Chapter 4 – Continuity

Section 4.1

- 2. (a) No, f is not continuous at x = 0, thus not continuous at every point in the interval.
 - (b) Yes, f is right continuous at every point in the interval.
 - (c) Yes, f is continuous at every point in the interval.
- 3. (a) The function x-1 is continuous on \Re . The function |x| is also continuous on \Re by verifying this or using Exercise 5(a). Then, by Theorem 4.1.9, so is f.
 - (b) Since x = 0 is the only accumulation point of the domain D, f is automatically continuous at all $x = \pm \frac{1}{n}$, $n \in \mathbb{N}$. Since $x = 0 \notin D$, f is not continuous at 0.
 - (c) If $x \ne 0$, then f(x) is a quotient of 2 continuous functions and thus, continuous. Observe that f is continuous at x = 0 because $\lim_{x \to 0} \frac{\sin x}{x} = 1 = f(0)$. See Remark 3.2.11. Hence, f is continuous on \Re .
 - (d) If $x \ne 0$, then f(x) is continuous by Theorem 4.1.9. At x = 0, f is continuous because $\lim_{x \to 0} f(x) = 0 = f(0)$.
 - (e) Same as in part (d).
 - (f) By Remark 4.1.5, f is continuous on $\Re \setminus \{1\}$.
 - (g) By Remark 4.1.11, part (e), f is discontinuous at every integer.
 - (h) By Example 4.1.4, f is continuous on $\Re \{0\}$, and by Remark 4.1.11, part (e), f is discontinuous at r = 0
 - (i) Since f is a quotient of 2 continuous functions, it is continuous on $(0, \infty)$.
 - (j) Note that every $a \in \mathbb{R}$ is an accumulation point of the domain $D = \Re$ for the function f. To show that f is not continuous at any real x = a, use Remark 4.1.11, part (c), with x_n being rational numbers tending to a, and t_n being irrational numbers tending to a. Then, $\{f(x_n)\}$ converges to 1, and $\{f(t_n)\}$ converges to -1.
 - (k) If $x \neq 0$, then f is a composition of continuous functions and thus, f is continuous. Since $\lim_{x\to 0} f(x) = \lim_{x\to 0} \exp\left(-\frac{1}{x^2}\right) = \lim_{t\to\infty} \exp\left(-t^2\right) = \lim_{t\to\infty} \frac{1}{\exp\left(t^2\right)} = 0 = f(0)$, f is continuous at x = 0. Hence, f is continuous on \Re .
- **4.** (a) The functions f and g are not continuous at x = 0 by using Remark 4.1.11, part (c), with $x_n = \frac{1}{n}$ and $t_n = \frac{\sqrt{2}}{n}$.
 - **(b)** Using Example 4.1.4, f is continuous at $x = \frac{1}{2}$ because f(x) = 1 x on $\left(\frac{1}{3}, 1\right) \setminus \left\{\frac{1}{2}\right\}$. Since $\lim_{x \to \frac{1}{2}} g(x) = \frac{1}{2} = g\left(\frac{1}{2}\right)$, g is continuous at $x = \frac{1}{2}$.
- 5. (a) By part (b) of Corollary 1.8.6, $\lim_{x \to a} |x| = |a|$. Therefore, $g(x) = |x| : \Re \to \Re^+$ is continuous, with

54 Section 4.1

- $f(D) \subseteq \Re$. Thus, by Theorem 4.1.9, |f(x)| is continuous.
- (b) Similar to part (a). If the definition is used, consider cases when f(a) = 0 and when $f(a) \neq 0$.
- (c) $\max\{f,g\} = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$. Now apply Theorem 4.1.8 and part (a) of this exercise.
- (d) Similar to part (c).
- (e) Note that $\lim_{x\to a} x^n = a^n$, by Example 4.1.4. Thus, $[f(x)]^n$ is continuous functions by Theorem 4.1.9.
- **6.** (a) $f(x) = \operatorname{sgn} x$ on [-1, 2] is bounded but not continuous at x = 0.
 - **(b)** $f(x) = \frac{1}{x}$ on (0,1) is continuous but not bounded.
 - (c) f(x) = 1 for x rational, and f(x) = -1 for x irrational, is discontinuous at every point, but $[f(x)]^2 = 1$ and thus, continuous.
 - (d) f(x) = 1 for $x \ge 0$ and f(x) = -1 for x < 0, and g(x) = -f(x), are both discontinuous on (-1,2), but (fg)(x) = -1, which is continuous on (-1,2).
 - (e) Suppose $f(x) = \operatorname{sgn} x$ on (-1,2) and g(x) = -f(x). Then, f and g are not continuous on (-1,2) since they are both discontinuous at x = 0 but, (f + g)(x) = 0, therefore, continuous.
 - (f) Suppose $f(x) = \begin{cases} |x|, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases}$ and $g(x) = \begin{cases} 1, & \text{if } x \leq 0 \\ -1, & \text{if } x > 0. \end{cases}$ Both, f and g are discontinuous on (-1,2) but, $(f \circ g)(x) \equiv 1$, therefore, continuous.
 - (g) The statement is true because g = (f + g) f, which is a difference of two continuous functions.
 - (h) Consider f(x) = 0 on (-1,2), and g(x) = 1 for $0 \le x < 2$, and g(x) = -1 for -1 < x < 0. Then, (fg)(x) = 0, and therefore, continuous on (-1,2).
 - (i) If f(x) = 1 for $0 \le x < 2$, and f(x) = -1 for -1 < x < 0, then |f(x)| = 1, which is continuous on (-1,2).
 - (j) The function $\frac{f(x)}{g(x)} = \sin x$ is continuous on $\Re \setminus \{0\}$. It is not defined at x = 0 and thus not continuous on \Re .
 - (k) True, here is a proof. (Also, see Theorem 3.2.6, part (b).) Let $\varepsilon > 0$ be given. Since f is continuous at x = c, that is, $\lim_{x \to c} f(x) = f(c)$, there exists $\delta > 0$ such that $|f(x) f(c)| < \varepsilon$ whenever $|x c| < \delta$. Let $\{x_n\}$ be an arbitrary sequence converging to c with $x_n \in [a, b]$. Then there exists $n_1 \in N$ such that $|x_n c| < \delta$ if $n \ge n_1$. To prove $\{f(x_n)\}$ converges to f(c), we need to find $n^* \in N$ so that $|f(x_n) f(c)| < \varepsilon$ if $n \ge n^*$. To this end, choose $n^* = n_1$. Then if $n \ge n^*$ we have $|x_n c| < \delta$, which in turn gives $|f(x_n) f(c)| < \varepsilon$. Hence, $\lim_{n \to \infty} f(x_n) = f(c)$.

Note that the continuity of f is essential. Without it the statement is false. See Exercise 31 in Section 3.4 for a counterexample.

(1) True, here is a proof. Suppose f is defined on [a,b] and suppose that for any sequence $\{x_n\}$ in [a,b] converging to $c \in [a,b]$, we have that $\{f(x_n)\}$ converges to f(c). To prove f is continuous at x = c, we assume to the contrary. Thus, suppose $\lim_{x\to c} f(x) \neq f(c)$. Using Remark 4.1.11, part (b), there exists $\varepsilon > 0$ and a sequence $\{t_n\}$ in [a,b] converging to c such that $|f(t_n) - f(c)| \ge \varepsilon$. Thus, there exists $\delta > 0$ such that $|f(t_n) - f(c)| \ge \varepsilon$ if $|t_n - c| < \delta$. Hence, $\lim_{n\to\infty} f(t_n) \neq f(c)$, which contradicts the

hypothesis.

