{2}, \quad$ and

$$
\begin{aligned}
& m=\sqrt{\frac{P h}{\kappa A}}=26.1 \mathrm{~m}^{-1} \\
& \dot{Q}_{\text {fin }}=\theta_{0} \sqrt{h P \kappa A}=1848 \mathrm{~W}
\end{aligned}
$$

For the very long fin, a)

For a fin with an adiabatic tip,

$$
\dot{Q}_{f i n}=\theta_{0} \sqrt{h P \kappa A} \tanh (m L)=1595 \mathrm{~W}
$$

For a finite length fin,

$$
\dot{Q}_{f i n}=\theta_{0} \sqrt{h P \kappa A}\left\{\frac{\sinh m L+\frac{h}{m L} \operatorname{coshmL}}{\cosh m L+\frac{h}{m L} \sinh m L}\right\}=1624 W
$$

61. Show that the fin heat transfer for a square fin having an adiabatic tip is
$Q_{f i n}=\theta_{0} \sqrt{h P \kappa A} \tanh m L$

Solution

For a square fin with an adiabatic tip the temperature distribution is

$$
\theta(x)=T(x)-T_{\infty}=\theta_{0} \frac{\cosh [m(L-x)]}{\cosh m L}
$$

The heat transfer is
$Q_{f i n} \dot{=}-\boldsymbol{\kappa} A\left(\frac{\partial T}{\partial x}\right)_{x=0}=-\kappa A\left(\frac{\partial \theta}{\partial x}\right)_{x=0}$
and

$$
\frac{\partial \theta}{\partial x}=-\frac{m \theta_{0} \sinh [m(L-x)]}{\cosh m L}
$$

At $x=0$ this is
$\left(\frac{\partial \theta}{\partial x}\right)_{x=0}=-\frac{m \theta_{0} \sinh m L}{\cosh m L}=-m \theta_{0} \tanh m L$
The fin hat transfer is then
$\dot{Q}_{f n}=-\kappa A\left(-m \theta_{0} \tanh m L\right)$
but $\quad m=\sqrt{\frac{P h}{\kappa A}}$
so that
$\dot{Q}_{f i n}=\theta_{0} \sqrt{P h \kappa A} \tanh m L$
62. Show that the heat transfer for a fin that is square and has fin tip convective heat transfer coefficient h_{L} can be written

$$
\dot{Q}_{f i n}=\theta_{0} \sqrt{h P \kappa A}\left\{\frac{\sinh m L+\frac{h_{L}}{\kappa m} \cosh m L}{\cosh m L+\frac{h_{L}}{\kappa m} \sinh m L}\right\}
$$

Solution

For square fin with convective heat transfer coefficient h_{L} at the tip, the temperature distribution is

$$
\theta(x)=T(x)-T_{\infty}=\theta_{0}\left\{\frac{\cosh [m(L-x)]+\frac{h_{L}}{m \kappa} \sinh [m(L-x)]}{\cosh m L+\frac{h_{L}}{m \kappa} \sinh m L}\right\}
$$

The fin heat transfer is

$$
\dot{Q}_{f i n}=-\kappa A\left(\frac{\partial T}{\partial x}\right)_{x=0}=-\kappa A\left(\frac{\partial \theta}{\partial x}\right)_{x=0}
$$

Also

$$
\frac{\partial \theta}{\partial x}=\frac{-m \sinh [m(L-x)]-\frac{m h_{L}}{m \kappa} \cosh [m(L-x)]}{\cosh m L+\frac{h_{L}}{m \kappa} \sinh m L}
$$

Since
$m=\sqrt{\frac{P h}{\kappa A}}$
$\dot{Q}_{f i n}=\theta_{0} \sqrt{h P \kappa A}\left\{\frac{\sinh m L+\frac{h_{L}}{m \kappa} \cosh m L}{\cosh m L+\frac{h_{L}}{m \kappa} \sinh m L}\right\}$
63. Derive an expression for the heat transfer from a tapered fin having base of Y thickness, L length, κ thermal conductivity, h_{0} convective coefficient, and T_{0} base temperature.
The surrounding fluid temperature is T_{∞}.

