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Heat and Mass Transfer 

Solutions Manual 

Second Edition 

 

This solutions manual sets down the answers and solutions for the Discussion Questions, Class 
Quiz Questions, and Practice Problems. There will likely be variations of answers to the 
discussion questions as well as the class quiz questions. For the practice problems there will 
likely be some divergence of solutions, depending on the interpretation of the processes, 
material behaviors, and rigor in the mathematics. It is the author’s responsibility to provide 
accurate and clear answers. If you find errors please let the author know of them at 
rolle@uwplatt.edu. 

 

Chapter 2 

Discussion Questions 

Section 2-1 

1. Describe the physical significance of thermal conductivity.   
Thermal conductivity is a parameter or coefficient used to quantitatively 
describe the amount of conduction heat transfer occurring across a unit area of 
a bounding surface, driven by a temperature gradient. 

2. Why is thermal conductivity affected by temperature?   
Conduction heat transfer seems to be the mechanism of energy transfer 
between adjacent molecules or atoms and the effectiveness of these transfers is 
strongly dependent on the temperatures. Thus, to quantify conduction heat 
transfer with thermal conductivity means that thermal conductivity is strongly 
affected by temperature. 

3. Why is thermal conductivity not affected to a significant extent by material density?  
Thermal conductivity seems to not be strongly dependent on the material 
density since thermal conductivity is an index of heat or energy transfer 
between adjacent molecules and while the distance separating these molecules 

is dependent on density, it is not strongly so. 

Section 2-2 

4. Why is heat of vaporization, heat of fusion, and heat of sublimation accounted as energy 
generation in the usual derivation of energy balance equations?   

Heats of vaporization, fusion, and sublimation are energy measures accounting 
for phase changes and not directly to temperature or pressure changes. It is 
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convenient, therefore, to account these phase change energies as lumped 

terms, or energy generation. 

Section 2-3 

5. Why are heat transfers and electrical conduction similar?   
Heat transfer and electrical conduction both are viewed as exchanges of energy 
between adjacent moles or atoms, so that they are similar. 

6. Describe the difference among thermal resistance, thermal conductivity, thermal 
resistivity and R-Values.   

Thermal Resistance is the distance over which conduction heat transfer occurs 
times the inverse of the area across which conduction occurs and the thermal 
conductivity, and thermal resistivity is the distance over which conduction 
occurs times the inverse of the thermal conductivity. The R-Value is the same as 
thermal resistivity, with the stipulation that in countries using the English unit 

system, 1 R-Value is 1 hr∙ft2 ∙0F per Btu. 

Section 2-4 

7. Why do solutions for temperature distributions in heat conduction problems need to 
converge?  

Converge is a mathematical term used to describe the situation where an 
answer approaches a unique, particular value. 

8. Why is the conduction in a fin not able to be determined for the case where the base 
temperature is constant, as in Figure 2-9?  

The fin is an extension of a surface and at the edges where the fin surface 
coincides with the base, it is possible that two different temperatures can be 
ascribed at the intersection, which means there is no way to determine 
precisely what that temperature is. Conduction heat transfer can then not be 
completely determined at the base. 

9. What is meant by an isotherm?   
An isotherm is a line or surface of constant or the same temperature. 

10. What is meant by a heat flow line?   
A heat flow line is a path of conduction heat transfer. Conduction cannot cross a 

heat flow line. 

Section 2-5 

11. What is a shape factor?   
The shape factor is an approximate, or exact, incorporating the area, heat flow 
paths, isotherms, and any geometric shapes that can be used to quantify 
conduction heat flow between two isothermal surfaces through a heat 
conducting media. The product of the shape factor, thermal conductivity, and 
temperature difference of the two surfaces predicts the heat flow.  
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12. Why should isotherms and heat flow lines be orthogonal or perpendicular to each 
other?   

Heat flow occurs because of a temperature difference and isotherms have no 
temperature difference. Thus heat cannot flow along isotherms, but must be 

perpendicular or orthogonal to isotherms. 

Section 2-6 

13. Can you identify a physical situation when the partial derivatives from the left and right 
are not the same?   

Often at a boundary between two different conduction materials the left and 
the right gradients could be different. Another situation could be if radiation or 
convection heat transfer occurs at a boundary and then again the left and right 

gradients or derivatives could be different. 

Section 2-7 

14. Can you explain when fins may not be advantageous in increasing the heat transfer at a 
surface?   

Fins may not be a good solution to situations where a highly corrosive, 
extremely turbulent, or fluid having many suspended particles is in contact with 
the surface. 

15. Why should thermal contact resistance be of concern to engineers?   
Thermal contact resistance inhibits good heat transfer, can mean a significant 
change in temperature at a surface of conduction heat transfer, and can provide 
a surface for potential corrosion. 
 

Class Quiz Questions 

1. What is the purpose of the negative sign in Fourier’s law of conduction heat transfer?   
The negative sign provides for assigning a positive heat transfer for negative 
temperature gradients. 

2. If a particular 8 inch thick material has a thermal conductivity of 10 Btu/ hr∙ft∙0F, what is 
its R-value? 

The R-value is the thickness times the inverse thermal conductivity;   

 
3. What is the thermal resistance of a 10 m2 insulation board, 30 cm thick, and having 

thermal conductivity of 0.03 W/m∙K?   
The thermal resistance is  

 
4. What is the difference between heat conduction in series and in parallel between two 

materials?  

00/ 8 / (12in/ ft)(10Bu/ hr ft F) 0.0833hr ft /R Value thicks in F Btuκ− = = ⋅ ⋅ = ⋅ ⋅

( ) ( ) ( )2/ 0.3 / 10 0.03 / 1.0 /x A m m W m K K Wκ∆ ⋅ = ⋅ =
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The thermal resistance, or thermal resistivity are additive for series. In parallel 
the thermal resistance needs to be determined with the relationship 

 
5. Write the conduction equation for radial heat flow of heat through a tube that has 

inside diameter of Di and outside diameter of D0.   

    
6. Write the Laplace equation for two-dimensional conduction heat transfer through a 

homogeneous, isotropic material that has constant thermal conductivity.   

 
7. Estimate the heat transfer from an object at 1000F to a surface at 400F through a heat 

conducting media having thermal conductivity of 5 Btu/hr∙ft∙0F if the shape factor is 1.0 

ft.  

   

8. Sketch five isotherms and appropriate heat flow lines for heat transfer per unit depth 
through a 5 cm x 5 cm square where the heat flow is from a high temperature corner 
and another isothermal as the side of the square.      
          

  
9. If the thermal contact resistance between a clutch surface and a driving surface is 

0.0023 m2 -0C/W, estimate the temperature drop across the contacting surfaces, per 
unit area when 200 W/m2 of heat is desired to be dissipated.    

The temperature drop is 

 
10. Would you expect the wire temperature to be greater or less for a number 18 copper 

wire as compared to a number 14 copper wire, both conducting the same electrical 
current?    

( )( ) ( )
1 2 1 2/eqR R R R R= +

( )0

2
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T
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A number 18 copper wire has a smaller diameter and a greater electrical 
resistance per unit length. Therefore the number 18 wire would be expected to 
have a higher temperature than the number 14 wire. 

 

Practice Problems 

Section 2-1 

1. Compare the value for thermal conductivity of Helium at 200C using Equation 2-3 and 

the value from Appendix Table B-4.   

 

Solution         

Using Equation 2-3 for helium

        

From Appendix Table B-4  

 

2. Predict the thermal conductivity for neon gas at 2000F. Use a value of 3.9 Ǻ for the 

collision diameter for neon.   

Solution   

Assuming neon behaves as an ideal gas, with MW of 20, converting 2000F to 367K, and 

using Equation 2-1 

   

 

3. Show that thermal conductivity is proportional to temperature to the 1/6-th power for a 
liquid according to Bridgeman’s equation (2-6).    

 

 

 

40.8762 10 0.0015 / c 0.15 /x T W m K W m Kκ −= = ⋅ = ⋅

0.152 /W m Kκ = ⋅

( ) ( )
4 4 4367

8.328 10 8.328 10 18.05 10 / c
20 3.9

T K
x x x W m K

MW
κ − − −= = = ⋅

⋅Γ
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Solution     

From Bridgeman’s equation   Also, Vs (sonic velocity) ~��� �⁄    

~ρ
-1/2         the mean separation distance between molecules ��� =	 ��� �⁄ �/� ~ρ

-2/3 so 

that                             

 

4. Predict a value for thermal conductivity of liquid ethyl alcohol at 300 K. Use the 
equation suggested by Bridgman’s equation (2-6).       

 

Solution  

Bridgeman’s equation (2-6) uses the sonic velocity in the liquid, ��� �⁄  , which for ethyl 

alcohol at 300 K is nearly 1.14 x 105 cm/s from Table 2-2. The equation also uses the 
mean distance between molecules, assuming a uniform cubic arrangement of the 

molecules, which is ��� �⁄�  , mm being the mass of one molecule in grams, the 

molecular mass divided by Avogadro’s number. Using data from a chemistry handbook 
the value of xm is nearly 0.459 x 10-7 cm. Using Equation 2-6, 

 

 

5. Plot the value for thermal conductivity of copper as a function of temperature as given 
by Equation 2-10. Plot the values over a range of temperatures from -400F to 1600F.   

 

Solution   

Using Equation 2-10 and coefficients from Appendix Table B-8E 

           

This can be plotted on a spreadsheet or other modes. 

 

6. Estimate the thermal conductivity of platinum at -1000C if its electrical conductivity is 6 x 
107 mhos/m, based on the Wiedemann-Franz law. Note: 1 mho = 1 amp/volt = 1 

coulomb/volt-s, 1 W = 1 J/s = 1 volt-coulomb/s.    