- (m) Consider $f(x) = \frac{1}{x}$ on D = (0,1], and $x_n = \frac{1}{n}$. Then, $\{x_n\}$ converges to 0 but, $f(x_n) = n$ and therefore, $\{f(x_n)\}$ diverges to $+\infty$.
- (n) Consider $f(x) = \sqrt{x}$ and a = 0. Then, f is continuous at x = 0, $f(0^+) = 0$, but $f(0^-)$ does not exist.
- 7. (a) We only need to show that f(x) = c if x is irrational and $x \in (a, b)$. To this end, let x_0 be an arbitrary irrational value in (a, b), and let $\{r_n\}$ be a sequence of rational values in (a, b) which converges to x_0 . This is possible because irrationals and rationals are dense in \Re , and thus, in (a, b). Since f is continuous, by Exercise 5(k), the sequence $\{f(r_n)\}$ converges to $f(x_0)$. But, $f(r_n) = c$ for all n. Therefore, the sequence $\{f(r_n)\}$ converges to c. Due to the uniqueness of the limit, $f(x_0) = c$. (Note that "rational r in (a, b)" can be changed to "any dense subset of (a, b).")
 - (b) No, f is not defined at irrational values of (-2,3) and thus, not continuous at these values. However, f is continuous on S. Also, $\lim_{x\to a} f(x) = 5$ for any $a \in (-2,3)$.
- 8. (a) Proof of part (a) of Theorem 4.1.7. Suppose that f is continuous at $x = a \in D$. Then there exists $\delta > 0$ such that |f(x) f(a)| < 1 whenever $|x a| < \delta$ and $x \in D$. Thus, if $x \in (a \delta, a + \delta) \cap D$, by Exercise 14(a) of Section 1.8, we have, -1 < f(x) f(a) < 1, which gives f(a) 1 < f(x) < f(a) + 1. Thus, for $x \in (a \delta, a + \delta) \cap D$ we have -|f(a)| 1 < f(x) < |f(a)| + 1, or equivalently, |f(x)| < |f(a)| + 1 and thus bounded "near x = a."

Proof of part (d) of Theorem 4.1.7. Since f is continuous at a, there exists $\delta > 0$ such that $|f(x) - f(a)| < \frac{f(a)}{2}$ if $|x - a| < \delta$. Then, $-\frac{f(a)}{2} < f(x) - f(a) < \frac{f(a)}{2}$, from which the desired conclusion follows.

(b) Since f is continuous at c, there exists $\delta > 0$ such that $|f(x) - f(c)| < \frac{|f(c)|}{2}$ if $|x - c| < \delta$. We will show that if $|x - c| < \delta$, then f(x) > 0, by assuming to the contrary. Thus, suppose that there exists x^* such that $|x^* - c| < \delta$ and $f(x^*) \le 0$. But, f(c) > 0, which gives $f(x^*) \le 0 < f(c)$. Since the distance of f(c) to 0 is less than the distance of f(c) to $f(x^*)$, we write $|f(x^*) - f(c)| > |f(c) - 0| = f(c)$. But, this contradicts our hypothesis. Hence, if f is continuous and positive at x = c, then it is positive on a small neighborhood of c.

Continuity is essential in this problem. If f is not continuous, the statement is false. Choose, for example, f(x) = 1 for x rational and f(x) = -1 for x irrational with c = 2. Certainly, f(2) = 1 > 0 but, every neighborhood of 2 contains irrational values at which the functional values are negative.

- 9. Define h = f g, which is continuous by Theorem 4.1.8, part (a). Also, h(c) = f(c) g(c) > 0. Thus, by part (e) of Theorem 4.1.7, there exists $\delta > 0$ such that for $x \in (a, b)$ with $|x c| < \delta$, we have h(x) > 0. Hence, f(x) > g(x) for such values.
- 10. (a) f(x) = 1 for x rational, and f(x) = -1 for x irrational

(c)
$$f:[-2,2] \to \Re$$
, defined by $f(x) = \begin{cases} x^2 - 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$

11. (a) Case 1. Suppose that b = 1. Then, f(x) = 1, and the conclusion follows.

Case 2. Suppose b > 1 and a = 0. We will prove that $\lim_{x \to 0} b^x = 1$ using Theorem 3.2.6, part (b).

To start, recall Exercise 14 in Section 2.1 where we proved that $\lim_{n\to\infty}b^{\frac{1}{n}}=1=b^0$. Now, let $\left\{x_n\right\}$ be any sequence that converges to 0 and let $\varepsilon>0$ be given. We need to find $n^*\in N$ such that $\left|f(x_n)-L\right|=\left|b^{x_n}-1\right|<\varepsilon$ for all $n\geq n^*$. Since $\lim_{n\to\infty}b^{\frac{1}{n}}=1$, there exists $n_1\in N$ such that $b^{\frac{1}{n}}-1<\varepsilon$. Now choose $n^*>n_1$. Then, if $n\geq n^*$ we have $\left|f(x_n)-L\right|=\left|b^{x_n}-1\right|=b^{x_n}-1<\varepsilon^{\frac{1}{n}}-1<\varepsilon$, if $x_n>0$; $\left|f(x_n)-L\right|=\left|b^{x_n}-1\right|=1-b^{x_n}<0$; and $\left|f(x_n)-L\right|=\left|b^{x_n}-1\right|=0<\varepsilon$, if $x_n=0$. Therefore, $\left\{f(x_n)\right\}$ converges to 1, and by Theorem 3.2.6, $\lim_{n\to\infty}b^n=1=b^n$.

Case 3. Suppose b > 1 and $a \ne 0$. Suppose $\{x_n\}$ is an arbitrary sequence that converges to a. Then, by Exercise 6 of Section 2.1, $\lim_{n\to\infty}(x_n-a)=0$. Thus, by case 2, $\{f(x_n-a)\}$ converges to 1. But, $f(x_n-a)=b^{x_n-a}$. Therefore, $\lim_{n\to\infty}b^{x_n-a}=1$. This gives $\lim_{n\to\infty}b^{x_n}b^{-a}=1$, thus $b^{-a}\lim_{n\to\infty}b^{x_n}=1$, by Corollary 2.2.4. This yields $\lim_{n\to\infty}b^{x_n}=b^a$. Hence, Theorem 3.2.6, part (b), yields the desired result.

Case 4. Suppose 0 < b < 1. Then, $\frac{1}{b} > 1$, and by cases 2 and 3 we have $\lim_{x \to a} \left(\frac{1}{b}\right)^x = \left(\frac{1}{b}\right)^a$. But then, employing Theorem 3.2.5 we have $\lim_{x \to a} b^x = b^a$.

We use the just proven result and Theorem 4.1.9 to obtain $\lim_{x\to 2} \frac{3^{4(2)-1}}{5^{3x+1}} = \frac{3^{4(2)-1}}{5^{3(2)+1}} = \frac{3^7}{5^7} = \left(\frac{3}{5}\right)^7$.

- (b) If $g(x) = \ln x$, then h(x) = xg(x) is continuous by Remark 4.1.5 and Theorem 4.1.8, part (b). If $k(x) = e^x$, then k is continuous by Remark 4.1.5, and $f(x) = (k \circ h)(x)$ is continuous by Theorem 4.1.9. Recall that $\exp(x \ln x) = \exp(\ln x^x) = x^x$ for x > 0.
- 12. Let a be any real number. We will prove that $f(x) = \sin x$ is continuous at x = a by showing that $\lim_{x \to a} \sin x = \sin a$. To this end, using Exercise 9 of Section 3.2 and Exercise 22 of Section 3.3, we write,

 $\lim_{x \to a} \sin x = \lim_{h \to 0} \sin(a+h) = \lim_{h \to 0} \left(\sin a \cos h + \cos a \sin h \right) = \left(\lim_{h \to 0} \sin a \right) \left(\lim_{h \to 0} \cos h \right) + \left(\lim_{h \to 0} \cos a \right) \left(\lim_{h \to 0} \sin h \right) = \sin a \cdot 1 + \cos a \cdot 0 = \sin a$. Thus, $f(x) = \sin x$ is continuous on \Re .

Of course there are many proofs of the given statement. Another argument would be this. By Exercise 51 in Section 1.9 and the fact that $\sin x$ is an odd function, we have that $|\sin x| \le |x|$ for all x real. Also, we know that $|\cos x| \le 1$ and $\sin x - \sin t = 2\sin\frac{x-t}{2}\cos\frac{x+t}{2}$ for all $x,t \in \Re$. Thus, for any a real we have that $|\sin x - \sin a| = 2 \left| \sin\frac{x-a}{2} \right| \left| \cos\frac{x+a}{2} \right| \le 2 \cdot \left| \frac{x-a}{2} \right| \cdot 1 = |x-a|$. From here it follows that $\sin x$ is continuous on \Re .

To prove that $\cos x$ is continuous on \Re we can proceed in a similar way to the above argument using the fact that $\cos x - \cos t = -2\sin\frac{x+t}{2}\sin\frac{x-t}{2}$ for all $x,t \in \Re$. Thus, for any a real we have that $\left|\cos x - \cos a\right| = 2\left|\sin\frac{x+a}{2}\right| \left|\sin\frac{x-a}{2}\right| \le 2 \cdot 1 \cdot \left|\frac{x-a}{2}\right| = \left|x-a\right|$. From here it follows that $\cos x$ is continuous on \Re .