Solution

Referring to the sketch,

From a heat balance through the fin
$\kappa A \frac{d^{2} \theta}{d x^{2}}=h_{0} P \theta$
where $\theta=T-T_{\infty} \quad \theta_{0}=T_{0}-T_{\infty}$
$P=2 y+2 W \approx 2 W \quad$ for y « W.

Then
$\frac{1}{\theta} \frac{d^{2} \theta}{d x^{2}}=\frac{h_{0} 2 W L}{\kappa W Y(L-x)}=\frac{2 h_{0} L}{\kappa Y(L-x)}$

Using $X=L-x$ and $C=2 h_{g} L / K Y$
$-\frac{1}{\theta} \frac{d^{2} \theta}{d x^{2}}=\frac{C}{X}$
with two boundary conditions: B.C. $1, \vartheta=\vartheta_{0} @ X=L$

Now, assuming a series solution so that

$$
\theta=c_{0}+c_{1} X+c_{2} X^{2}+c_{3} X^{3}+c_{4} X^{4}+c_{5} X^{5}+\ldots+c_{n} X^{n}+\ldots
$$

From B.C. 2, $c_{0}=0$ and then

$$
\begin{gathered}
\theta=c_{1} X+c_{2} X^{2}+c_{3} X^{3}+c_{4} X^{4}+c_{5} X^{5}+\ldots+c_{n} X^{n}+\ldots \quad \text { for the second derivative } \\
\frac{d^{2} \theta}{d x^{2}}=2 c_{2}+6 c_{3} X+12 c_{4} X^{2}+20 c_{5} X^{3}+30 c_{6} X^{4}+42 c_{7} X^{5}+56 c_{8} X^{6}+72 c_{9} X^{7}+90 c_{10} X^{8}+\ldots \\
\text { Using the differential equation }-\frac{d^{2} \theta}{d x^{2}}=\frac{c}{X} \theta \text { we get } \\
2 c_{2}+6 c_{3} X+12 c_{4} X^{2}+20 c_{5} X^{3}+30 c_{6} X^{4}+42 c_{7} X^{5}+\ldots \ldots=-\frac{C}{X}\left(c_{1} X+c_{2} X^{2}+c_{3} X^{3}+c_{4} X^{4}+c_{5} X^{5}+\ldots\right) \\
\text { Comparing coefficients, } 2 c_{2}=-C c_{1} \quad \text { or } c_{2}=-\frac{c}{2} c_{1} \\
, 6 c_{3}=-C c_{2} \quad \text { or } c_{3}=\frac{c^{2}}{12} c_{1} \\
, 12 c_{4}=-C c_{3} \quad \text { or } c_{4}=-\frac{c^{3}}{144} c_{1} \\
20 c_{5}=-C c_{4} \quad \text { or } c_{5}=\frac{c^{4}}{2880} c_{1} \quad \text { and so on } \ldots
\end{gathered}
$$

For C less than or equal to 1.0 , using the first four terms is suitable as higher terms will be significantly smaller. Then,

$$
\begin{aligned}
& \theta=c_{1} X-\frac{C}{2} c_{1} X^{2}+\frac{C^{2}}{12} c_{1} X^{3}-\frac{C^{3}}{144} c_{1} X^{4}+. . \quad \text { and using B.C.1 } \\
& \theta=\theta_{0}=c_{1} L-\frac{C}{2} c_{1} L^{2}+\frac{C^{2}}{12} c_{1} L^{3}-\frac{C^{3}}{144} c_{1} L^{4} \quad \text { Solving this for } c_{1} \text { and substituting } \\
& \theta=\frac{\theta_{0}\left(X-\frac{C}{2} X^{2}+\frac{C^{2}}{12} X^{3}-\frac{C^{3}}{144} X^{4}+\ldots\right)}{\left(L-\frac{C}{2} L^{2}+\frac{C^{2}}{12} L^{3}-\frac{C^{3}}{144} L^{4}+\ldots\right)}
\end{aligned}
$$

64. Show that the fin effectiveness is related to the fin efficiency by the equation

$$
\varepsilon_{f i n}=1-\left(\frac{A_{f i n}}{A_{T}}-\eta_{f i n} \frac{A_{f i n}}{A_{T}}\right)
$$