( )23 23.865 10 s mx V xκ −=

2/3 1/2 1/6 1/6Tκ ρ ρ− + −=∼ ∼

( )23 2 43.865 10 20.9 10 / c 0.209 /s mx V x x W m K W m Kκ − −= = ⋅ = ⋅

( ) ( )0

0 0 0 2
227 0.0061 492TO

Btu Btu
T T T R

hr ft R hr ft R
κ κ α= + − = − −

⋅ ⋅ ⋅ ⋅
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Solution    

Using the Wiedemann-Franz law, Equation 2-9 gives 

 

 

7. Calculate the thermal conductivity of carbon bisulfide using Equation 2-6 and compare 
this result to the listed value in Table 2-2.      

 

 

Solution     

Equation 2-6 uses the sonic velocity in the material. This is �� =	��� �⁄ = 1.18	�	10���/� , where Eb is the bulk modulus. The mean distance 

between adjacent molecules, assuming a uniform cubic arrangement, is also used. This 

is �� =	���/� where mm is the mass of one molecule; MW/Avogadro’s number. 

This gives �� = 0.466	�	10����. then  

 

Section 2-2 

8. Estimate the temperature distribution in a stainless steel rod, 1 inch in diameter that is 
1 yard long with 3 inches of one end submerged in water at 400F and the other end held 
by a person. Assume the person’s skin temperature is 820F, the temperature in the rod 
is uniform at any point in the rod, and steady state conditions are present.     

 

 

( )( )( )8 2 2 72.43 10 6 10 173 252.2 /Lz T x V K x amp V m K W m Kκ −= ⋅ = ⋅ = ⋅

23 0

2
3.865 10 0.0021 /s

m

V
x W cm C

x
κ −= = ⋅
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Solution    

Assuming the heat flow to be axial and not radial and also 400F for the first 3 inches of 
the rod, the temperature distribution between x = 3 inches and out to x = 36 inches we 
can use Fourier’s law of conduction and then for 3in ≤ x ≤ 36 inches, identifying the 

slope and x-intercept . The sketched graph is here included. 
One could now predict the heat flow axially through the rod, using Fourier’s law and 

using a thermal conductivity for stainless steel. 

   

 

9. Derive the general energy equation for conduction heat transfer through a 
homogeneous, isotropic media in cylindrical coordinates, Equation 2-19.  

 

Solution   

Referring to the cylindrical element sketch, you can apply an energy balance, Energy in – 
Energy Out = Energy Accumulated in the Element. Then, accounting the energies in and 
out as conduction heat transfer we can write 

(x) 1.2727 x 36.1818T = +
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                                                               an in energy

                                                              an in energy

                                                  an in energy

                                           an out energy

                                              an out energy

                                    an out energy

         

The rate of energy accumulated in the element. If you put the three energy in terms and 
the three out terms on the left side of the energy balance and the accumulated energy 
on the right, divide all terms by �� +	� 2⁄ �!" ∙ !$ ∙ !�, and take the limits as Δr →0,   

Δz → 0,  and Δθ→ 0 gives, using calculus, Equation 2-19 
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10. Derive the general energy equation for conduction heat transfer through a 
homogeneous, isotropic media in spherical coordinates, Equation 2-20.   

 

Solution   

Referring to the sketch of an element for conduction heat transfer in spherical 
coordinates, you can balance the energy in – the energy out equal to the energy 
accumulated in the element. Using Fourier’s law of conduction 

                                            an in term

                                        an in term

                                          an in term

     an out term

                       an out term
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                             an out term

             

Which is the accumulated energy. Inserting the three in terms as positive on the left side 
of the energy balance, inserting the three out terms as negative on the left side of the 
balance, inserting the accumulated term on the right side, and dividing all terms by the 
quantity ���%&"!' ∙ !� ∙ !" gives the following 
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Taking the limits as Δr →0,  Δθ →0,   Δφ → 0  and reducing 

  which 
is Equation 2-20, conservation of energy for conduction heat transfer in spherical 

coordinates. 

 

11. Determine a relationship for the volume element in spherical coordinates.     

Solution    

Referring to the sketch for an element in spherical coordinates, and guided by the 

concept of a volume element gives, 
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Section 2-3 

12. An ice-storage facility uses sawdust as an insulator. If the outside walls are 2 feet thick 
sawdust and the sideboard thermal conductivity is neglected, determine the R-Value of 
the walls. Then, if the inside temperature is 250F and the outside is 850F, estimate the 

heat gain of the storage facility per square foot of outside wall.     

Solution    

Assuming steady state conditions and that the thermal conductivity is the value listed in 
Appendix Table B-2E, 

 

 

13. The combustion chamber of an internal combustion engine is at 8000C when fuel is 
burnt in the combustion chamber. If the engine is made of cast iron with an average 
thickness of 6.4 cm between the combustion chamber and the outside surface, estimate 
the heat transfer per unit area if the outside surface temperature is 500C and the 
outside air temperature is 300C.    

Solution    

Assuming steady state one-dimensional conduction and using a thermal conductivity 
that is assumed constant and has a value from Table B-2,  

 

 

14. Triple pane window glass has been used in some building construction. Triple pane glass 
is a set of three glass panels, each separated by a sealed air gap.  Estimate the R-Value 

for triple pane windows and compare this to the R-Value for single pane glass.    

Solution   

Assume the air in the gaps do not move so that they are essentially conducting media. 
Then the R-Value is 
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The R-Value for a single pane window is  

 

The ratio of the R-Value for the triple pane to the R-Value for a single pane is roughly 

324. 

 

15. For the outside wall shown in Figure 2-50, determine the R-Value, the heat transfer 
through the wall per unit area and the temperature distribution through the wall if the 
outside surface temperature is 360C and the inside surface temperature is 150C.     

 

Solution   

The R-Value is the sum of the three materials; pine, plywood, and limestone, with 
thermal conductivity 

values obtained from Appendix Table B-2.The conversion to English units is 0.176 
m2K/W = 1 R-Value so that ( − �*+,- = 2.62 . The heat transfer per unit area is 

The temperature distribution is determined by 
noting that the heat flow is the same through each material. For the pine,
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  so that T1 at the surface between 
the pine and the plywood, is 27.10C. Similarly, to determine the temperature between 
the plywood and the limestone, again noting that the heat flow is the same as before

   so that T2 is 34.60C. This is sketched in the 

figure. 

 

 

16.  Determine the heat transfer per foot of length through a copper tube having an outside 
diameter of 2 inches and an inside diameter of 1.5 inches. The pipe contains 1800F 

ammonia and is surrounded by 800F air.    

Solution     

Assuming steady state and only conduction heat transfer, for a tube cylindrical 
coordinates is the appropriate means of analysis. Then 

 

 

17. A steam line is insulated with 15 cm of rock wool. The steam line is a 5 cm OD iron pipe 
with a 5 mm thick wall. Estimate the heat loss through the pipe per meter length if 
steam at 1200C is in the line and the surrounding temperature is 200C. Also determine 

the temperature distribution through the pipe and insulation.     
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Solution     

Assume heat flow is one-dimensional radial and steady state. The heat flow is then the 
overall temperature difference divided by the sum of the radial thermal resistances. We 
have

To determine the temperature distribution through the pipe and wool insulation the 
radial heat flow will be the same through the iron pipe and the wool insulation. The 
temperature at the interface between the iron pipe and the insulation is determined by

     From this the interface temperature, TpipeOd =119.991
0
C 

=TwoolID    The temperature in a homogeneous radial section is �� = ./ + 0+&�. For the 
iron pipe, the two boundary conditions 1.) T = 120

0
C @ r = 2 cm and 2.) T = 119.991

0
C  @ 

r = 2.5 cm can be used to solve for T(r) and resulting in two separate equations. Solving 
these two simultaneously gives that T0= 120.028

0
C and C = -0.040. For the iron pipe then  .�� = 120.928 − 0.040+&�. For the wool insulation the two boundary conditions 1.) T 

= 119.991
0
C @  r = 2.5 cm and 2.) T = 20

0
C  @  r  = 17.5 cm can be substituted into the 

equation to solve for T(r). Solving these two equations simultaneously for T0 and C gives 
that T0 = 167.07 and C = -51.385. For the wool insulation .�� = 157.07 − 51.385+&�. 
The following sketch indicates the character of the temperature distribution.
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18. Evaporator tubes in a refrigerator are constructed of 1 inch OD aluminum tubing with 
1/8 in thick walls. The air surrounding the tubing is at 250F and the refrigerant in the 
evaporator is at 150F. Estimate the heat transfer to the refrigerant over 1 foot of length.     

Solution    

Assume steady state one-dimensional radial conduction heat transfer and using a 

thermal conductivity value from Appendix Table B-2E  

 

 

19. Teflon tubing or 4 cm OD and 2.7 cm ID conducts 1.9 W/m when the outside 
temperature is 800C. Estimate the inside temperature of the tubing. Also predict the 

thermal resistance per unit length.    

Solution    

Assume steady state one-dimensional radial conduction heat transfer. Reading the 
thermal conductivity from Appendix Table B-2, applying the Fourier’s Law of conduction 

for radial heat flow   and solving for Ti 

 

and the thermal resistance per unit of length is

 

 

20. A spherical flask, 4 m diameter with a 5 mm thick wall, is used to heat grape juice. 
During the heating process the outside surface of the flask is 1000C and the inside 
surface is 800C. Estimate the thermal resistance of the flask, the heat transfer through 
the flask, if it is assumed that only the bottom half is heated, and the temperature 
distribution through the flask wall.   