13. (a) True, here is a proof. By Remark 4.1.5, $\ln x$ is a continuous function. Thus, by Exercise 6(k) since $\{a_n\}$ converges to A, the sequence $\{c_n\}$, with $c_n = \ln a_n$ converges to $\ln A$. By Exercise 36 in Section 2.7, that is, Theorem 2.8.6, the sequence $\{d_n\}$, with $d_n = \frac{1}{n}(\ln a_1 + \ln a_2 + \dots + \ln a_n)$, converges to

 $\ln A$. But now, since $b_n = \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}$, we have $\ln b_n = \frac{1}{n} \left(\ln a_1 + \ln a_2 + \dots + \ln a_n \right)$. Taking limits as n goes to ∞ , we obtain $\lim_{n \to \infty} \ln b_n = \ln A = \lim_{n \to \infty} d_n$. Since $\ln x$ is a continuous function, we can write $\ln \left(\lim_{n \to \infty} b_n \right) = \ln A$. Hence, $\lim_{n \to \infty} b_n = A$, which is what we wanted to prove.

- (b) False. Suppose that $a_n = \exp[(-1)^n]$. The sequence $\{a_n\}$ oscillates and thus, it diverges. But, $b_n = 1$ for n even, and $b_n = \sqrt[n]{e^{-1}}$ for n odd. Thus, $\{b_n\}$ converges to 1.
- 14. Note that, $\ln x \ln(x+1) = \ln \frac{x}{x+1}$. Also, by Remark 4.1.5, $\ln x$ is continuous. Therefore, by Exercise 6(k), we have that, $\lim_{x \to \infty} \left[\ln x \ln(x+1) \right] = \lim_{x \to \infty} \ln \frac{x}{x+1} = \ln \lim_{x \to \infty} \frac{x}{x+1} = \ln 1 = 0$. Hence, by Theorem 3.1.6, $\left\{ a_n \right\}$ converges to 0.
- 15. We write $\lim_{x \to \infty} \arctan \frac{x}{x+1} = \arctan \left(\lim_{x \to \infty} \frac{x}{x+1}\right) = \arctan 1 = \frac{\pi}{4}$, where the first equality holds due to the continuity of the arctangent function. Now use Theorem 3.1.6 to conclude that $\lim_{n \to \infty} \arctan \frac{n}{n+1} = \frac{\pi}{4}$.
- **16.** Observe that $a_n > 0$ for all n.
 - (a) Suppose that b=1. Then, $a_n=1=a_{n+1}$. Thus $\left\{a_n\right\}$ is constant and hence increasing. Next, suppose b>1. We use mathematical induction to prove that the statement P(n), which stands for $a_{n+1}>a_n$, is true for all n. Note that P(1) is true because for b>1 we have $a_2=b^{a_1}=b^b>b=a_1$. Next, suppose P(k) is true for some $k\in N$, that is, $a_{k+1}>a_k$, and show that P(k+1) is true, that is, $a_{k+2}>a_{k+1}$, meaning $b^{a_{k+1}}>b^{a_k}$, or equivalently, $b^{\frac{a_{k+1}}{a_k}}>1$. To this end, since $a_{k+1}>a_k$, we have $\frac{a_{k+1}}{a_k}>1$. Thus, $b^{\frac{a_{k+1}}{a_k}}>b^1>1$. Hence, P(n) is true for all n, and so the sequence $\left\{a_n\right\}$ is increasing.
 - (b) We will use mathematical induction to prove that $a_n \le 3$ for all n. Certainly, $a_1 = b \le 3$. Next, suppose $a_k \le 3$ for some $k \in \mathbb{N}$. We will show that $a_{k+1} \le 3$. To this end, we write $a_{k+1} = b^{a_k} < b^3 < \left(\sqrt[3]{3}\right)^3 = 3$. Hence, $a_n \le 3$ for all n.
 - (c) By Theorem 2.4.4, part (a), the sequence $\{a_n\}$ converges to, say, A. Taking limits of the recursion formula and keeping in mind that $f(x) = b^x$ is a continuous function, we obtain $A = b^A$.
 - (d) In this case $b = \sqrt{2} < \sqrt[3]{3}$. Therefore, the repeated power is the limit of the sequence $\{a_n\}$ as given in parts (a)–(c). Thus, the sequence converges to A, which satisfies $A = (\sqrt{2})^A$. This gives $A^2 = 2^A$, and thus, A = 2 or A = 4. But, in part (b) we verified that $A \le 3$. Hence, A = 2.

Section 4.2

- 1. (a) Since $f(0^+) = 1$ and $f(0^-) = -1$, the discontinuity at x = 0 is not removable, it is jump.
 - (b) f is discontinuous at x = 0 because f(0) is undefined. However, $\lim_{x \to 0} f(x) = 1$, a finite number. Therefore, x = 0 is a point of removable discontinuity. If we define f(0) = 1, f will be continuous at x = 0.

- (c) f is discontinuous at x = 0 because f(0) is undefined. However, we have $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin(\frac{\sin x}{x} \cdot x)}{x}$ = $\lim_{x \to 0} \frac{\sin x}{x} = 1$. Therefore, x = 0 is a point of removable discontinuity. If we define f(0) = 1, f will be continuous at x = 0.
- (d) Similar to part (c).
- (e) Observe that f(0) = 0, $f(0^+) = \lim_{x \to 0^+} (0 1) = -1$, and $f(0^-) = \lim_{x \to 0^-} (-1 0) = -1$. Thus, since $\lim_{x \to 0} f(x) = -1 \neq f(0)$, f has a removable discontinuity at x = 0. If we redefine f at x = 0 to be -1, the resulting function will be continuous at x = 0.
- (f) Since f is a composition of continuous functions, by Theorem 4.1.9, f is continuous. Therefore, no discontinuity at x = 0.
- (g) Since f(0) = 0 and $\lim_{x \to 0} f(x) = \lim_{x \to 0} (1 x) = 1$, the discontinuity of f at x = 0 is removable. Redefining f(0) to be 1 will make f continuous at x = 0.
- (h) Observe that f(0) = 1. Also, $\lim_{x \to 0} f(x)$ does not exist because if $x_n = \frac{1}{n}$ and $t_n = \frac{2}{2n-1}$, or $\frac{\sqrt{2}}{n}$, or, ..., the sequences $\{x_n\}$ and $\{t_n\}$ converge to 0, but $\{f(x_n)\}$ and $\{f(t_n)\}$ converge to 0 and 1, respectively. See Theorem 3.2.6. Therefore, the discontinuity at x = 0 is not removable. In fact, it is oscillating.
- (i) f is discontinuous at x = 0 because f(0) is undefined. By Example 3.2.8, $\lim_{x \to 0^+} f(x)$ and $\lim_{x \to 0^-} f(x)$ do not exist. Therefore, discontinuity is not removable. In fact, it is oscillating.
- (j) f is discontinuous at x = 0 because f(0) is undefined. By Exercise 5 from Section 3.2, $\lim_{x \to 0} f(x) = 0$. Therefore, in order to make f continuous at x = 0, define f(0) to be 0.
- (k) f is discontinuous at x = 0 because f(0) is undefined. However, $\lim_{x \to 0} f(x) = 0$. Therefore, in order to make f continuous at x = 0, define f(0) to be 0.
- (1) f has infinite discontinuity at x = 0 since $f(0^+) = +\infty$, and $f(0^-) = 0$.
- (a) The function g(t) = [t] is continuous whenever t is not an integer. Thus, to determine the points of discontinuity of f consider the situation when 2x, is an integer. This occurs when x = -1, -1/2, 0, 1/2, and 1. When a = -1/2, 0, and 1/2, we have f(a⁻) = 1 and f(a⁺) = 0. Therefore, by Definition 4.2.5, part
 (a), f has nonremovable jump discontinuities at a = -1/2, 0, and 1/2 with jump values of -1. If x = a = -1, then f(-1⁻) does not exist. However, lim f(x) = lim (2x + 2) = 0. And since f(-1) = 0 as well, f is continuous at x = -1. If x = a = 1, then f(1⁺) does not exist. But, lim f(x) = lim (2x 1) = 1. And since f(1) = 0, part (b) of Definition 4.2.5 is satisfied resulting in a jump discontinuity at x = 1 with a jump of -1.
 - (b) The only accumulation point of the domain D of f is 0. Therefore, a discontinuity can occur only at 0. In fact, since $\lim_{x\to 0^+} f(x) = 1$ and $\lim_{x\to 0^-} f(x) = -1$, x = 0 is a point of a jump discontinuity with the jump of 2.
 - (c) $x = -\frac{3}{2}$ is an accumulation point of f but, $-\frac{3}{2} \notin D$, the domain of f. Therefore, f is discontinuous