Solution

For a fin and a base area between succeeding fins, the fin effectiveness is

$$
\begin{aligned}
& \varepsilon_{\text {frn }}=\frac{\dot{Q}_{\text {fn }}+\dot{Q}_{\text {base }}}{\dot{Q}_{0}} \\
& \dot{Q}_{0}=h A_{f n} \theta_{0}+h A_{\text {bese }} \theta_{0}=h A_{t} \theta_{0}
\end{aligned}
$$

Where $\quad A_{T}=A_{\text {fin }}+A_{\text {base }}$
Also,
$\dot{Q}_{j n}=\eta_{j n} h A_{j n} \theta_{0}$
And

$$
\dot{Q}_{\text {base }}=h A_{\text {base }} \theta_{0}
$$

Substituting into the effectiveness equation
$\varepsilon_{\text {fin }}=\frac{\eta_{\text {fin }} h A_{\text {fin }} \theta_{0}+h A_{\text {base }} \theta_{0}}{h A_{T} \theta_{0}}=\frac{\eta_{\text {fin }} h A_{\text {fin }} \theta_{0}+h\left(A_{T}-A_{\text {fin }}\right) \theta_{0}}{h A_{T} \theta_{0}}$
Cancelling the h ' s, ϑ_{0} 's, and rearranging,
$\varepsilon_{f i n}=1+\eta_{f i n} \frac{A_{f i n}}{A_{T}}-\frac{A_{f i n}}{A_{T}}=1-\left[\frac{A_{f i n}}{A_{T}}-\eta_{f i n} \frac{A_{f i n}}{A_{T}}\right]$
65. A circumferential steel fin is 8 cm long, 3 mm thick, and is on a 20 cm diameter rod. The surrounding air temperature is $20^{\circ} \mathrm{C}$ and $\mathrm{h}=35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, while the surface temperature of the rod is $300^{\circ} \mathrm{C}$. Determine a) Fin Efficiency, and b) Heat transfer from the fin.

Solution

Referring to Figure 2-41
$L=8 \mathrm{~cm}=0.08 \mathrm{~m}, \quad r_{1}=0.1 \mathrm{~m}, \quad y=3 \mathrm{~mm}=0.003 \mathrm{~m}, \quad r_{2}=L+r_{1}, \quad L_{c}=L+y / 2=0.0815$
$m, r_{2 c}=r_{1}+L_{c}=0.1815 m$, and $A_{m}=y\left(r_{2 c}-r_{1}\right)=0.0002445 m^{2} \quad$ Using a thermal conductivity of $43 \mathrm{~W} / \mathrm{mK}$ for steel from Appendix Table B-2

$$
L_{C}^{3 / 2}=\sqrt{\frac{h}{\kappa A_{m}}}=1.342 \quad \text { and } \quad \frac{r_{2 C}}{r_{1}}=1.815 \text {. Then, from Figure 2-41, }
$$

a) $\quad \eta_{\text {fin }} \approx 44 \%$
b)

$$
\dot{Q}_{f i n}=\eta_{f i n} h A_{f i n} \theta_{0}=(0.44)\left(35 \frac{W}{m^{2} K}\right)\left[(\pi)\left(r_{2}^{2}-r_{1}^{2}\right)+2 \pi r_{2} y\right](300-20 K)=318 \frac{W}{\text { fin }}
$$

66. A bronze rod 1 cm in diameter and 30 cm long protrudes from a bronze surface at $150^{\circ} \mathrm{C}$. The rod is surrounded by air at $10^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the heat transfer through the rod.

Solution

Assume the bronze has the same thermal conductivity as brass, $114 \mathrm{~W} / \mathrm{mK}$ from
Appendix Table B-2. Some of the other parameters are: $\mathrm{h}=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \mathrm{~T}_{\infty}=10^{\circ} \mathrm{C}, \mathrm{T}_{0}=$ $150^{\circ} \mathrm{C}$,
$\Theta_{0}=T_{0}-T_{\infty}=140^{\circ} \mathrm{C}, \quad P=\pi D=0.0314159 \mathrm{~m}, \quad A=\pi r^{2}=0.00007854 \mathrm{~m}^{2}$, and

$$
\begin{aligned}
& m=\sqrt{\frac{h P}{\kappa A}}=5.923 m^{-1} \quad \text { and using the case III fin equation, the finite length fin, } \\
& \dot{Q}_{f i n}=\theta_{0} \sqrt{h P \kappa A}\left\{\frac{\sinh m L+\frac{h}{m \kappa} \cosh m L}{\cosh m L+\frac{h}{m \kappa} \sinh m L}\right\}=7.024 W / \operatorname{rod}
\end{aligned}
$$

67. A circumferential cast iron fin attached to a compressor housing is 2.5 cm thick, 7.5 cm long, 7.5 cm diameter, and the convective heat transfer coefficient is $28 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. If the base temperature is $70^{\circ} \mathrm{C}$ and the surrounding air is $25^{\circ} \mathrm{C}$, determine the fin efficiency and the heat transfer through the fin.