Solution   

Assume steady state one-dimensional, radial conduction heat transfer with constant 
properties. Since only the bottom half is heated you need to recall that a surface area of 
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a hemisphere is 2πr2 rather than 4π r2. Then 

 

The thermal resistance for the full flask would be 

 

For such a small thermal resistance, the temperature distribution will be nearly constant 
through the wall. Yet for the bottom half of the flask we can write

                or

 

 

21. A Styrofoam spherical container having a 1 inch thick wall and 2 foot diameter holds dry 
ice (solid carbon dioxide) at -850F. If the outside temperature is 600F, estimate the heat 

gain in the container and establish the temperature distribution through the 1 inch wall.     

Solution     

Assuming steady state one-dimensional radial conduction heat transfer and using the 
thermal conductivity value for Styrofoam from Appendix Table B-2E

The temperature distribution for T(r) is 

 where r is in inches. 

 

22. Determine the overall thermal resistance per unit area for the wall shown in Figure 2-51. 
Exclude the thermal resistance due to convection heat transfer in the analysis. Then, if 
the heat transfer is expected to be 190W/m2 and the exposed brick surface is 100C, 
estimate the temperature distribution through the wall.     
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Solution    

The overall thermal resistance will be the sum of the thermal resistances of the three 

components,
Since there is expected to be 190W/m2 of conduction heat transfer through each of the 
three components, the temperatures at the inside surface and the two interface 

surfaces are  which is the 
inside surface temperature. The temperature between the concrete and the Styrofoam 

is  
and the temperature between the Styrofoam and the brick facing is

 

 

23. Determine the thermal resistance per unit length of the tubing (nylon) shown in Figure 
2-52. Then predict the heat transfer through the tubing if the inside ambient 
temperature is -100C and the outside is 200C.    
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Solution    

The nylon tubing has properties of Teflon, the inside diameter is 40mm, and the outside 
diameter is 60 mm. Then 

 

Assuming steady state one-dimensional radial conduction heat transfer, 

 

 

24. Determine the heat transfer through the wall of Example 2-5 if the thermal conductivity 

is affected by temperature through the relationship     
where T is in degrees Fahrenheit.   

Solution 

In Example 2-5 the wall is 15 inches thick, has a temperature of 550F on one side and 
1000F on the other. Assuming steady state one-dimensional conduction heat transfer 

separating variables and integrating 
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and then solving for the heat transfer per unit area gives

 

 

25. Determine the temperature distribution through a slab if where T is in Kelvin 

degrees and a is constant. Then compare this to the case where κ = a.  

Solution 

 If the variables are now separated and integrating 

                                     defining a 
boundary condition of T = T0  @ x = 0 allows the constant C to be defined as

                                         the temperature distribution is then 

                         For κ = a  and T = T0  @ x = 0

 

 

Section 2-4 

26. Show that .��, 6 = �*�%&7� + 8�9�7���-�:; + <-:; satisfies Laplace’s equation 
=>?=@> + =>?=;> = 0.    

Solution     

Taking first and second derivatives                            

and       taking the first and second 
partial derivative with respect to y give, for the second derivative that 

  summing these last two equations gives 
Laplace’s equation.   
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27. For the wall of Example 2-11, determine the heat transfer in the y-direction at 3 feet 

above the base.    

Solution     

The solution to the wall temperature of Example 2-11 is     
The heat transfer in the y-direction can be determined,

For W = 1 ft, L = 

3 ft, and y = 3 ft  this equation can then be finalized 

 

For a thermal conductivity of 0.925Btu/hr∙ft
 0

F from Appendix Table B-2E, the heat 
transfer is about 4.00 Btu/hr. The temperature distribution at y = 3 ft for 0 ≤ x  ≤ 3ft is

 

 

28. Write the governing equation and the necessary boundary conditions for the problem of 
a tapered wall as shown in Figure 2-53.   
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Solution    

For steady state conduction in two-dimensions the governing equation will be  
=>?=@> + =>?=;> = 0. Calling Tg the ground temperature the following four (4) boundary 

conditions may be used: 

B.C. 1    .��, 0 = 	.A															B9�	0 < �	 ≤ E 

B.C. 2    .�E, 6 = 	.A															B9�	0 ≤ 6	 ≤ F 

B.C. 3    .��, F = 	./															B9�	E − G ≤ �	 ≤ E 

B.C. 4    .��, 6 = 	./															B9�	0	 ≤ 	6	 ≤ F									*&<				6 = 	 �F E − G⁄ � 

 

29. Write the governing equation and the necessary boundary conditions for the problem of 
a heat exchanger tube as shown in Figure 2-54.      

 

Solution      

A heat exchanger tube with convection heat transfer at the inside and the outside 
surfaces can be analyzed for steady state one-dimensional radial heat transfer with the 

equation    and with, as a possibility, the following two boundary 

conditions 

B.C. 1   HIJ = 2K�LℎL�.L − .  @  r  = ri 

B.C. 2   HIJ = 2K�/ℎ/�. − ./  @  r  = r0 

 

30. Write the governing equation and the necessary boundary conditions for the problem of 
a spherical concrete shell as sketched in Figure 2-55. 

1
0

d dT
r

r dr dr
κ =
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Solution     

For steady state one-dimensional radial conduction heat transfer in spherical 
coordinates the governing equation for analyzing this and two suggested boundary 

conditions are  

B.C. 1   T = T0     @ r = r0 

B.C. 2   T = Ti     @ r = ri 

 

31. Determine the Fourier coefficient, An , for the problem resulting in a temperature 

distribution of  .��, 6 = ∑ GO-�OP;/Q�%&�&K�/FROS/  involving a boundary 

temperature distribution given by .��, 0 = �9��K�/F for 0  ≤ x ≤ L.     

Solution    

The Fourier coefficient is defined as  

     and using an identity

            For n = 0 the Fourier coefficient, A0 becomes

        For n = 1 the Fourier coefficient becomes

          For n = 2, the Fourier coefficient 

is For 

n =4     For any even integer of n, such as 6, 8, 10, etc. the Fourier 
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coefficient is   By reviewing the first coefficient, A1  it  turns 
out that for all odd integers of n, such as 3, 5, 7, 9, 11, etc, the Fourier coefficient is zero, 

0. 

 

32. Determine the Fourier coefficient An for the problem involving a boundary temperature 

distribution given by .��, 0 = 	./ T1 −	@QU and where the solution to the temperature 

field is .��, 6 = ∑ GO-�OP;/Q�%&�&K�/FROS/ .      

Solution  

    By inspection A0 = 0 for n = 

0.   For n = 1 

Using integral tables in Appendix Table A-4 

For n  

even, such as 2, 4, 6, 8, . . . . 

  and for n odd, such as 3, 5, 7, 9, . . . . 

  which is the same as for n even 

 

33. Plot the Bessel’s function of the first kind of zero and first order, J0 and J1, for arguments 

from 0 to 10.     

Solution   

Appendix Table A-10-1 tabulates the Bessel’s Function of arguments from 0 to 10. The 

plot is shown.   
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34. Plot the Bessel’s Function of the second kind of zero and first order, Y0 and Y1 for 

arguments from 0 to 10.     

Solution     

The Bessel’s Functions of the second kind of zeroth and first order are tabulated in 

Appendix Table A-10-1, plotted in Appendix Figure A-10-2, and here shown. 
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35. A silicon rod 20 cm in diameter and 30 cm long is exposed to a high temperature at one 
end so that the end is at 4000C whereas the remaining surfaces are at 600C. Estimate the 
centerline temperature distribution through the rod.       

Solution     

The ratio of the length to radius, L/R is 3.0 so, using Figure 2-22 the following values can 
be read: 

x/L (T – T0)/(Tf – T0) T(x)  0Celsius 

0.0 0.000 60.00 

0.2 0.002 60.68 

0.4 0.020 67.20 

0.6 0.086 90.96 

0.8 0.360 189.6 

1.0 1.000 400.0 
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The values for T(x) are computed from the equation       

  

 

36. A Teflon rod 6 inches in diameter and 2 feet long is at 2300F. It is then exposed at one 
end to cool air so that that end is at 800F whereas the cylindrical surface cools to 1500F. 

The other end remains at 2300F. Determine the expected temperature distribution.      

Solution    

To determine the centerline temperature distribution you can use Figure 2-22b. Since 
the L/R value is 2ft/3/12ft = 8 we need to extrapolate on the graph for approximate 
values. Also, the centerline temperature will not change significantly for values of z/L 
less than about 0.6. In addition, a principle of superposition will provide the rigorous 
solution. Yet, since the axial lengths are such that the distance from the 2300F end will 
be the total length minus the length from the 800F end, $��/ = F −	$V/. Since the 
temperature of the center of the rod, axially, does not change significantly from the 
1500F (T0) for z/L ≤ 0.6, we can just consider each end separately. For the model of a rod 
at 1500F with one end at 800F we have, say at z/L of 0.8, from Figure 2-22b that (T – 

T0)/(80
0
F – T0) = (T – 150)/(80 – 150) = (T – 80)/(-70) has a value of about 0.15. 