- at $x = -\frac{3}{2}$. This discontinuity is removable because f can be continuously extended by simply defining $f\left(-\frac{3}{2}\right) = -\frac{7}{4}$. The function f has jump discontinuities at x = -1 and x = 0, with jump of $\frac{1}{2}$ at each one of them. In addition, since f(1) = 1 and $\lim_{x \to 1} f(x) = \lim_{x \to 1^{-}} f(x) = \frac{1}{2}$, f has a jump of $\frac{1}{2}$ at x = 1 as well. x = 1 is also a point of removable discontinuity.
- (d) If $n = 3, 5, ..., \lim_{x \to n^-} f(x) = 1$ and $\lim_{x \to n^+} f(x) = -1$. Thus, f has jump discontinuities with a jump of -2. If $n = 2, 4, 6, ..., \lim_{x \to n^-} f(x) = -1$ and $\lim_{x \to n^+} f(x) = 1$. So, f has jump discontinuities with a jump of 2.
- (e) Note that $f\left(\frac{p}{q}\right) = \frac{1}{q}$, but $\lim_{x \to a} f(x) = 0$ for every $a \in (0,1)$, in particular for a rational $a = \frac{p}{q}$. Thus, f is discontinuous at all rational values and the discontinuities are removable, and there are countably many of them.
- (f) Since for $a = \pm \frac{1}{n}$, $n \in \mathbb{N}$, we have $\lim_{x \to a} f(x) = 1 \neq 0 = f(a)$, f has removable discontinuities at these points. Next consider x = a = 0. Since if $x_n = \frac{1}{n}$ and $t_n = \frac{2}{2n-1}$ or $t_n = \frac{\sqrt{2}}{n}$, $n \in \mathbb{N}$, sequences $\{x_n\}$ and $\{t_n\}$ both converge to 0 with $\{f(x_n)\}$ and $\{f(t_n)\}$ converging to 0 and 1, respectively. Therefore, $\lim_{x \to 0} f(x)$ does not exist. Hence, f has an oscillating discontinuity at x = 0. Also, f has jump discontinuities at the endpoints.
- (g) If $x_n = \frac{1}{n}$, then $\{x_n\}$ converges to 0 but $\{f(x_n)\}$ diverges to $+\infty$. If $t_n = \frac{2}{2n-1}$, then $\{t_n\}$ converges to 0 and $\{f(t_n)\}$ converges to 0. Therefore, $\lim_{x\to 0^+} f(x)$ does not exist. Similarly, $\lim_{x\to 0^-} f(x)$ does not exist. Thus, f has oscillating discontinuity at x = 0. In addition, f has a removable discontinuity at $x = \pm \frac{1}{n}$, for any $n \in \mathbb{N}$.
- (h) If a < 0, then f is discontinuous at x = a because $\lim_{x \to a^{\pm}} f(x)$ do not exist, making it an oscillating discontinuity. Since $\lim_{x \to 0^{-}} f(x)$ does not exist and $\lim_{x \to 0^{+}} f(x) = +\infty$, the discontinuity at x = 0 is also oscillating.
- (i) x = 0 is the only possibility for a discontinuity of f. But, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \exp\left(-\frac{1}{x}\right) = 0 = \lim_{x \to 0^-} f(x)$, and f(0) = 0, f is continuous at x = 0.
- (j) x = 0 is the only possibility for a discontinuity of f. Since, $\lim_{x \to 0^+} f(x) = 1$ and $\lim_{x \to 0^-} f(x) = 0$, we have a jump discontinuity at x = 0 with the jump of 1.
- (k) x = 0 is an accumulation point of the interval $(0, \infty)$, the domain of f, and $\lim_{x \to 0^+} f(x) = +\infty$. Since f is undefined for x < 0, the discontinuity is infinite.
- (1) f has an oscillating discontinuity at x = 0 since x = 0 is an accumulation point of the interval $(-\infty, 0)$ and $\lim_{x \to 0^{-}} f(x)$ does not exist.
- (m) Same as part (l).
- (n) The only possibilities for discontinuity are x = 0 and $x = \pm \frac{1}{n}$, $n \in \mathbb{N}$. Consider x = 0. We can use definition of a limit to verify that $\lim_{x \to 0} f(x) = 0 = 0^2 = f(0)$. Thus, f is continuous at x = 0. Consider

x = 1. Since $\lim_{x \to 1} f(x) = f(1)$, f is continuous at x = 1 as well. If $x = a = \pm \frac{1}{n}$ with $n \in \mathbb{N}$ and $x \neq 1$, then $\lim_{x \to a} f(x) = \frac{1}{n^2} \neq \pm \frac{1}{n} = f(a)$. Therefore discontinuities at x = a are removable.

- (o) The discontinuity at x = 2 is infinite.
- (p) The only possibilities for discontinuity of f are at x = 1 and x = -1. Consider x = -1. Since $\lim_{x \to -1^-} f(x) = 1$ and $\lim_{x \to -1^+} f(x) = 0$, f has a jump discontinuity at x = -1 with the jump of -1. Consider x = 1. Since $\lim_{x \to 1^-} f(x) = 0$ and $\lim_{x \to 1^+} f(x) = 1$, f has a jump discontinuity at x = 1 with the jump of 1.

Section 4.3

1. (a) Suppose f is continuous on a closed interval which is not bounded. Say, $f(x) = x^2$ on $[0,\infty)$. This function is not bounded.

Suppose f is continuous on a bounded interval which is not closed. Say, $f(x) = \frac{1}{x}$ on (0,1). This function is not bounded.

Suppose the interval is closed and bounded but f is not continuous. Say, $f:[0,1] \to \Re$ is defined by f(x) = n, if $x = \frac{1}{n}$, $n \in \mathbb{N}$, and f(x) = 0, otherwise. This function is not bounded.

(b) Suppose f is continuous on a closed interval which is not bounded. Say, f(x) = 1 on $[1, \infty)$. This function is bounded.

Suppose f is continuous on a bounded interval which is not closed. Say, f(x) = 1 on (-1,3]. This function is bounded.

Suppose the interval is closed and bounded but f is not continuous. Say, $f:[0,1] \to \Re$ is defined by f(x) = 1, if x is rational, and f(x) = -1, if x is irrational. This function is bounded.

- (c) Say, $f:[0,1] \to \Re$ is defined by f(x) = x, if $x \in [0,1)$, and f(1) = 0. Clearly, f cannot be continuous.
- 2. (a) By Theorem 4.3.4, f([a,b]) is bounded. Next, we will prove that f([a,b]) is closed. We assume that $\{y_n\}$ is an arbitrary sequence in f([a,b]) which converges to some point z_0 , and we will prove that $z_0 \in f([a,b])$. To this end, let $\{x_n\}$ be the sequence in [a,b] for which $y_n = f(x_n)$. Now, $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ that converges to $x_0 \in [a,b]$, since [a,b] is closed. Therefore, $\{f(x_{n_k})\}$ converges to $f(x_0)$, since f is continuous. But, $\{f(x_{n_k})\}$ also converges to z_0 . Hence, $z_0 = f(x_0) \in f([a,b])$.
 - (b) Since f([a,b]) is bounded, $\sup f(x) = M$ is finite. Let $\{y_n\}$ be a sequence in f([a,b]) converging to M. Since f([a,b]) is closed, $M \in f([a,b])$. Hence, $M = \max f(x)$. Minimum is handled similarly.
- 3. (a) f(x) = x if $0 \le x \le 1$, and f(x) = x 1 if $1 < x \le 2$.
- **4.** $f: \Re \to \Re$ defined by $f(x) = x^2 + 1$ has no real roots.
- 5. Note that $p(0) = a_0 < 0$. Since by Theorem 3.1.13, part (c), $\lim_{x \to \infty} p(x) = +\infty$, there exists b > 0 such that p(b) > 0. Since p is continuous (see Example 4.1.4), by Theorem 4.3.6, there exists $c \in (0, b)$ such that p(c) = 0. The same way we can prove that there exists at least one negative root. Observe that this result is not true if n is odd. Choose $f(x) = x^3 1$ for all $x \in \Re$. Here $a_0 = -1 < 0$, but f has exactly one real root x = 1.