Solution

Referring to Figure 2-41, the following parameters are:
$r_{1}=3.75 \mathrm{~cm}=0.0375 \mathrm{~m}, \mathrm{r}_{2}=0.112 \mathrm{~m}, \mathrm{~L}=0.035 \mathrm{~m}, \mathrm{y}=0.025 \mathrm{~m}$,
$L_{c}=L+y / 2=0.05 m, r_{2 c}=r_{1}+L_{c}=0.09 m, \quad A_{m}=y\left(r_{2 c}-r_{1}\right)=0.00125 \mathrm{~m}^{2}$,
$\mathrm{r}_{2} / \mathrm{r}_{1}=2.333$, and $\quad L_{C}^{3 / 2} \sqrt{\frac{h}{\kappa A_{m}}}=0.486$
From Figure 2-41
$\eta_{\text {fin }} \approx 82 \%$.
The heat transfer is

$$
\begin{aligned}
& \dot{Q}_{f i n}=\eta_{f i n} h A_{f i n}\left(T_{0}-T_{\infty}\right) \\
&=0.82\left(28 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}\right)(\pi)\left(r_{2}^{2}-r_{1}^{2}+2 r_{2} y\right)\left(70-25^{\circ} \mathrm{C}\right)
\end{aligned}
$$

$=181.2 \mathrm{~W}$
68. A handle on a cooking pot can be modeled as a rod fin with an adiabatic tip at the farthest section from the attachment points. For the handle shown in the sketch, determine the temperature distribution and the heat transfer through the handle if the pot surface is $88^{\circ} \mathrm{C}$, the surrounding air temperature is $30^{\circ} \mathrm{C}$, and the convective heat transfer coefficient is $277 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$.

Solution

FIG 2-73 Cooking pot handle.

Treating this handle as a fin with an adiabatic tip, the important parameters are:
Thermal conductivity of $39 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ from Appendix Table B-2, $L=\pi r / 2=\pi(0.075 / 2) \mathrm{m}=$ $0.12 \mathrm{~m}, \mathrm{P}=\pi(0.025) \mathrm{m}=0.078 \mathrm{~m}, \quad \mathrm{~A}=\pi(0.025)^{2}(1 / 4)=4.9 \times 10^{-4} \mathrm{~m}^{2}$, and
$m=\sqrt{\frac{h P}{\kappa A}}=\sqrt{\frac{277 \times 0.078}{39 \times 4.9 \times 10^{-4}}}=33.6 \mathrm{~m}^{-1}$
For an adiabatic tipped fin,

$$
\theta=\theta_{0} \frac{\cosh [m(L-x)]}{\cosh m L}=\left(58^{\circ} \mathrm{C}\right) \frac{\cosh [33.6(L-x)]}{\cosh 7.255}=(0.082) \cosh [33.6(L-x)]
$$

At the extreme outer point of the handle,

$$
\theta=0.079^{\circ} \mathrm{C} \text { or }
$$

$T=30.079^{\circ} \mathrm{C}$

The heat transfer through the fin is

$$
\dot{Q}_{f i n}=\theta_{0} \sqrt{h P \kappa A} \tan m L=39.8 \mathrm{~W}
$$

Since the handle has two fins, so to speak,
$\dot{Q}_{\text {handle }}=79.69 \mathrm{~W}$
69. An aluminum fin is attached at both ends in a compact heat exchanger as shown. For the situation shown, determine the temperature distribution and the heat transfer through the fin. Notice that the analysis requires using the governing equation $d^{2} \theta(x) / d x^{2}=m^{2} \theta(x)$ with appropriate boundary conditions to determine the temperature distribution.

Solution

FIG 2-74 Compact heat exchanger fin.