Therefore, at z = 0.4 ft = 4.8 in (corresponding to z = 1.6 ft from the 1500F end) from the 
800F end the centerline temperature is .�4.8%&, 0 = �0.15�80 − 150 + 150 =139. 5/W) . At say z = 0.7 ft = 8.4 in (1.3 ft from the 1500F end), z/L = 1.3/2 = 0.65, and 
from Figure 2-22b, (T – T0)/(80

0
F – T0) ≈ 0.03 and then the centerline temperature at 8.4 

in from the 800F end is .�8.4%&, 0 = �0.03�80 − 150 + 150 = 147. 9/.  Similarly, for 
the end at 2300F with the rod at 1500F, at z/l = 0.8, corresponding to 4.8 in from the 
2300F end, the centerline temperature is .�4.8%&, 0 = �0.15�230 − 150 + 150 =162/W). At z/L = 0.65 (corresponding to 8.4 in from the 2300F end) the centerline 

temperature is .�8.4%&, 0 = �0.03�230 − 150 + 150 = 152. 4/W     

 

Section 2-5 

37. A water line of 2 inch diameter is buried horizontally 4 feet deep in earth.  Estimate the 
heat loss per foot from the water line if water at 500F flows through the line and the 
outside temperature of the line is assumed to be 500F. The surface temperature of the 

earth is -200F.    
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Solution    

Using the shape factor from Table 2-3, item 8, where L » r

The thermal conductivity of earth is about 0.3 
W/m∙K from Appendix Table B-2 so that the heat transfer per unit length is

  

 

38. A chimney is constructed of square concrete blocks with a round flue as shown in Figure 
2-56. Estimate the heat loss through the cement blocks per meter of chimney if the 
outer surface temperature is -100C and the inner surface temperature is 1500C.              

 

Solution     

Assuming steady state conduction and using the shape factor from Table 2-3, item 4, the 
heat loss can be estimated. From Appendix Table B-2 the thermal conductivity of 

concrete may be taken as 1.4 W/m∙K so that  
The heat loss can then be calculated from
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39. Nuclear waste is placed in drums 50 cm in diameter by 100 cm long and buried in sand. 
Water lines are buried adjacent to the drums to keep them cool. The suggested typical 
arrangement is shown in Figure 2-57. Estimate the heat transfer between a drum and 
the water line.     

 

Solution     

Assume steady state, infinite media, and all heat transfer occurs between the 100 cm 
long drum and an adjacent 10 cm long water line. Using, item 11 from Table 2-3 with r = 
r1/r2 = 25/5 = 5, and L = 50 cm/5 cm = 10, gives

Assuming dry sand with a thermal 
conductivity from Appendix Table B-2 of 0.3 W/m∙K, the heat transfer is

 

 

40. Steel pins are driven into asphalt pavement as shown in Figure 2-58. Estimate the heat 
transfer between a pin when it is at 600F and the surface when it is at 1100F.      
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Solution    

Assume steady state conduction. Using item 6 of Table B-3, with a value of 0.036 
Btu/hr∙ft∙ F for the thermal conductivity of asphalt from Appendix Table B-2E, a uniform 

pin temperature of 600F and the asphalt surface is 1100F, 

 

 

41. A heat treat furnace sketched in Figure 2-59 has an inside surface temperature of 
12000C and an outside surface temperature of 600C. If the walls are assumed to be 
homogeneous with thermal properties the same as asbestos, estimate the heat transfer 
from the walls, excluding the door.     
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Solution    

The heat transfer between the inside and the outside is  XI = 	XIYZ: +	XI�ZYYZ� +XI�[\] + 2XI�L^_ + 4XI�L^__^A_ + 2XI �[\]_^A_ + 2XI`:JLAaY_^A_� + 4XI\ZJO_J� .  All of these 

can be modeled with shape factors from Table 2-3. The first four terms are just one-
dimensional conduction through a sheet, or plate. The next three are edges and the last 

is a corner. Combining all this 

                   
substituting the thermal conductivity, the thickness Δx , and the temperature difference

 

 

42. A small refrigerator freezer, 16 in x 16 in x 18 in outer dimensions, has an inside surface 
temperature of 100F and an outside surface temperature of 800F. If the walls are 
uniformly 3 inches thick, homogeneous, and with thermal properties the same as 

Styrofoam, estimate the heat transfer through the walls and door of the refrigerator.   

Solution     

Using shape factor methods we can list

The thermal conductivity of Styrofoam is 0.017 Btu/hr∙ft∙0F, the temperature difference 
is 700F. The first five terms are just heat transfer through a flat plate, the next three are 
edges, and the last is a corner. Using items 1, 17, and 18 from Table 2-3 we get

  The total heat transfer is then

 

 

43. Using graphical methods, estimate the temperatue distribution and the heat transfer 
per meter depth between the two surfaces at the corner shown in Figure 2-60.    
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Solution   

The sketch shown shows that there are 11 heat flow paths, M = 11, and 4 temperature 
steps, N = 4. Thus, the shape factor is roughly M/N = 2.75 and the heat transfer is

 

 

 

44. Using graphical methods, estimate the temperature distribution through the phenolic 
disk surrounding the silicon chip sketched in Figure 2-61. Then estimate the heat 
transfer per unit depth. 

 

( ) ( )( )2.75 0.029 / 110 8.7725 /S T W m K K W mQ κ= ∆ = ⋅ =
i
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Solution   

Here we have that the shape factor is the heat flow paths, M, divided by the 
temperature steps, N, so that S = M/N. From the sketch shown there are about 25 heat 
flow paths and 4 temperature steps. Using a thermal conductivity of 0.35 W/m∙K for 
nylon as an approximation for phenolic from Appendix Table B-2, we have

 

 

 

45. Using graphical techniques estimate the temperature distribution through the earth 
around the electrical power line shown in Figure 2-62. Then estimate the heat transfer 
per unit length between the line and the ground surface.    

 

Solution   

The temperature distribution and the heat transfer can be approximated with a sketch 
of the heat flow lines and isotherms. These two sets of lines need to be orthogonal or 

( )0

0

25
0.202 180 80 126.25

4l

Btu Btu
S T F

hr ft F hr ft
q κ

 
= ∆ = − = ⋅ ⋅ ⋅ 

i
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perpendicular at all times  

 

 

and the spacing between adjacent isotherms and heat flow lines need to approximate a 
square. The Shape factor, S, will be the ratio of the heat flow paths, M, to the isotherms, 
N. The sketch shows a possible approximate solution where the temperature steps or 
isotherms is seven (7) and the number of heat flow paths is twenty seven (27). Then

 

Notice that the shape factor is 27/7 = 3.86, which is a value in close agreement with 

item 8 of Table B-3 for a buried line, 

 

 

46. Using graphical techniques estimate the temperature distribution through the cast iron 
engine block and head shown in Figure 2-63.   

( )27
0.52 20 40.1

7l

M W W
S T T K

N m K m
q κ κ  = ∆ = ∆ = = ⋅ 

i

1 1

2 2
4.77

4
cosh cosh

2

S
Y

R

π π
− −

= = =
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Solution     
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Referring to the sketch of the piston-cylinder and assuming symmetry, there are five (5) 
isothermal steps so N = 5.  Also there are estimated to be twenty-two (22) heat flow 
paths for one half the cylinder for heat exchange between the cylinder at 6000F and the 
surroundings at 1600F. From Appendix Table B-2E the thermal conductivity for cast iron 
may be taken as 22.54 Btu/hr∙ft∙0F. Then the heat transfer is

    

and if we assume an effective radius of 0.3 ft and rotate the 22 heat flow paths through 
one revolution, 2πr, then the heat transfer will be

 

 

47. A Bunsen burner is used to heat a block of steel. The surfaces of the steel may be taken 
as 500C except on the bottom, where the burner is heating the block. Figure 2-64 shows 
the overall configuration of the heating process. Using graphical techniques, estimate 
the temperature profile through the block and the heat transfer through the block.    

 

 

 

 

 

 

( )0

22
22.54 600 160 43,637

5r

M Btu Btu
T

N hr ft F hr ft radians
q κ

  = ∆ = − =  ⋅ ⋅ ⋅ ⋅  

i

( )2 2 0.3 43,637 82,255effective
r

Btu Btu
r ft

hr ft hr
Q qπ π

   
= = =   ⋅  

i i
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Solution    

 

Using graphical techniques requires that a web of approximately square elements are 
formed between adjacent heat flow lines and isotherms. An approximate solution is 
shown, noting that the 8500C is assumed to be in the block. The number of heat flow 
paths for one-half the block is nine (9) and the number of isotherms is five (5). Assuming 
a carbon steel the thermal conductivity is taken as 60.5 W/m∙K from Appendix Table B-
2. Since the block is 25 cm square

 

 

Section 2-6 

48. Estimate the heat transfer from the fin shown in Figure 2-65. Write the necessary node 
equations and then solve for the temperatures. Assume the fin is aluminum.        

( ) ( )9
60.5 0.25 850 50 21.78

5

M W
L T m K kW
N m K

Q κ    = ∆ = − =   ⋅   

i
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Solution      

Referring to the sketch, assuming symmetry so that only 9 nodes need to be identified 
and using  

 

node neighborhoods of 1 inch squares (Δx = Δy = 1 inch), and assuming the temperature 
of node 5 is 3250F the node equations can be written for steady state conduction two-
dimensional heat transfer. The thermal conductivity of aluminum is 136.38 Btu/hr∙ft∙0F, 
rounded to 136.4 Btu/hr∙ft∙0F from Appendix Table B-2E.  For node 1:

  substituting into this node 

equation      Then the equations for nodes 2, 3, 4, 6, 7, 8, 

and 9 follow               

                  

                               

                                      

                                  

( )5 1 2 1
1 0

2 2 2

T T T Ty x y
h T T

x y
κ κ ∞ ∞

 − −∆ ∆ ∆    + + − =     ∆ ∆      

1 2137.44 68.2 22253.5T T− =

2 1 3 6274.88 68.2 68.2 136.4 177.08T T T T− − − =

3 2 4 7274.88 68.2 68.2 136.4 177.08T T T T− − − =

4 3 8 9232.7 68.2 136.4 25.4 227.6T T T T− − − =

6 2 7272.8 136.4 58.2 22165T T T− − =

7 3 8 6272.8 136.4 68.2 68.2 0T T T T− − − =
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   Then, for the 8 x 8 matrix 

 

 

49. Write the node equations for the model of heat transfer through the compressor 
housing section shown in Figure 2-66. Then solve for the node temperatures by using 
EES, Mathcad, or MATLAB.     