- 6. Suppose a is a given positive real number. We want to show it has a unique positive n th root. Consider $f(x) = x^n a$ for $x \ge 0$. Note that f(0) = -a < 0. Since $\lim_{x \to \infty} f(x) = +\infty$, there exists b > 0 such that f(b) > 0. By Theorem 4.3.6, there exists $c \in (0, b)$ such that f(c) = 0. Thus, $c^n = a$ and c is a positive n th root of a. Next we verify that f is strictly increasing. According to Definition 1.2.10, suppose $0 < x_1 < x_2$. By Theorem 1.8.4, part (b), and the mathematical induction, we have that $f(x_1) < f(x_2)$ and thus, strictly increasing. Therefore, positive n th root of a is unique.
- 7. Suppose f is not constant on [a,b]. Then there exists $x_1, x_2 \in [a,b]$ such that $f(x_1) < f(x_2)$. But then there exists an irrational number r such that $f(x_1) < r < f(x_2)$. By Theorem 4.3.6 there exists $c \in (x_1, x_2)$ $\subseteq [a,b]$ such that f(c) = r. This is a contradiction because images of f were assumed to be rational.
- 8. Suppose $f: D \to \Re$ is continuous, one to one, but not monotone. Then since D is an interval, there exists $a, b, c \in D$ such that a < b < c and, either f(a) < f(b) and f(b) > f(c), or f(a) > f(b) and f(b) < f(c). Without loss of generality, we suppose the first possibility holds. Next, we distinguish further 2 cases: f(a) < f(c) and f(a) > f(c). Note that f(a) = f(c) is not a possibility since f is one to one. We again consider the first case and leave 3 remaining situations to the reader. Thus, f(a) < f(c) < f(b). Now, let $k \in (f(c), f(b))$. Then, $k \in (f(a), f(b))$ and by Theorem 4.3.6, there exists $c_1 \in (a, b)$ such that $f(c_1) = k$. But, $k \in (f(c), f(b))$ and so by Theorem 4.3.6, there exists $c_2 \in (b, c)$ such that $f(c_2) = k$. Since $c_1 \ne c_2$, we have a contradiction to the fact that f is one to one on D.
- **9.** (a) If f(x) = x if $0 \le x < 1$, f(1) = 0, and f(x) = x 2 if $1 < x \le 2$, then the range of f is (-1, 1).
 - (b) If $f(x) = \frac{1}{x}$ if 0 < x < 1, and f(x) = 2 if x = 0 and 1, then the range of f is $(1, \infty)$.
 - (c) If $f(x) = \frac{1}{x}$ if $0 < x \le 1$, and f(0) = 1, then the range of f is $[1, \infty)$.
- 10. The continuity is a stronger assumption because f continuous implies that f possesses the intermediate value property, and Exercise 3(a) shows the converse is not true.
- 11. Suppose $f:[a,b] \to \Re$ is continuous and $f(x) \neq 0$ for any $x \in [a,b]$. We first prove that either f(x) > 0 for all $x \in [a,b]$ or f(x) < 0 for all $x \in [a,b]$. We argue this by contradiction. Suppose there exists c_1 and c_2 in [a,b] such that $c_1 \neq c_2$ but $f(c_1) < 0 < f(c_2)$. Then, by Theorem 4.3.6, there exists x_0 between c_1 and c_2 such that $f(x_0) = 0$. Contradiction to hypothesis. Without loss of generality, we suppose f(x) > 0 for all $x \in [a,b]$. We need to prove that there exists $\varepsilon > 0$ such that $f(x) \ge \varepsilon$ for all $x \in [a,b]$. To this end, observe that by Corollary 4.3.9, the range of f is an interval [c,d]. But by the above, $0 \notin [c,d]$. Thus, pick $\varepsilon = c$.
- 12. (a) Since for any x we have $e^x e^{-x} = e^{x-x} = e^0 = 1$, we know that $e^x \ne 0$ for any real x. Also, we observe that $e^x > 0$ for all x, because if it were ever negative, then, since $e^0 = 1$, by Theorem 4.3.6, it would have to vanish somewhere, which we showed is not possible. Recall that, by Problem 2.8.1, part (e), we have $2 \le e < 3$, and by Problem 2.8.2, part (c) we have $e^x > 1$ for any x > 0. Next we let any $s, t \in \Re$ with s < t, and we show $e^s < e^t$. Since s < t, we have t s > 0, which gives us $e^{t-s} > 1$. Thus, since $e^s > 0$, we can write $e^t = e^{t-s}e^s > 1 \cdot e^s = e^s$. Hence, $f(x) = e^x$ is strictly increasing for all x real.
 - (b) Since f is strictly increasing and by Example 2.3.4, $\lim_{n\to\infty} f(n) = +\infty$, the conclusion follows.
 - (c) $\lim_{x \to -\infty} e^x = \lim_{x \to -\infty} \frac{1}{e^{-x}} = \lim_{t \to \infty} \frac{1}{e^t} = 0$.
- 13. If $m = \min\{f(x_1), f(x_2)\}$ and $M = \max\{f(x_1), f(x_2)\}$, then $m \le f(x_1) \le M$ and $m \le f(x_2) \le M$. This gives

- $k_1m \le k_1f(x_1) \le k_1M$ and $k_2m \le k_2f(x_2) \le k_2M$. Adding these together we obtain $m(k_1+k_2) \le k_1f(x_1)+k_2f(x_2) \le M(k_1+k_2)$. This gives us that $m \le \frac{k_1f(x_1)+k_2f(x_2)}{k_1+k_2} \le M$. The existence of the desired c follows from Theorem 4.3.6.
- 14. (a) Note that $x^2 + x 2 \le 0 \Leftrightarrow (x+2)(x-1) \le 0$. Since f(x) = (x+2)(x-1) = 0 if x = -2 and 1, the intervals to be tested are $(-\infty, -2)$, (-2, 1), and $(1, \infty)$. Since f(-3) > 0, none of the values in $(-\infty, -2)$ satisfy the inequality. Since f(0) < 0, every value in (-2, 1) satisfies the inequality. Finally, since f(2) > 0, none of the values in $(1, \infty)$ satisfy the inequality.
 - (f) Note that $x^3 2x + 1 = (x 1)(x^2 + x 1)$.
 - (g) First solve $f(x) = x^3 + 2x^2 5x 6 = 0$. Note that f(-1) = 0. Therefore, x + 1 divides f(x). Thus, $f(x) = (x+1)(x^2+x-6) = (x+1)(x+3)(x-2)$. So, f(x) = 0 if x = -3, -1, and 2. Therefore, intervals to be tested are $(-\infty, -3)$, (-3, -1), (-1, 2), and $(2, \infty)$. Since f(-4) < 0, every point in $(-\infty, -3)$ satisfies the given inequality. Since f(-2) > 0, none of the points in (-3, -1) satisfy the given inequality. Since f(0) < 0, every point in (-1, 2) satisfies the inequality. Lastly, since f(3) > 0, none of the points in $(2, \infty)$ satisfy the inequality. In addition, x = -3, -1, and 2 do not satisfy f(x) < 0. Hence, the desired inequality is satisfied if $x \in (-\infty, -3) \cup (-1, 2)$.
 - (h) Do not multiply by x-5 unless you decide on its sign. We resort to writing $\frac{2x+1}{x-5}-3 \le 0$, which is equivalent to $\frac{x-16}{x-5} \ge 0$. Since x-16=0 when x=16, and x-5=0 when x=5, the intervals to be tested are $(-\infty, 5)$, (5,16), and $(16, \infty)$. Since x=0 satisfies the above inequality, all the points in $(-\infty, 5)$ will satisfy it. Since x=10 does not satisfy the above inequality, none of the points in (5,16) will. Finally, since 20 satisfies the inequality, then all the points in $(16, \infty)$ will. Also, note that x=16 satisfies the inequality but x=5 does not. Hence, the desired inequality is satisfied if $x \in (-\infty, 5) \cup [16, \infty)$.
 - (i) Consider two inequalities separately.
- 15. (a) Define $f(x) = 2^x 3x$. Since f(0) = 1 > 0 and f(1) = -1 < 0, and f is continuous on [0,1], by Theorem 4.3.6, there exists $c \in (0,1)$ such that f(c) = 0. Therefore, $2^c = 3c$.
 - (b) Define $g(x) = \frac{1}{3}(2^x)$. Since $g:[0,1] \to [0,1]$ and g is continuous, by Theorem 4.3.10, there exists $c \in [0,1]$ such that g(c) = c, which yields $\frac{1}{3}(2^c) = c$, and thus, $2^c = 3c$. Note however that $c \neq 0$ and $c \neq 1$. Thus, $c \in (0,1)$.
- 16. Even if g is continuous with a fixed point, the sequence $\{x_n\}$ might not converge. For example, pick $g(x) = x^2$ and $x_0 = 2$. Then, g is continuous with fixed points x = 0, 1 but $\lim_{n \to \infty} x_n = +\infty$. Note that $x_0 = \frac{1}{2}$ would create a sequence that converges to the fixed point x = 0. The given argument in this exercise proves that the sequence converges to a fixed point only if we start with a converging sequence $\{x_n\}$.
- 17. If $D = (0,1) \cup (2,3]$, consider the function $f: D \to \Re$ defined by f(x) = x if $x \in (0,1)$, and f(x) = 4 x if $x \in (2,3]$. Note that f is a continuous injection on D. However, $f^{-1}: (0,2) \to \Re$ is not continuous, since it has a discontinuity at x = 1.