For the fin
$\frac{d^{2} \theta}{d x^{2}}=m^{2} \theta$
with boundary conditions, B.C. $1 \quad \theta=\theta_{1}=T_{1}-T_{\infty}=180^{\circ} \mathrm{C} @ x=0$
B.C. $2 \theta=\theta_{2}=T_{2}-T_{\infty}=160^{\circ} \mathrm{C} @ x=L$

From this equation and the boundary conditions Equation 2-114 is
$\theta(x)=\frac{1}{e^{2 m L}-1}\left[\left\{\theta_{1} e^{2 m L}-\theta_{2} e^{m L}\right\} e^{-m x}+\left\{\theta_{2} e^{m L}-\theta_{1}\right\} e^{m x}\right]$
where $L=0.2 \mathrm{~m}$,

$$
m=\sqrt{\frac{h P}{\kappa A}}=\sqrt{\frac{(100) \pi(0.01 m)}{(236) \pi(0.005)^{2}}}=13 m^{-1}
$$

And then $m L=2.6$ so that

$$
\theta(x)=T(x)-100=\frac{1}{e^{5.2}-1}\left[\left\{180 e^{5.2}-160 e^{2.6}\right\} e^{-13 x}+\left\{160 e^{2.6}-180\right\} e^{13 x}\right]
$$

The maximum or minimum temperature occurs at the location predicted by Equation 2115,
$x_{m}=\frac{1}{2 m} \ln \left(\frac{\theta_{1} e^{2 m L}-\theta_{2} e^{m L}}{\theta_{2} e^{m L}-\theta_{1}}\right)=0.1079 m$
Using $x=0.1079 m$ in the above equation for the temperature distribution,

$$
\begin{gathered}
T_{\text {minimum }}=186.08^{0} C \text { The fin heat transfer is the sum of the two adiabatic stems } \\
\dot{Q}_{f i n}=\dot{Q}_{\text {fin1 }}+\dot{Q}_{f i n 2}=180 \sqrt{h P \kappa A} \tanh m(0.1079 \mathrm{~m})+160 \sqrt{h P \kappa A} \tanh m(0.2-0.1079 \mathrm{~m})=70.63 \mathrm{~W}
\end{gathered}
$$

70. For the tapered fin shown, determine the temperature distribution, the fin efficiency, and the heat transfer through the fin.

Solution

Referring to the figure,
FIG 2-75 Tapered fin.

The following parameters are known: $L=L_{c}=0.06 \mathrm{~m}, \quad Y=0.02 \mathrm{~m}, A_{m}=L Y / 2=$ $0.0006 \mathrm{~m}^{2}$,
$K=236 \mathrm{~W} / \mathrm{mK}, \quad h=1000 \mathrm{~W} / \mathrm{m}^{2} \cdot K$, and

$$
\begin{aligned}
& L_{C}^{3 / 2}=\sqrt{\frac{h}{\kappa A_{m}}}=1.235 \\
& \dot{Q}_{f i n}=\eta_{f i n} \dot{Q}_{0}=\eta_{f i n} h A \theta_{0}=(0.62)(1000)(0.073)(50)=2263 \mathrm{~W}
\end{aligned}
$$

71. Determine the expected temperature drop at the contact between two 304 stainless steel parts if the overall temperature drop across the two parts is $100^{\circ} \mathrm{C}$.

FIG 2-76 Heat transfer at contact surfaces.

Solution

From Table 2-12, using a value for thermal contact

$$
\dot{q}_{A}=\frac{\Delta T_{T L}}{R_{T C} \cdot A}=\frac{T_{1}-T_{2}}{\sum R_{V}}=\frac{T_{1}-T_{2}}{2\left(\frac{\Delta x}{\kappa}\right)_{304 s s}+R_{T C} \cdot A}
$$

$$
\text { resistance of } 304 \text { stainless at } 20^{9} \mathrm{C} \text {, }
$$

assuming it will be unchanged at $100^{\circ} \mathrm{C}, 0.000528 \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}$, then

$$
\dot{q}_{A}=\frac{T_{1}-T_{2}}{2\left(\frac{0.03}{14}\right)+0.000528}=\frac{100}{0.0048137} \frac{W}{m^{2}}
$$

$$
\Delta T_{T C}=\frac{0.000528}{0.0048137}\left(100^{0} C\right)=10.97^{0} C \approx 11^{0} C
$$

72. A mild steel weldment is bolted to another mild steel surface. The contact pressure is estimated at 2 MPa and the expected heat transfer between the two parts is $136 \mathrm{~W} / \mathrm{m}^{2}$. Estimate the temperature drop at the contact due to thermal contact resistance.