8 4 7 9272.8 136.4 68.2 68.2 0T T T T− − − =

9 8 495.3 68.2 25.4 139.08T T T− − =
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Solution     

Referring to Figure 2-66, which is a scale 1 to 6, the inner radius is assumed to be 21 cm 
and the outer radius is then 30 cm. The housing is cast iron so that the thermal 
conductivity is 39 W/m∙K from Appendix Table B-2 and assuming that the slots have 
quiescent fluid at with a thermal conductivity of 1 W/m∙K, the node equations may be 
written out. Referring to the following sketches some of the nodes are identified, others 

need to be to be inferred, and node 1 is shown in some detail.  
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    Node 1 neighborhood.  The angular 
displacement between nodes is 11.250 or 0.196 radians. For node 1

Substituting the thermal conductivity, convective heat transfer coefficient, and radius 

change  which is the equation for 
node 1 

An energy balance for node 2 gives

 or  which is the equation for 
node 2. An energy balance of the heat flows to each of the nodes can be made and the 
following equations result                                             

t which is the equation for 

node 3,        which is the 
equation for node 4. After applying energy balances to all of the 20 nodes the following 

set of equations result  

                                                    51.542.b − 36.3.� − 9.95.� = 185.22  

                                            90.896.� − 36.3.b − 22.1.c − 32.487.� = 0 

86.024.� − 32.487.� − 28.665.d − 24.872.� = 0 

                                               50.695.d − 28.665.� − 14.21.V = 2346  

             103.084.� − 9.95.b − 72.6.c − 9.95.e = 370.44 

           142.077.c − 22.1.� − 72.6.� − 36.32.� − 11.057.b/ = 0 

( )( )
( ) ( )( ) ( )( ) ( )02 1
5 1 0 1

0.196 0.285 0.196 0.31
35 0

2 0.196 0.3 2 2

rad m mT Tr
T T h C T

m r
κ κ

 −∆  − + + − =  ∆   

( ) ( ) ( )5 1 2 1 19.95 36.3 5.292 35 0T T T T T− + − + − =

( )
( ) ( )6 2 3 21 2

0.196 0.285 0.196 0.255
0

0.196 0.27 2 2

m mT T T TT T
r

m r r
κ κ κ

     − −−   ∆ + + =          ∆ ∆       

( ) ( ) ( )6 2 1 2 3 222.1 36.309 32.487 0T T T T T T− + − + − =

( ) ( ) ( )7 3 2 3 4 324.872 32.487 28.665 0T T T T T T− + − + − =

( ) ( ) ( )8 4 3 4 414.21 28.665 7.82 300 0T T T T T− + − + − =
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130.96.� − 24.87.� − 36.32.c − 57.33.V − 12.44.bb = 0 

                                            101.39.V − 14.21.d − 57.33.� − 14.21.b� = 4692 

103.084.e − 9.95.� − 72.6.b/ − 9.95.b� = 370.44 

                94.757.b/ − 11.057.c − 72.6.e − 0.043.bb − 11.057.bd = 0 

82.253.bb − 12.44.� − 0.043.b/ − 57.33.b� − 12.44.b� = 0 

101.39.b� − 14.21.V − 57.33.bb − 14.21.bc = 4692 

                                            103.084.b� − 9.95.e − 72.6.bd − 9.95.b� = 370.44 

22.114.bd − 11.057.b/ − 72.6.b� − 0.043.b� − 11.057.bV = 0 

82.253.b� − 12.44.bb − 0.043.bd − 57.33.bc − 12.44.be = 0 

101.39.bc − 14.21.b� − 57.33.b� − 14.21.�/ = 4692 

                                              51.542.b� − 9.95.b� − 36.3.bV = 185.22  

             47.3785.bV − 11.057.bd − 36.3.b� − 0.0213.be = 0 

41.126.be − 12.44.b� − 0.0213.bV − 28.665.�/ = 0 

                                                   50.695.�/ − 14.21.bc − 28.665.be = 2346  

With this set of equations the temperatures can be determined. Using Mathcad, noting 
that the results are tabulated in the final column with node 1 being listed as 0, node 2 as 
1, and so on. 



60 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

; 
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50. Write the node equations for describing heat transfer through the buried waste shown 
in Figure 2-67.     
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Solution    

For doing a finite difference analysis the following grid may be used. Then the heat from 

the waste mass per unit depth (1 m) is �IA = 30	 fg ��⁄ �0.2�� = 1.2	fg. Estimate 

that the power or heat to node 1 is 0.6 kW and 0.3 kW to node 2. Using a thermal 
conductivity of 0.52 W/m∙K for earth or soil from Appendix Table B-2, and utilizing 
symmetry in the x-direction, one-half of the neighborhood for node 1 will be 0.05 m 

wide and     or,   for node 1

   Similarly, for the remaining nodes,

     which is for node 2, 

3 1 2 1 600 0
2 2

T T T Tx y
W

y x
κ κ

 − −∆ ∆     + + =     ∆ ∆     

( ) ( )( )3 1
2 10.52 0.26 600 0

2

T T
T T W

− 
+ − + = 

 

( ) ( ) ( )( )1 2 5 20.26 0.52 300 0T T T T W− + − + =
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     which is the node equation 

for node 3  

 

 

 

 

 

 

 

51. Write the node equations for determining the temperature distribution through the cast 
iron lathe slide shown in Figure 2-68.          

( ) ( ) ( ) ( ) ( ) ( )1 3 6 3 4 30.26 0.26 0.52 0T T T T T T− + − + − =

4 3 2 5 74 0T T T T T− − − − =

0

7 6 4 84 12T T T T C− − − =

0

8 7 5 94 12T T T T C− − − =

0

9 82 12T T C− =

0

6 3 7

1
3 6

2
T T T C− − =
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Solution      

A proposed node layout is shown

 

The node neighborhoods are !� = !6 = 1	%&�ℎ, assume the hole has air at 900F with a 
convective heat transfer coefficient of 6 Btu/hr∙ft2∙0F, and the thermal conductivity for 
cast iron may be taken as 22.5 Btu/hr∙ft∙0F From Appendix Table B-2E. Applying an 
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energy balance to node neighborhood 1, the following equation results 

   

Substituting for thermal conductivity and node neighborhood size, 

2.b − .� − .c = 3. 7/W 

For nodes 2 through 6   	 3.� − .� − .� = 3. 7/W 

     	1.044.� − .d = 7. 7/W 

     	2.c − .b − .� − .b/ = 0 

Nodes 7, 8, 11, and 12 require some adjusting. Referring to the sketch for node 7 

 

The energy balance can be approximated by 

which becomes               3.017.� −	.c −	.� − 0.5.V − 0.5.bb = 1.57  

Similarly, for node 8       3.017.V −	.� −	.e − 0.5.� − 0.5.b� = 1.57 

And for nodes 11 and 12  3.017.bb −	.b/ −	.b� − 0.5.b� − 0.5.� = 1.57 

                                          3.017.b� −	.bc −	.b� − 0.5.bb − 0.5.V = 1.57 

The remaining node equations are straightforward energy balances and are, 

For node 9  33.022.e −	.d −	.V − .b� = 1.956/W 

( ) ( ) ( )22 1 6 1 1000 / 0T T T T x Btu hr ftκ κ− + − + ∆ ⋅ =

( ) ( ) ( ) ( ) ( )0

6 7 2 7 8 7 11 7 790 0
2 2 2 2

y y y x x
T T T T T T T T h F T

x x x y

π
κ κ κ κ ∞

∆ ∆ ∆ ∆ ∆ − + − + − + − + − = ∆ ∆ ∆ ∆  
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For node 10  3.b/ −	.c −	.bb − .bd = 0 

For node 13  33.022.b� −	.e −	.b� − .b� = 1.956/W 

For node 14  3.bd −	.b/ −	.b� − .�/ = 0 

For node 15  4.b� −	.bb −	.bd − .bc −	.�b = 0 

For node 16  4.bc −	.b� −	.b� − .b� −	.�� = 0 

For node 17  3.511.b� −	.b� −	.bc − .�� −	0.5.bV = 0.978/W 

For node 18  2.022.bV −	.b� −	.be − .�d = 1.956/W 

For node 19  1.533.be − 	0.5.bV − .�� = 1.934/W 

For node 20  2.�/ −	.bd − .�b = 0 

For node 21  3.�b −	.b� −	.�/ − .�� = 0 

For node 22  3.�� −	.bc −	.�b − .�� = 0 

For node 23  33.�� −	.b� −	.�� − .�d = 0 

For node 24  3.�d −	.bV −	.�� − .�� = 0 

For node 25  2.022.�� −	.be −	.�d = 2/W 

 

52. A concrete chimney flue is surrounded by a Styrofoam insulator as shown in Figure 2-69. 
Construct an appropriate grid model and then write the node equations to determine 
the temperature distribution.     
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Solution    

Assume symmetry for the chimney so that only one quarter of the section needs to be 

considered, as shown in the sketch 

 

Writing the energy balance for node 1     

 