- 19. (a) Use Exercise 18(c). The given function is the inverse of $\tan x$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
 - (b) Use Exercise 18(c). The given function is the inverses of e^x on \Re .
- **20.** (\Rightarrow) Suppose E is closed and $a \in \Re \setminus E$. We will show there exists a neighborhood I of a such that I is entirely contained in $\Re \setminus E$. To this end, since E contains all accumulation points of E, a is not an accumulation point of E. Thus, there exists a neighborhood I of a that contains no points of E. Therefore, $I \subseteq \Re \setminus E$. Hence, by Definition 4.3.2, $\Re \setminus E$ is open.

(\Leftarrow) Suppose $\Re \setminus E$ is open and a is an accumulation point of E. We need to show that $a \in E$. To this end, suppose $a \in \Re \setminus E$. But, $\Re \setminus E$ is open. Thus, if $a \in \Re \setminus E$, there exists a neighborhood I of a such that $I \subset \Re \setminus E$ or $I \cap E = \phi$. But this contradicts the fact that a is an accumulation point of E. Hence, $a \notin \Re \setminus E$, which implies $a \in E$ and thus, E is closed. Theorem 4.3.3 proves that \Re and ϕ are both open and closed.

Section 4.4

- 1. (a) The function f is not uniformly continuous because if $\varepsilon = \frac{1}{2}$, $x_n = \frac{1}{n}$, and $t_n = \frac{1}{n+1}$, then $|x_n t_n| = \frac{1}{n(n+1)} \le \frac{1}{n}$, but $|f(x_n) f(t_n)| = 1 \ge \frac{1}{2}$. Now use Remark 4.4.4.
 - (b) We will prove that f is uniformly continuous. Let $\varepsilon > 0$ be given. We need to find $\delta > 0$ such that $|f(x) f(t)| < \varepsilon$ for all $x, t \in [0,2)$ satisfying $|x t| < \delta$. To this end, if $x, t \in [0,2)$, then $|f(x) f(t)| = |x^3 t^3| = |x t||x^2 + xt + t^2| \le |x t|(4 + 4 + 4) = 12|x t| < \varepsilon$, provided $|x t| < \frac{\varepsilon}{12}$. Thus, we choose $\delta = \frac{\varepsilon}{12}$.
 - (c) We will prove that f is uniformly continuous. Let $\varepsilon > 0$ be given. We need to find $\delta > 0$ such that $|f(x) f(t)| < \varepsilon$ for all $x, t \in [0,2)$ satisfying $|x t| < \delta$. To this end, if $x, t \in [0,2)$, then $|f(x) f(t)| = \left| \frac{x}{x+4} \frac{t}{t+4} \right| = \frac{4|x-t|}{(x+4)(t+4)} \le \frac{4|x-t|}{(0+4)(0+4)} = \frac{1}{4}|x-t| < \varepsilon$, provided $|x-t| < 4\varepsilon$. Thus, we choose $\delta = 4\varepsilon$.
 - (d) We will prove that f is uniformly continuous. Let $\varepsilon > 0$ be given. Pick $\delta = \varepsilon^3$ and consider the 2 possibilities. Case 1. Suppose that both $x,t \in \Re$ satisfy $|x|,|t| \in [0,\delta)$. Then, $\sqrt[3]{|x|},\sqrt[3]{|t|} \in [0,\sqrt[3]{\delta}) = [0,\varepsilon)$, and thus, $|x-t| < \delta$ implies $|f(x)-f(t)| = |\sqrt[3]{x}-\sqrt[3]{t}| \le |\sqrt[3]{x}| < \varepsilon$.

Case 2. Suppose either |x| and/or |t| are/is greater than or equal to δ . Then we have,

 $\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right| \ge \delta^{\frac{2}{3}} = \varepsilon^{2}, \text{ and thus, } \left| x - t \right| < \delta \text{ implies that } \left| f(x) - f(t) \right| =$ $\left| \sqrt[3]{x} - \sqrt[3]{t} \right| \cdot \frac{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x^{\frac{2}{3}} + x^{\frac{1}{3}} t^{\frac{1}{3}} + t^{\frac{2}{3}} \right|} = \frac{\left| x - t \right|}{\left| x - t \right|} = \frac{\left| x - t \right|}{\left| x - t \right|} = \frac{\left| x - t \right|}{\left| x - t \right|} = \frac{\left| x - t \right|}{\left| x - t \right|} = \frac{\left| x - t \right|}{\left| x - t \right|}$

only on ε so that whenever $|x-t| < \delta$, we have $|f(x)-f(t)| < \varepsilon$.

(e) We will prove that f is not uniformly continuous. Choose $\varepsilon = \frac{1}{2}$, $x_n = \frac{1}{2n}$, and $t_n = \frac{1}{2n + \frac{1}{2}} = \frac{2}{4n+1}$. Then, $|x_n - t_n| \le \frac{1}{n}$ but, $|f(x_n) - f(t_n)| = |0-1| = 1 \ge \frac{1}{2}$.