Solution

The temperature drop across the contact surface is

$$
\Delta T_{T C}=\dot{q}_{A} \cdot\left(R_{T L} \cdot A\right)=\left(136 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right)\left(R_{T L} \cdot A\right)
$$

The thermal contact resistance, from Table 2-12, is

$$
R_{T C} \cdot A=0.000394 \frac{\mathrm{~m}^{2} \mathrm{C}}{\mathrm{~W}}
$$

so that
$\Delta T_{T C}=52.8^{\circ} \mathrm{C}$
73. For Example Problem 2-26, estimate the temperature drop at the contact surface if the heat transfer is reduced to $9.5 \mathrm{~W} / \mathrm{m}^{2}$.

Solution

The thermal contact resistance of the concrete block/styrofoam for example 2-26 is
$1.1 \mathrm{~m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}$. If the heat transfer is reduced to $9.5 \mathrm{~W} / \mathrm{m}^{2}$, the temperature drop will be,

$$
\Delta T_{T C}=\dot{q}_{A} \cdot\left(R_{T C} \cdot A\right)=1.74^{\circ} \mathrm{C}
$$

74. A guarded hot plate test results in the following data:

FIG 2-77 Thermal Conductivity Data for Problem 2-74.

Estimate the thermal conductivity of the test material.

Solution

The arithmetic averages are

Amps $=0.05133$, volts $=8.6$, thermocouple $1=2.6677 \mathrm{mv}$, thermocouple $2=2.7753$ mv.

The average power is =amps•volts $=0.44147 \mathrm{~W}$. the average millivolt difference between 1 and 2 is 0.10756 mv . For a $22^{\circ} \mathrm{C} / \mathrm{mv}$ setting, the average temperature difference will be $2.366^{\circ} \mathrm{C}$. From Fourier's law

$$
\dot{Q}=\kappa A \frac{\Delta T}{\Delta x}=0.44147 W
$$

For a sample thickness of $2 \mathrm{~cm}(0.02 \mathrm{~m})$ and a test area of $0.01 \mathrm{~m}^{2}$

$$
\kappa=\frac{\dot{Q} \Delta x}{A \Delta T}=0.373 \frac{W}{m \cdot K}
$$

75. A steam line has an outer surface diameter of 3 cm and temperature of $160^{\circ} \mathrm{C}$. If the line is surrounded by air at $25^{\circ} \mathrm{C}$ and the convective heat transfer coefficient is $3.0 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$, determine the heat transfer per meter of line. Then determine the thickness of asbestos insulation needed to provide insulating qualities to the steam line.

Solution

The heat transfer is by convection so

$$
\dot{q}_{l}=h \pi D\left(T_{s}-T_{\infty}\right)=\left(3 \frac{W}{m^{2} \cdot K}\right) \pi(0.03 m)(160-25 K)=38.17 W / m
$$

The critical radius of insulation needed to make the convection equal to the conduction through the line is

$$
r_{o c}=\frac{\kappa}{h_{0}}=\frac{0.156 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}}{3 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}}=5.2 \mathrm{~cm}
$$

76. Electric power lines require convective cooling from the surrounding air to prevent excessive temperatures in the wire. If a 2.5 cm diameter line is wrapped with nylon to increase heat transfer with the surroundings, how much nylon can be wrapped around the wire before it begins to act as an insulator? The convective heat transfer coefficient is $8.7 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$.

Solution

The critical thickness determines how much insulation wrapped around a cylinder decrease heat transfer. Using properties of Teflon from Appendix Table B-2E,

$$
\begin{aligned}
& r_{o c}=\frac{\kappa}{h_{0}}=\frac{0.2023 \mathrm{Btu} / \mathrm{hr} \cdot f t \cdot{ }^{0} \mathrm{~F}}{5 \mathrm{Btu} / h r \cdot f t^{2} \cdot{ }^{0} \mathrm{~F}}=0.04 \mathrm{ft}=0.48 \mathrm{in} \\
& \\
& r_{o c}=\frac{\kappa}{h}=\frac{0.35 \mathrm{~W} /(\mathrm{m} \cdot \kappa)}{8.7 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}}=0.04 \mathrm{~m}=40 \mathrm{~cm}
\end{aligned}
$$

77. Estimate the temperature distribution through a bare 16 gauge copper wire conducting 1.5 amperes of electric current if the surrounding air is at $10^{\circ} \mathrm{C}$ and the convective heat transfer coefficient is $65 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$.