Which can be reduced to 2.b − 0.5.� − .� = 65/0 

Fore node 2   4.� − .b −	.c − .� = 130/0 

For node 3   4.� − .� − .d −	.� = 130/0 

For node 4   2. 25.d − .� − .V = 32. 5/0 

For nodes 5 through 9 the Styrofoam impacts the energy balance so 

  Also, since the 
boundary temperature between the Styrofoam and the concrete is not yet known we 

write   Solving this equation for Ts 

and substituting back into the node equation gives 

   h1.5 +	 ijklimnop	ijklq.� − 0.5.b − .c 	= 	 ijklimnopijkl �30/ 

5 11 2 1130
0

2 2
con con con

T TT T Tx x
y

y x y
κ κ κ

   −− −∆ ∆ + ∆ + =    ∆ ∆ ∆    

1 5 6 5 30
0

2 2 2
con con sty

T T T Tx x T
y

y x y
κ κ κ

  − −∆ ∆ − + ∆ + =    ∆ ∆ ∆    

5

30 5

30

2 2 2 2

s s
con sty

C node

T T Tx x

y y
Q κ κ

−

   − −∆ ∆
= =   ∆ ∆   

i
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For node 6  h3 +	 ijklimnop	ijklq.c − .� − .� 	− 	.� 	= 	 ijklimnopijkl �30/ 
For node 7  h3 +	 ijklimnop	ijklq.� − .V − .c −	.� 	= 	 ijklimnopijkl �30/ 
For node 8  h3 +	 ijklimnop	ijklq.V − .� − .d 	− 	.e =	 ijklimnopijkl �30/ 
For node 9  h1 +	 ijklimnop	ijklq.e − .V 	= 	 ijklimnopijkl �30/ 

 

53. Consider the chimney flue of Figure 2-69. If the Styrofoam is removed and the outer 
boundary condition is the same, write the necessary node equations and solve for the 
node temperatures. What is the heat transfer through the chimney flue?    

           

Solution     

Using the same node arrangement as for Problem 2-52 and referring to the sketch, the 

node equation for node 1 is  2.b − 0.5.� − .� = 65/0 

For node 2  4.� − .b − .� 	−	.c 	= 130/0 

For node 3  4.� − .� − .d 	− 	.� 	= 130/0 

For node 4  2.25.d − .� 	− 	.V 	= 32. 5/0 

For node 5  2.5.� − 0.5.b 	− 	.c 	= 15/0 

For node 6  5.c − .� − .� 	− 	.� 	= 60/0 

For node 7  5.� − .� − .c 	− 	.V 	= 60/0 
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For node 8  5.V − .d − .� 	− 	.e 	= 60/0 

For node 9  3.e 	−	.V 	= 60/0 

The heat transfer can be approximated by the equation 

8rXIb�� + XI��c + XI��� + XId�Vs which can be written 

XIYZY[t = 8u	v0.5.b + .� + .� + .d − 0.5.� − .c − .� − .Vw 
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54. Write the node equations for the nodes 1 and 2 of the model of the oak beam sketched 
in Figure 2-32.         
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Solution      

The model of the round beam is such that axial symmetry is assumed so that a 
hemispherical section will suffice for nodes. In Figure 2-32 the node numbering scheme 
follows the pattern of number 1 is in the center, 2, 3, and 4 are radially outward to the 
outside surface. Then on a 22.50 rotation numbers 5, 6, and 7 occur. On the next 22.50 
rotation numbers 8, 9, and 10 occur. Continuing in this pattern there are three nodes at 
every 22.50 rotation for the first 28 nodes. On the next hemisphere axially parallel to the 
first hemisphere node number 29 will be on the center position with numbers 30. 31. 
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And 32 outward. Again at a 22.50 rotation numbers 33, 34, and 35 occur. Continuing, the 
pattern is such that nodes on the hemisphere parallel to the succeeding hemisphere will 
have a number of the previous node plus 28. Thus, node 2 will be adjacent to nodes 29, 
axially, and also to nodes 3, 5, and 1. This model is sketched. Node 1 has nine (9) 
adjacent radial nodes; 2, 5, 8, 11, 14, 17, 20, 23, and 26. Node 1 also has an adjacent 
node on the axis, number 29. This model is sketched.  

 

For node 2 there four adjacent nodes with the thermal resistances of 

(?J,b�� =	 cdiPxy  ,    (?J,��� =	 ��iPxy    ,   (?y,�/�� =	 xy
iPT zz{UhJ>�|}>~ q =	 cdiPxy,   and     

(?�,��� =	 T�~xJU�P V⁄ 
�xy �⁄ xJ  = 

�Pbcxy          so that the node equation for node 2 can be formed. 

Noting that XI = 	!. (?�  the node equation becomes 

 

 

 

( ) ( ) ( ) ( )1 2 3 2 30 2 5 2

3 16
0

64 32 64 3

z r z
T T T T T T T T

κπ κπ κπ
π

∆ ∆ ∆
− + − + − + − =
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The thermal resistances for conduction between node 1 and 3, 5, 8, 11, 14, 17, 20, 23, 

and 26 are 

   and 

  and for node 

29 to 1    and the node equation or energy balance for node 1 is 

 

 

55. Figure 2-70 shows a section of a large surface plate used for precision measurements. A 
person touches the surface and thereby induces heat transfer through the plate. 
Neglecting radiation involved, write the node equations for nodes 1, 5, and 12.      

 

Solution    

The sketch of the granite surface plate is shown. 

,2 1 ,26 1

64
Tr TrR R

zκπ− −= =
∆

,5 1 ,8 1 ,11 1 ,14 1 ,17 1 ,20 1 ,23 1

32
Tr Tr Tr Tr Tr Tr TrR R R R R R R

zκπ− − − − − − == = = = = = =
∆

,29 1 2

8
Tz

z
R

rκπ−

∆
=

∆

( ) ( ) ( )
2

2 26 1 5 8 11 14 17 20 23 1 29 12 7 0
64 32 8

z z r
T T T T T T T T T T T T T

z

κπ κπ κπ∆ ∆ ∆
+ − + + + + + + + − + − =

∆
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For node 1, the energy balance becomes

  

 which reduces to    

In a similar fashion, the node equations are 

    for node 5, and f or node 12 

 

 

56. Write the complete set of node equations for the granite surface plate shown in Figure 
2-70 and estimate the temperature through the plate.      

( )
0

6 11 2 1
1

65
0

2 2

T TF T T Ty y
x h x T T

x y x
κ κ κ ∞ ∞

   −− −∆ ∆  + ∆ + + ∆ − =     ∆ ∆ ∆   

0

1 2 63.035 0.5 99.79T T T F− − =

0

5 4 103.035 0.5 99.79T T T F− − =

12 7 13 17 114 0T T T T T− − − − =
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Solution    

Referring to the sketch for the nodes of the surface plate, shown in the solution to 

Problem 2-55, the twenty node equations become  

3.035.b − 0.5.� − .c = 99.79/W 

	3.035.� − 0.5.b − 0.5.� 	−	.� = 99.79/W 

3.035.� − 0.5.� − 0.5.d 		− .V = 99.79/W 

 	 3.035.d − 0.5.� 			− 0.5.� − .e = 67.29/W 

3.035.� − 0.5.d − .b/ = 99.79/W 

4.c − .b − .� − .bb = 65/W 

4.� −	.c − .� − .V − .b� = 0 

4.V −	.� − .� − .e − .b� = 0 

4.e −	.V − .d − .b/ − .bd = 0 

4.b/ − .e − .� − .b� = 65/W 

4.bb − .b� − .bc − .c = 65/W 

4.b� −	.bb − .� − .b� − .b� = 0 

4.b� −	.b� − .V − .bd − .bV = 0 



77 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

4.bd −	.b� − .e − .b� − .be = 0 

4.b� −	.bd − .b/ − .�/ = 65/W 

2.bc − 0.5.bb − .b� = 32. 5/W 

2.b� − .b� − 0.5.bc − 0.5.bV = 0 

2.bV − .b� − 0.5.b� − 0.5.be = 0 

2.be − .bd − 0.5.bV − 0.5.�/ = 0 

2.�/ − 0.5.be − .b� = 32. 5/W 

This set of 20 x 20 matrix ca be solved with Mathcad 
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57. A plutonium nuclear fuel rod shown in Figure 2-71 has energy generation in the amount 
of 3000 Btu/s∙ft3. For the grid model shown, write the node equations and solve for the 
temperatures. Assume κ = 10 W/m∙K. 
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Solution   

From Figure 2-71, it can be assumed that the heat flow is radially outward and axially 

and angularly and axially symmetrical. The node model is sketched  

 

Then for node 1 the adjacent nodes are 4 and 2 plus a convective heat transfer.  

Referring to the sketch for node 1 

 

The node equation is 

 

Using the following values,   ℎR = 400 �Y`aJ�Y>� 	 , .R = 600/W,			u = 10 ��� =
5.779 �Y`aJ�Y� , !� = b.�b� B�,			*&<	!$ = 1	B�  the following node equation results   

0.56586.b − 0.5.� − 0.0009766.d = 953 

( ) ( )
2 2 2

2 1 4 1
1 3

2 3000 3600 0
2 2 4 4 2 4

T T T Tr z r r Btu z r
h T T x

r z ft hr

π
κ π κπ π∞ ∞

      − −∆ ∆ ∆ ∆ ∆ ∆      + + − + =            ∆ ∆ ⋅             
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A similar analysis for node 2, noting that it has three adjacent nodes, 1, 3, and 5, plus a 

convective heat transfer and energy generation, yielding 

1.79417.� − 0.5.b − 9.75.� − 0.0347.� = 7624.42 

 

For node 3, the energy balance reduces to 

17.727.� − 91.5.� − 0.00684.c = 16119.6 

For node 4, 

1.001954.d − 0.000977.b − 0.000977.� − .� = 1825 

Node 5 is a bit more complicated. Referring to the sketch the node equation becomes 

 

4.015625.� − .d − 3.c − 0.0078125.� − 0.0078125.V = 7300 

Node 6 has three adjacent nodes plus convection and energy generation so its node 

equation is 

20.3.c − 3.� − 0.00684.� − 0.00684.e = 18110.65 

Node 7 energy balance similar to node 4, becomes 

1.001954.� − 0.000977.d − 0.000977.b/ − .V = 1825 

For the node 8 node equation, similar to node 5 

4.015625.V − .� − 3.e − 0.0078125.� − 0.0078125.bb = 7300 
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For node 9, similar to node 6 

20.3.e − 3.V − 0.00684.c − 0.00684.b� = 18110.65 

The energy balance for node 10 is similar to node 7 except it is only one-half as long as 

node 7 and there is no lower surface heat transfer. 