- (f) We will prove that f is uniformly continuous. Let $\varepsilon > 0$ be given and pick $\delta = \frac{\varepsilon}{2}$. Then, if $x, t \ge 1$ and $|x t| < \delta$, we have $|f(x) f(t)| = \left|\frac{1}{x^2} \frac{1}{t^2}\right| = |x t| \left(\frac{1}{xt^2} + \frac{1}{x^2t}\right) \le 2|x t| < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$.
- 2. (a) False statement because c may be a or b. For example, choose $f(x) = \frac{1}{x}$ with $x \in (0, 2)$. Then the sequence $\{x_n\}$ defined by $x_n = \frac{1}{n}$ is in (0, 2), but the sequence $\{f(x_n)\}$ diverges to $+\infty$. Observe that if we pick any sequence converging to a value $c \in (a, b)$, then by Exercise 5(k) from Section 4.1, the sequence $\{f(x_n)\}$ converges to f(c).
 - (b) True, because a uniformly continuous function cannot run away too fast. The interval (a,b) can be changed to any bounded domain D. To prove, let $\varepsilon > 0$ be given. Since f is uniformly continuous on (a,b), there exists $\delta > 0$ such that $|f(x)-f(t)| < \overline{\varepsilon}$ if $|x-t| < \delta$ and $x,t \in (a,b)$. Furthermore, since $\{x_n\}$ converges, it is Cauchy. Therefore, there exists $n_1 \in N$ such that $|x_n x_m| < \overline{\delta}$ for $m,n \ge n_1$. We need to find $n^* \in N$ such that $|f(x_n) f(x_m)| < \varepsilon$, whenever $m,n \ge n^*$. Thus, choose $n^* = n_1$. Then, if $m,n \ge n^*$, we have $|x_n x_m| < \delta$, which in turn gives $|f(x_n) f(x_m)| < \varepsilon$. Therefore, $\{f(x_n)\}$ is Cauchy (and hence, convergent.)
 - (c) False. Choose $f(x) = \sin \frac{1}{x}$, with $x \in (0,1)$.
 - (d) True. This is the contrapositive of Theorem 4.4.7.
 - (e) False. If f(x) = x for all $x \in \Re$, then f is uniformly continuous on \Re but not bounded.
 - (f) True. To prove this recall that uniform continuity implies continuity. Thus, f is continuous on (a, b) and moreover, by Theorem 4.4.7, $f(a^+)$ and $f(b^-)$ are both finite. Therefore, f can be continuously extended to the function $g:[a,b] \to \Re$ by defining it as g(x) = f(x) if $x \in (a,b)$, $g(a) = f(a^+)$, and $g(b) = f(b^-)$. Thus, by Theorem 4.3.4, g is bounded. Hence, f is bounded on (a,b).
 - (g) False. Choose any bounded discontinuous function, say, $f(x) = \sin \frac{1}{x}$, with $x \in (0,1)$. By Exercise 1(e), f is not uniformly continuous.
 - (h) True. Proof. Since f is uniformly continuous on [a,b], then f is continuous on [a,b] and $\lim_{x\to b^-} f(x) = f(b)$. Since f is uniformly continuous on [b,c], then f is continuous on [b,c] and $\lim_{x\to b^+} f(x) = f(b)$. Therefore, $\lim_{x\to b} f(x) = f(b)$, and so f is continuous on [a,c]. Since [a,c] is compact, by Theorem 4.4.6, f is uniformly continuous on [a,c].
 - (i) False. Let $f:(0,3)\to\Re$ be defined by f(x)=-1 if $x\in(0,1)$, and f(x)=2 if $x\in[1,3)$.
- 3. (a) Here is a proof of Theorem 4.4.7. We assume $f:(a,b)\to\Re$ is uniformly continuous and prove $f(a^+)$ is finite. Proof that $f(b^-)$ is finite is similar. So, let $\varepsilon>0$ be given. We prove that $f(a^+)\equiv\lim_{x\to a^+}f(x)$ is finite by the use of Theorem 3.2.6. To this end, f uniformly continuous on (a,b) implies that there exists $\delta>0$ such that $|f(x)-f(t)|<\frac{\varepsilon}{2}$ if $|x-t|<\delta$ and $x,t\in(a,b)$. Now, pick an arbitrary sequence $\{x_n\}$ in (a,b) that converges to a. Then, there exists $n_1\in N$ such that $n\geq n_1$ we have $a< x_n < a+\delta$. By the uniform continuity of f we have $|f(x)-f(x_n)|<\frac{\varepsilon}{2}$, if $n\geq n_1$. Also, by Exercise 2(b), $\{f(x_n)\}$ converges to, say, f. This means that there exists f such that

- $|f(x_n)-L| < \frac{\varepsilon}{2}$ if $n \ge n_2$. Now, choose $n^* = \max\{n_1, n_2\}$. Then, if $n \ge n^*$ we have $|f(x)-L| \le |f(x)-f(x_n)| + |f(x_n)-L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. By Theorem 3.2.6, $f(a^+)$ is finite.
- (b) Suppose f is continuous on (a, b). Define $g : [a, b] \to \Re$ by $g(a) = f(a^+)$, g(x) = f(x) if a < x < b, and $g(b) = f(b^-)$. Since g is continuous [a, b], by Theorem 4.3.4 it follows that g is bounded on [a, b]. Thus, f is bounded on (a, b). Converse is false because $f(x) = \sin \frac{1}{x}$, with $x \in (0, 1)$, is bounded and continuous, but $f(0^+)$ does not exist.
- (c) (⇒) f uniformly continuous on (a, b) implies f(a⁺) and f(b⁻) are both finite, by Theorem 4.4.7. Thus, the function g from part (b) is a continuous extension of f.
 (⇐) Let g be the continuous extension of f to [a,b]. Then, by Theorem 4.4.6, g is uniformly continuous on [a,b], and thus, f is uniformly continuous on (a, b).
- (d) If $f(x) = \sin \frac{1}{x}$, with $x \in (0,1)$, then $f(0^+)$ does not exist. Therefore, f has no continuous extension to [0,1], and therefore, by Corollary 4.4.8, not uniformly continuous on (0,1).

 If $g(x) = x \sin \frac{1}{x}$, with $x \in (0,1)$, then since $g(0^+) = 0$ and $g(1^-) = \sin 1$, g has a continuous extension to [0,1]. Therefore, by Corollary 4.4.8, g is uniformly continuous on (0,1).
- 4. Since f is periodic on \Re , there exists p > 0 such that f(x+p) = f(x) for all $x \in \Re$. By Theorem 4.4.6, f is uniformly continuous on [-p,p]. Therefore, given any $\varepsilon > 0$, there exists $\delta > 0$, in particular $\delta < \frac{p}{2}$, such that $|f(x) f(t)| < \varepsilon$ provided $|x t| < \delta$ and $x, t \in [-p, p]$, Now, suppose $|x t| < \delta$, where x and t are any real values. Note that there exists an integer n such that $x + np \in \left[-\frac{p}{2}, \frac{p}{2}\right]$. Then, $t + np \in [-p, p]$ since $|x t| < \delta < \frac{p}{2}$. Thus we can write $|f(x) f(t)| = |f(x + np) f(t + np)| < \varepsilon$. Hence, f is uniformly continuous.
- 5. (a) Let $\varepsilon > 0$ be given. To show f + g is uniformly continuous on D, we need to find $\delta > 0$ so that $|(f+g)(x)-(f+g)(t)| < \varepsilon$, for all $x,t \in D$ satisfying $|x-t| < \delta$. To this end, observe that f uniformly continuous implies that there exists $\delta_1 > 0$ such that $|f(x)-f(t)| < \frac{\varepsilon}{2}$ whenever $|x-t| < \delta_1$ and $x,t \in D$. Also, f uniformly continuous implies that there exists $\delta_2 > 0$ such that $|g(x)-g(t)| < \frac{\varepsilon}{2}$ whenever $|x-t| < \delta_2$ and $x,t \in D$. Thus, choose $\delta = \min\{\delta_1,\delta_2\}$. Then for $x,t \in D$ with $|x-t| < \delta$, we have $|(f+g)(x)-(f+g)(t)| \le |f(x)-f(t)| + |g(x)-g(t)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Hence, f+g is uniformly continuous on D.
 - (b) Let $\varepsilon > 0$ be given. Since f is uniformly continuous, there exists $\delta_1 > 0$ such that $|f(x) f(t)| < \frac{\varepsilon}{|c|+1}$ whenever $|x-t| < \delta_1$ and $x,t \in D$. (We added 1 in the denominator to avoid division by 0 in case c = 0.) Now, choose $\delta = \delta_1$. Then for $x,t \in D$ with $|x-t| < \delta$, we have $|(cf)(x) (cf)(t)| = |c||f(x) f(t)| < |c| \cdot \frac{\varepsilon}{|c|+1} < \varepsilon$. Hence, cf is uniformly continuous on D.
 - (c) Proof by contradiction. Suppose f is unbounded. Then there exists a sequence $\{x_n\}$ in D such that