Solution

Equation 2-123 will predict the temperature distribution through the wire.

$$
T(r)=T_{\infty}+\dot{e}_{g e n}\left[\frac{r_{0}}{2 h_{0}}+\frac{1}{4 \kappa}\left(r_{0}^{2}-r^{2}\right)\right]
$$

Here $T_{\infty}=10^{\circ} \mathrm{C} \quad h_{0}=65 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \quad \kappa=400 \mathrm{~W} / \mathrm{mK}$ from Appendix Table B2. Then, from Appendix Table B-7, $\quad r_{0}=25.41$ mils $=0.0006454 \mathrm{~m}$

$$
\begin{aligned}
A_{0}=2,583 \text { cir. mils }=16.664 \times 10^{-7} \mathrm{~m}^{2} \\
R_{e}=4.016 \mathrm{ohms} / 1000 \mathrm{ft}=13.1756 \times 10^{-3} \mathrm{ohms} / \mathrm{m}
\end{aligned}
$$

The energy generation is

$$
\dot{e}_{g e n}=\frac{I^{2} R_{e}}{A_{0}}=\frac{(1.5 \mathrm{amps})^{2}\left(13.1756 \times 10^{-3} \Omega / \mathrm{m}\right)}{16.664 \times 10^{-7} \mathrm{~m}^{2}}=1.779 \times 10^{4} \mathrm{~W} / \mathrm{m}^{3}
$$

The temperature
distribution is

$$
T(r)=10^{0} C+17,790 \frac{W}{m^{3}}\left[\frac{0.0006454 m}{2\left(65 W / m^{2} \cdot K\right)}+\frac{1}{4(400 W / m \cdot K)}\left(0.0006454^{2} m^{2}-r^{2}\right)\right]
$$

and

$$
T(r)=10^{0} C+0.0883^{0} C+11.11875\left(r_{0}^{2}-r^{2}\right) \text { where } r_{0}=0.0006454 \mathrm{~m}
$$

$$
\text { At the center, where } r=0 \quad T(r)=10.088305^{\circ} \mathrm{C}
$$

$$
\text { And at the outer surface, here } r=r_{0} \quad T(r)=10.0883^{\circ} \mathrm{C}
$$

78. Aluminum wire has resistivity of $0.286 \times 10^{-7} \mathrm{ohm} \cdot \mathrm{m}$ where resistivity is defined as (ohm)•area/length. Determine the temperature distribution through an aluminum wire of 6 mm diameter carrying 200 amperes of current if it is surrounded by air at $25^{\circ} \mathrm{C}$ and with a convective heat transfer coefficient of $345 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$.

Solution

Equation 2-123 predicts the wire temperature distribution

$$
T(r)=T_{\infty}+\dot{e}_{g e n}\left[\frac{r_{0}}{2 h_{0}}+\frac{1}{4 \kappa}\left(r_{0}^{2}-r^{2}\right)\right]
$$

Here, $\quad T_{\infty}=25^{\circ} \mathrm{C}, \quad h_{0}=345 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$

$$
r_{0}=3 \mathrm{~mm}=0.003 \mathrm{~m}, \quad \kappa=236 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K}, \quad I=200 \mathrm{amps}, \quad A_{0}=2.83 \times 10^{-5} \mathrm{~m}^{2}
$$