0.500977.b/ − 0.000977.� − 0.5.bb = 912.5 

Node 11 equation is 

1.328.bb − 0.5.b/ − 0.75.b� − 0.0078125.V = 7300 

And Node 12 is 

9.409.b� − 0.75.bb − 0.00684.e = 11578.8 

Using Mathcad for the prediction of the 12 node temperatures, the results are 

 

From the estimated inputs and the set of equations 
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Section 2-7 

58. Determine the heat transfer and fin efficiency for a copper fin shown in Figure 2-72. The 
fin can be assumed to be very long and its base temperature taken as 2000F.        
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Solution      

For very long fins the fin efficiency is 

  where   L = 4 in = 0.333..ft 

    κ = 136.4 Btu/hrftF    From Appendix Table B-2E 

   A = 2 ft x (1/96 ft) = 0.020833 ft
2
 

   h = 70 Btu/hr∙ft
2
 ∙F 

   P = perimeter = 4.020833 ft 

Then   0. 30 = 30% 

The heat transfer of the fin is  

 

 

59. A square bronze fin, 30 cm wide. 1 cm thick, and 5 cm long is surrounded by air at 270C 
having a convective heat transfer coefficient of 300 W/m2 ∙K. Determine the fin tip 

temperature, the fin heat transfer, and the fin efficiency.   

 

 

 

1
fin

A

L hP

κ
η =

( )( ) ( ) ( )( )( )0

0
0.30 200 80 0.30 70 120 3393.5 /fin shA F Btu finQ Qη= = − = =

i i
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Solution   

For a finite length fin the temperature distribution is given by the equation 

  

For this fin     h = 300 W/m
2
K 

  κ = 114 W/m∙K 

  fin thickness, Y = 0.01 m,        fin width W = 0.3 m 

  fin length  L = 0.05 m 

  perimeter,  P = 2W + 2Y = 0.62m  ,     Area,  A = WY = 0.003 m
2 

 

60. A square aluminum fin having base temperature of 1000C, 5 mm width, and 5 cm length 
is surrounded by water at 400C. Using h of 400 W/m2∙K, compare the heat transfer of 
the fin predicted by the three conditions: a) very long fin, b) adiabatic tip, and c) uniform 

convection heat transfer over the fin, including the tip. Assume a width of 1 m.        

Solution  

From the Appendix Table B.2,  κalum = 236 W/m∙K   Also, 

Θ0 = 100 -40 = 60 K,     T∞ = 40
0
C,    h = 400 W/m

2
∙K,   t = 0.005 m,   L = 0.05 m,   W = 1 m 

P = 2t + 2W + 2W= 2.01 m,   A = tW = 0.005 m
2,    and 

� =	��ℎuG = 26.1	��b 

For the very long fin, a)  XI�LO = "/√ℎ�uG = 1848	g 

For a fin with an adiabatic tip,            XI�LO = "/√ℎ�uGtanh	��F = 1595	g 

For a finite length fin, 

               

( ) ( )
( ) ( )

0 0

cosh sinh

cosh sinh

h
m L x m L x

mx T x T
h

mL mL
m

κ

κ

 − + −       
Θ = − = Θ  

 +
 

0

sinh

1624

cosh sinh
fin

h
mL coshmL

mLQ hP A W
h

mL mL
mL

θ κ

 + 
= = 

 +
 

i
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61. Show that the fin heat transfer for a square fin having an adiabatic tip is 

     

Solution        

For a square fin with an adiabatic tip the temperature distribution is 

   The heat transfer is 

   and 

     At x = 0 this is 

   The fin hat transfer is 
then 

   but                 so that 

     

 

62. Show that the heat transfer for a fin that is square and has fin tip convective heat 

transfer coefficient hL can be written 

      

Solution 

For square fin with convective heat transfer coefficient hL at the tip, the temperature 

distribution is 

tanh
0

mL
finQ hP Aθ κ=

i

( ) ( )
( )

0

cosh

cosh

m L x
x T x T

mL
θ θ∞

−  = − =

0 0x x

T
Afin x x

Q A θ
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=−
i
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The fin heat transfer is 

     Also 

  Since     � = ��ai� 

     

 

63. Derive an expression for the heat transfer from a tapered fin having base of Y thickness, 
L length, κ thermal conductivity, h0 convective coefficient, and T0 base temperature. The 
surrounding fluid temperature is T∞ .                                                

Solution  

Referring to the sketch, 

( ) ( )
( ) ( )

0

cosh sinh

cosh sinh

L

L

h
m L x m L x
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m
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6 = � T1 − �FU 

From a heat balance through the fin 

 where " = . −	.R																	"/ =	./ −	.R 

� = 26 + 2g	 ≈ 2g      for   y «   W.                                 Then 

   Using  X = L – x    and   C = 

2h9L/κY    

   with two boundary conditions:   B.C. 1, θ = θ0    @ X = L    

      ”       B.C. 2,  θ = 0 @  = 0  

Now, assuming a series solution so that 

  From B.C. 2,  c0  =  0  and 

then 

         for the second derivative 

2

02

d
A h P
dx

θ
κ θ=

( ) ( )

2

0 0

2

2 21 h WL h Ld

dx WY L x Y L x

θ
θ κ κ

= =
− −

2

2

1 d C

dx X

θ
θ

− =

2 3 4 5

0 1 2 3 4 5 ... ...n

nc c X c X c X c X c X c Xθ = + + + + + + + +

2 3 4 5

1 2 3 4 5 ... ...n

nc X c X c X c X c X c Xθ = + + + + + + +
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Using the differential equation   − ^>�^@> =	 �� "   we get 

 

Comparing coefficients,   2�� = −0�b															9�											�� = − �� �b 

   ,   6�� = −0��															9�											�� = �>b� �b 

   ,   12�d = −0��															9�											�d = − ��bdd �b 

   20�� = −0�d															9�											�� = �~�VV/ �b            and so on… 

For C less than or equal to 1.0, using the first four terms is suitable as higher terms will 

be significantly smaller.  Then, 

   and using B.C.1 

   Solving this for c1 and substituting 

  

 

64. Show that the fin effectiveness is related to the fin efficiency by the equation 

 

Solution       

For a fin and a base area between succeeding fins, the fin effectiveness is 

2
2 3 4 5 6 7 8

2 3 4 5 6 7 8 9 102
2 6 12 20 30 42 56 72 90 ...

d
c c X c X c X c X c X c X c X c X

dx

θ
= + + + + + + + + +

( )2 3 4 5 2 3 4 5
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 where 

 

Where        G? = G�LO + G�[�_ 

Also, 

     And 

   Substituting into the effectiveness equation 

   Cancelling the h’s, θ0’s, 
and rearranging, 

    

 

65. A circumferential steel fin is 8 cm long, 3 mm thick, and is on a 20 cm diameter rod. The 
surrounding air temperature is 200C and h = 35 W/m2K, while the surface temperature 
of the rod is 3000C. Determine a) Fin Efficiency and b) Heat transfer from the fin.           

Solution 

Referring to Figure 2-41 

L = 8 cm = 0.08 m,     r1 = 0.1 m,   y = 3 mm = 0.003 m,    r2 = L + r1,   LC  = L + y/2 = 0.0815 

m,  r2C  = r1 + LC  = 0.1815 m,  and   Am = y(r2C   - r1)  = 0.0002445 m
2      Using a thermal 

conductivity of 43 W/mK for steel from Appendix Table B-2 

              and        .   Then, from Figure 2-41, 

a)     η fin    ≈ 44 % 

0
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Q Q
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i i

i
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b)    

 

 

66. A bronze rod 1 cm in diameter and 30 cm long protrudes from a bronze surface at 
1500C. The rod us surrounded by air at 100C with a convective heat transfer coefficient 

of 10 W/m2K. Determine the heat transfer through the rod.         

Solution    

 

Assume the bronze has the same thermal conductivity as brass, 114 W/mK from 
Appendix Table B-2. Some of the other parameters are: h = 10 W/m2 K, T∞ = 100C, T0 = 
1500C, 

Θ0 = T0 - T∞ = 140
0
C,    P = πD = 0.0314159 m,   A = πr

2
 = 0.00007854 m

2
, and 

    and using the case III fin equation, the finite length fin,  
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67. A circumferential cast iron fin attached to a compressor housing is 1 inch thick, 3 in long, 
3 in diameter, and the convective heat transfer coefficient is 16 Btu/hr∙ft2∙ 0F. If the base 
temperature is 1600F and the surrounding air is 800F, determine the fin efficiency and 

the heat transfer through the fin.        