$R_{e}=\frac{R}{A_{0}}=\frac{0.286 \times 10^{-7} \Omega \cdot \mathrm{~m}}{2.83 \times 10^{-5} \mathrm{~m}^{2}}=0.0010 \Omega / \mathrm{m}$
and

$$
\dot{e}_{g e n}=\frac{I^{2} R_{e}}{A_{0}}=\frac{(200 \mathrm{amps})^{2}(0.0010 \Omega / \mathrm{m})}{2.83 \times 10^{-5} \mathrm{~m}^{2}}=1.41 \times 10^{6} \frac{\mathrm{~W}}{\mathrm{~m}^{3}}
$$

then

$$
\begin{aligned}
T(r)=25^{\circ} \mathrm{C} & +\left(1.41 \times 10^{6} \frac{\mathrm{~W}}{\mathrm{~m}^{3}}\right)\left[\frac{0.003 \mathrm{~m}}{2\left(345 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right)}\right. \\
& \left.+\frac{1}{4(236 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})}\left(0.003^{2} \mathrm{~m}^{2}-r^{2}\right)\right]
\end{aligned}
$$

or

$$
T(r)=31.14^{\circ} \mathrm{C}-1493.6 r^{2}
$$

$T(r)=31.14^{\circ} \mathrm{C}$ at the center, $r=0$
$T(r)=31.153^{\circ} \mathrm{C}$ at the surface, $r=r_{0}$
79. Determine the temperature distribution through a uranium slab shown. Assume energy generation of $2.8 \mathrm{MW} / \mathrm{m}^{3}$ and the slab is surrounded by water at $90^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $780 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. Use the equation $\frac{d^{2} T}{d x^{2}}+\frac{\dot{e}_{g e n}}{\kappa}=0$ with appropriate boundary condition must be made to obtain the temperature distribution function.

FIG 2-78 Uranium slab.

Solution

Using the figure shown and the governing equation for one-dimensional conduction heat transfer with energy generation

$\frac{d^{2} T}{d x^{2}}+\frac{e_{g e n}}{\kappa}=0$
with two boundary conditions: B.C. 1

$$
\left(\frac{2.8 \times 10^{6}}{2}\right)(0.065 \mathrm{~m})=91000 \frac{W}{m^{2}}=h_{0}\left(T-90^{\circ} \mathrm{C}\right)
$$

at $x=0$
And $\quad \frac{d T}{d x}=0 \quad @ \quad x=L / 2$
Separating variable once gives,

$$
\begin{aligned}
& \frac{d T}{d x}=-\frac{\dot{e}_{g e n}}{\kappa} x+C_{1} \quad \text { and then again } \\
& T(x)=-\frac{e_{g e n}}{2 \kappa} x^{2}+C_{1} x+C_{2}
\end{aligned}
$$

From B.C. 1

$$
T=\frac{91000 \mathrm{~W} / \mathrm{m}^{2}}{780 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}}+90^{\circ} \mathrm{C}=206.7^{\circ} \mathrm{C}
$$

at $\mathrm{x}=0$. This means that $C_{2}=206.7^{\circ} \mathrm{C}$

From B.C. 2

$$
\begin{aligned}
& C_{1}=\frac{e_{g e n}}{2 \kappa} L \text { so that the temperature distribution becomes } \\
& \qquad T(x)=-\frac{\dot{e}_{g e n}}{2 \kappa} x^{2}+\frac{\dot{e}_{g e n}}{2 \kappa} L+206.7^{\circ} \mathrm{C}
\end{aligned}
$$

At the center of the slab, where $\mathrm{x}=3.25 \mathrm{~cm}=0.0325, \quad T=159.5^{\circ} \mathrm{C}$
80. Plutonium plates of 6 cm thickness generate $60 \mathrm{~kW} / \mathrm{m}^{3}$ of energy. It is exposed on one side to pressurized water which cannot be more than $280^{\circ} \mathrm{C}$. The other surface is well insulated. What must the convective heat transfer coefficient be at the exposed surface?

Solution

Using the governing energy balance equation

$$
\begin{array}{r}
\frac{d^{2} T}{d x^{2}}+\frac{e_{g e n}}{\kappa}=0 \quad \text { With } \quad \text { В. С. } 1, \quad \frac{d T}{d x}=0 \quad @ \quad x=0 \\
\text { B.C. } 2 \dot{e}_{g e n} L=h_{0}\left(T-T_{\infty}\right) \quad \text { @ } x=L
\end{array}
$$

Separating variables and integrating
$\frac{d T}{d x}=-\frac{e_{\text {gen }}}{\kappa} x+C_{1}$

And separating variable once more, integrating gives,

$$
T(x)=-\frac{e_{g e n}}{2 \kappa} x^{2}+C_{1} x+C_{2}
$$

From B.C. $1 \mathrm{C}_{1}=0$