Solution                 

Referring to Figure 2-41, the following parameters are:       r1 = 1.5 in = 1.25 ft,   r2 = 

0.375 ft,    L = 0.125 ft,   y = 0.0833..ft, 

LC  = L + y/2 = 0.1666…ft,   r2C  = r1  + LC  = 0.291666…ft,   Am  = y(r2C  - r1)  = 0.01388 ft2 , 

r2C/r1  = 2.333,   and    .      From Figure 2-41 

ηfin  ≈ 82%.     The heat transfer is 

 

 

68. A handle on a cooking pot can be modeled as a rod fin with an adiabatic tip at the 
farthest section from the attachment points. For the handle shown in the sketch, 
determine the temperature distribution and the heat transfer through the handle if the 
pot surface is 1900F, the surrounding air temperature is 900F, and the convective heat 

transfer coefficient is 160 Btu/hr∙ft2 ∙0F.       

Solution      

 

Treating this handle as a fin with an adiabatic tip, the important parameters are:  
Thermal conductivity of 22.5 Btu/hr∙ ft2 ∙ 0F  from Appendix Table B-2E,  L = πr/2 = 
π(3/24) ft = 0.3927 ft,  P = π(1/12) ft = 0.2618 ft,   A = π(1/12)2 (1/4) = 0.005454149 ft2  , 

and        For an adiabatic tipped fin, 

3/2 0.486C

m

h
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At the extreme outer point of the handle, 

       or 

T = 90.14128
0
F 

The heat transfer through the fin is 

   

Since the handle has two fins, so to speak, 

 

 

69. An aluminum fin is attached at both ends in a compact heat exchanger as shown.  For 
the situation shown, determine the temperature distribution and the heat transfer 
through the fin.      

Solution 

 

For the fin 

 with boundary conditions,  B.C. 1     " = "b = .b − .R = 180/W			@		� = 0 

            B.C. 2     " = "� = .� − .R = 160/W			@		� = F 

From this equation and the boundary conditions Equation 2-114 is 

( ) ( ) ( )
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     where   L = 0.2 m,   

 

And then mL = 2.6   so that 

  The 

maximum or minimum temperature occurs at the location predicted by Equation 2-115, 

   Using x = 0.1079 m in the above equation 
for the temperature distribution,  

The fin heat transfer is the sum of the two adiabatic stems 

 

 

70. For the tapered fin shown, determine the temperature distribution, the fin efficiency, 

and the heat transfer through the fin.      

Solution 

Referring to the figure, 

 

The following parameters are known:   L = LC  = 0.06 m,       Y  =  0.02 m,  Am  = LY/2  = 

0.0006 m
2
 , 

Κ = 236 W/mK,    h = 1000 W/m
2
 ∙K,  and 

  From Figure 2-40,        ��LO 	≈ 62%     and the heat transfer is 

( ) { } { }2

1 2 2 12

1

1

mL mL mx mL mx

mL
x e e e e e

e
θ θ θ θ θ− = − + − −

( ) ( )
( ) ( )

1

2

100 0.01
13

236 0.005

mhP
m m

A

π
κ π

−= = =

( ) ( ) { } { }5.2 2.6 13 2.6 13

5.2

1
100 180 160 160 180

1

x xx T x e e e e e
e

θ − = − = − + − −

2

1 2

2 1

1
ln 0.1079

2

mL mL

m mL

e e
x m

m e

θ θ
θ θ

 −
= = − 

0

min 186.08imumT C=

( )
1 2

180 tanh (0.1079m) 160 tanh 0.2 0.1079 70.63
fin fin fin

hP A m hP A m m WQ Q Q κ κ= + = + − =
i i i

3/2 1.235C

m

h
L

Aκ
= =



94 

© 2016 Cengage Learning®. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

 

71. Determine the expected temperature drop at the contact between two 304 stainless 
steel parts if the overall temperature drop across the two parts is 1000C. 

Solution 

 

From Table 2-12, using a value for thermal contact 

resistance of 304 stainless at 200C, 
assuming it will be unchanged at 1000C,  0.000528 m2 ∙ 0C/W,  then 

then 

 

  

72. A mild steel weldment is bolted to another mild steel surface. The contact pressure is 
estimated at 20 atm and the expected heat transfer between the two parts is 300 
Btu/hr∙in2. Estimate the temperature drop at the contact due to thermal contact 

resistance.     
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Solution     

 

The temperature drop across the contact surface is 

   The thermal contact resistance, from 
Table 2-12, is 

  so that 

 

 

73. For Example Problem 2-26, estimate the temperature drop at the contact surface if the 
heat transfer is reduced to 3 Btu/hr∙ft2.        

Solution        

The thermal contact resistance of the concrete block/Styrofoam for Example 2-26 is 
2.152 hr∙ft2 ∙0F/Btu. If the heat transfer is reduced to 3 Btu/hr∙ft2, the temperature drop 

will be, 
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74. A guarded hot plate test results in the following data: 

 

Estimate the thermal conductivity of the test material. 

Solution 

The arithmetic averages are 

Amps = 0.05133 ,   volts = 8.6,    thermocouple 1 = 2.6677 mv,   thermocouple 2 = 2.7753 
mv. 

The average power is = amps∙volts = 0.44147 W. The average millivolt difference 
between 1 and 2 is 0.10756 mv. For a 220C /mv setting, the average temperature 

difference will be 2.366 0C. From Fourier’s law 

   For a sample thickness of 2 cm (0.02 m) and a test area of 
0.01 m2 

 

 

75. A stem line has an outer surface diameter of 3 cm and temperature of 1600C. If the line 
is surrounded by air ate 250C and the convective heat transfer coefficient is 3.0 W/m2∙K, 
determine the heat transfer per meter of line. Then determine the thickness of asbestos 

insulation needed to provide insulating qualities to the steam line.     

Solution        

The heat transfer is by convection so 
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The critical radius of insulation needed to make the convection equal to the conduction 

through the line is 

  

 

76. Electric power lines require convective cooling from the surrounding air to prevent 
excessive temperatures in the wire. If a 1 inch diameter line is wrapped with nylon to 
increase heat transfer with the surroundings, how much nylon can be wrapped around 
the wire before it begins to act as an insulator? The convective heat transfer coefficient 

is 5 Btu/hr∙ft2 ∙0F.    

Solution    

The critical thickness determines how much insulation wrapped around a cylinder 

decrease heat transfer. Using properties of Teflon from Appendix Table B-2E, 

 

 

77. Estimate the temperature distribution through a bare 16 gauge copper wire conducting 
1.5 amperes of electric current if the surrounding air is at 100C and the convective heat 
transfer coefficient is 65 W/m2∙K.       

Solution  

Equation 2-123 will predict the temperature distribution through the wire. 

    

Here .R = 10/0											ℎ/ = 65g ���⁄ ,								u = 400	g ��⁄   from Appendix Table B-

2. Then, from Appendix Table B-7,       �/ = 25.41	�%+� = 0.0006454	� 

G/ = 2,583	�%�.�%+� = 16.664	�	10��	�� 

(_ = 4.016	 9ℎ�� 1000B�⁄ = 13.1756	�	10��9ℎ��/� 

The energy generation is 
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The temperature 

distribution is 

   and 

  where r0  = 0.0006454 m 

At the center, where r = 0  T(r)  = 10.088305
0
C 

And at the outer surface, here r = r0             T(r)  = 10.0883
0
C 

 

78. Aluminum wire has resistivity of 0.286 x 10-7 ohm-m where resistivity is defined as ohm-
area/length. Determine the temperature distribution through an aluminum wire of ¼ 
inch diameter carrying 200 amperes of current if it is surrounded by air at 800F and with 

a convective heat transfer coefficient of 200 Btu/hr∙ft2∙0F.     

Solution  

Equation 2-123 predicts the wire temperature distribution 

   Here ,      .R = 80/W,											ℎ/ = 200	��,/ℎ�B��/W 

r0   = 1/8 in = 0.0104 ft,      κ = 136.4 Btu/hr∙ft∙
0
F,      I = 200 amps,    A0   =  0.00034 ft

2 

  and 

  
then 
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or 

 

T(r) = 82.902
0
F at the center, r  0 

T(r) = 82.88
0
F at the surface, r = r0 

 

79. Determine the temperature distribution through a uranium slab shown. Assume energy 
generation of 4,500 Btu/min∙ft3 and the slab is surrounded by water at 1900F with a 
convective heat transfer coefficient of 450 Btu/hr∙ft2 ∙0F. Use a value of 21.96 

Btu/hr∙ft∙0F for thermal conductivity of uranium.       

Solution  

Using the figure shown and the governing equation for one-dimensional conduction 

heat transfer with energy generation 

 

     with two boundary conditions: B.C.1 

( ) 0 282.902 203.16T r F r= −

2
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e
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i
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   at x 
= 0 

And  
^?^@ = 0												@					� = F/2 

Separating variable once gives, 

   and then again 

        From B.C. 1 

    at x = 0. This means that C2 = 252.5
0
F 

From B.C. 2  

  so that the temperature distribution becomes 

 

At the center of the slab, where x = 1.25 in = 0.104 ft,   T = 319.18
0
F 

 

80. Plutonium plates of 6 cm thickness generate 60 kW/m3 of energy. It is exposed on one 
side to pressurized water which cannot be more than 2800C. The other surface is well 
insulated. What must the convective heat transfer coefficient be at the exposed 

surface?  

Solution  

Using the governing energy balance equation  

     With   B. C. 1,    
^?^@ = 0										@			� = 0 
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      B.C. 2  -IA_OF = ℎ/�. − .R         @ x = L 

Separating variables and integrating 

 

 

And separating variable once more, integrating gives, 

   From B.C. 1 C1 = 0 
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