- $|f(x_n)| \ge n$ for each $n \in \mathbb{N}$. But, by Theorem 2.6.4, there exists $\{x_{n_k}\}$ in D that converges and thus, by Exercise 2(b), with (a,b) replaced by D, the sequence $\{f(x_{n_k})\}$ converges. Contradiction to the hypothesis. Hence, f must be finite.
- (d) Let $\varepsilon > 0$ be given. To show fg is uniformly continuous on D we need to find $\delta > 0$ so that $|(fg)(x) (fg)(t)| < \varepsilon$ for all $x, t \in D$ satisfying $|x t| < \delta$. To this end, let K > 0 be a bound on f and g. Also, f and g uniformly continuous on D implies that there exist δ_1 and δ_2 such that $|f(x) f(t)| < \frac{\varepsilon}{2K}$ if $|x t| < \delta_1$, and $|g(x) g(t)| < \frac{\varepsilon}{2K}$ if $|x t| < \delta_2$, provided $x, t \in D$. Thus, choose $\delta = \min\{\delta_1, \delta_2\}$. Then for $x, t \in D$ with $|x t| < \delta$, we have $|(fg)(x) (fg)(t)| \le |f(x)||g(x) g(t)| + |g(t)||f(x) f(t)| \le K|g(x) g(t)| + K|f(x) f(t)| < K \cdot \frac{\varepsilon}{2K} + K \cdot \frac{\varepsilon}{2K} = \varepsilon$.
- (e) By part (c), f and g are bounded on D. The result follows from part (d).
- (f) By Theorem 4.1.8, part (c), $\frac{f}{g}$ is continuous on D. Since D is closed and bounded, the result follows from Theorem 4.4.6.
- **6.** (b) $f(x) = \sin(x^2)$. Note that oscillation of f speeds up.
 - (c) f(x) = -x.
- 7. (a) The function f is Lipschitz because we can write $|f(x) f(t)| = |x t||x + t| \le |x t|(|x| + |t|) \le |x t|(2 + 2) = 4|x t|$. Thus, a Lipschitz constant is 4.
 - (b) The function f is not Lipschitz because its domain is unbounded. To see this, observe that by Example 4.4.5, f is not uniformly continuous. Therefore, using the contrapositive of the statement in Theorem 4.4.11, f is not Lipschitz on \Re . In fact, no polynomial of degree greater than 1 is Lipschitz on \Re .
 - (c) The function f is not Lipschitz if the domain includes a neighborhood of x = 0. We will prove f is not Lipschitz by contradiction. Thus, suppose there exists a Lipschitz constant L > 0. Then, $|f(x) f(0)| \le L|x 0|$, that is, $\sqrt[3]{x} \le Lx$ for all $x \in \Re$. So, let $x_n = \frac{1}{n^3}$. Then, $\frac{1}{n} \le \frac{L}{n^3}$, which is equivalent to $n^2 \le L$. However, since $\lim_{n \to \infty} n^2 = +\infty$, L cannot be a finite number. Contradiction.
 - (d) Since f is not uniformly continuous, by the contrapositive of the statement in Theorem 4.4.11, f is not Lipschitz.
 - (e) The function f is not Lipschitz. By contradiction, suppose there exists a Lipschitz constant L > 0. Then pick sequences $\left\{x_n\right\}$ and $\left\{t_n\right\}$, where $x_n = \frac{1}{n\pi}$ and $t_n = \frac{2}{(2n+1)\pi}$. Now, in Definition 4.4.10, let $x = x_n$ and $t = t_n$. Then, for all $n \in \mathbb{N}$ we have $\left|f(x_n) f(t_n)\right| \le L|x_n t_n|$. But, $\left|f(x_n) f(t_n)\right| = \frac{2}{(2n+1)\pi}$. Therefore, $\frac{2}{(2n+1)\pi} \le L\left|\frac{1}{n\pi} \frac{2}{(2n+1)\pi}\right|$ for all n. Hence, $2 \le \frac{L}{n}$ for all n, which is a contradiction.
 - (f) The function f is not Lipschitz. By contradiction, suppose there exists a Lipschitz constant L > 0. Then pick sequences $\{x_n\}$ and $\{t_n\}$, where $x_n = \frac{1}{n\pi}$ and $t_n = \frac{2}{(2n+1)\pi}$. Now, in Definition 4.4.10, let $x = x_n$ and $t = t_n$. Then, for all $n \in \mathbb{N}$ we have $|f(x_n) f(t_n)| \le L|x_n t_n|$. But, $|f(x_n) f(t_n)| = \sqrt{\frac{2}{(2n+1)\pi}}$. Thus, $\sqrt{\frac{2}{(2n+1)\pi}} \le L\left|\frac{1}{n\pi} \frac{2}{(2n+1)\pi}\right| = \frac{L}{n(2n+1)\pi}$ for all n. Hence, $\sqrt{\frac{2}{\pi}} \le \frac{L}{n\pi} \frac{\sqrt{2n+1}}{2n+1}$,

which tends to 0. Hence, a contradiction

8. Several examples of functions that are uniformly continuous but not Lipschitz are:

 $f: \Re \to \Re$ defined by $f(x) = \sqrt[3]{x}$. See Exercise 1(d) and Exercise 7(e).

 $f:[0,\infty)\to\Re$ defined by $f(x)=\sqrt{x}$.

 $f: (0,1] \to \Re$ defined by $f(x) = \sqrt{x} \sin \frac{1}{x}$. See Exercise 7(e). The uniform continuity follows from Corollary 4.4.8.

 $f: (0,1] \to \Re$ defined by $f(x) = x \sin \frac{1}{x}$.

- 9. Suppose f: [a, b] → R is contractive, that is, f is Lipschitz with the Lipschitz constant L∈(0,1). Therefore, by Theorem 4.4.11, f is uniformly continuous on [a,b], and thus, continuous. Also, f: [a, b] → [a, b], and thus, by Theorem 4.3.10, f has a fixed point. This proves the existence. To prove uniqueness, we suppose that x₁ and x₂ are 2 fixed points of f and show they must be equal. Since f is contractive, we have |f(x₁) f(x₂)| ≤ L|x₁ x₂|, L∈(0,1). Since x₁ and x₂ are fixed points, that is, f(x₁) = x₁ and f(x₂) = x₂, the previous inequality gives |x₁ x₂| ≤ L|x₁ x₂|. Since L < 1, we must have |x₁ x₂| = 0. Therefore, x₁ = x₂, and thus uniqueness is established.
- **10.** (a) Choose f(x) = x+1, with $x \in \Re$. Note that |f(x) f(t)| = |x-t| for all $x, t \in \Re$. Therefore, L = 1 but f has no fixed points.
 - (b) Choose f(x) = x, with $x \in \Re$. Note that |f(x) f(t)| = |x t| for all $x, t \in \Re$. Therefore, L = 1 and every real number is a fixed point of f.
 - (c) Choose f(x) = 2x, with $x \in \Re$. Note that |f(x) f(t)| = 2|x t| for all $x, t \in \Re$. Therefore, L = 2 and f has only one fixed point, namely x = 0.
- 11. (a) Define g(x) = |x f(x)| and show g attains its minimum value that is 0. Since f is Lipschitz, f is continuous. Therefore, g is continuous on a closed and bounded interval. By the extreme value theorem, Theorem 4.3.5, g attains its minimum value m. Thus, there exists $p \in [a,b]$ such that g(p) = m. We prove m = 0 by assuming to the contrary. So, since $g(x) \ge 0$, we assume that m > 0 and look for contradiction. Since |f(x) f(t)| < |x t| for any $x, t \in [a, b]$ and $f : [a, b] \rightarrow [a, b]$, we choose x = p and t = f(p). Then we have g(f(p)) = |f(p) f(f(p))| < |p f(p)| = g(p) = m. But, g(p) is a minimum value of g, thus $g(f(p)) \ge g(p)$. Contradiction. Hence, g(p) = 0, which implies that f(p) = p. Thus, at least one fixed point exists.
 - (b) Suppose x_1 and x_2 are 2 fixed points of f. Then, $f(x_1) = x_1$ and $f(x_2) = x_2$ and $x_1 \neq x_2$. Therefore, $|f(x_1) f(x_2)| = |x_1 x_2|$. But, |f(x) f(t)| < |x t| for all $x, t \in D$ with $x \neq t$. Thus, if $x = x_1$ and $t = x_2$ we have $|x_1 x_2| < |x_1 x_2|$, which is not possible. Hence, there exists at most 1 fixed point.
 - Suppose $f:(0,1) \to (0,1)$, where $f(x) = \frac{x}{2}$. Note that $|f(x) f(t)| = \frac{1}{2}|x t| < |x t|$. But, f has no fixed points, that is, f does not cross the line y = x when $x \in (0,1)$. Observe that D = (0,1) cannot be both closed and bounded, for otherwise, Theorem 4.3.7 will guarantee a fixed point.
 - (d) Consider $f: \left[0, \frac{\pi}{2}\right] \to \left[0, \frac{\pi}{2}\right]$, where $f(x) = \sin x$. Note that by Exercise 51 of Section 1.9 and by Exercise 4 in this section, $|f(x) f(t)| \le |x t|$ for all $x \in \left[0, \frac{\pi}{2}\right]$, but there is no constant $L \in (0, 1)$ such that $|f(x) f(t)| \le L|x t|$.

68 Section 4.5

- 12. (a) The condition follows since f is increasing, f(x) > 0 for all $x \in \left(0, \frac{1}{3}\right]$, and $f\left(\frac{1}{3}\right) = \frac{1}{9} < \frac{1}{3}$.
 - **(b)** Since $|f(x) f(t)| = |x^2 t^2| = |x + t||x t| \le \left(\frac{1}{3} + \frac{1}{3}\right)|x t| = \frac{2}{3}|x t|$, f is a contraction.
 - (c) The function f has no fixed points because $f(x) = x \Rightarrow x^2 = x \Rightarrow x = 0,1$, and neither of them is in $\left(0, \frac{1}{3}\right]$.
- 13. We will show that for all $x, t \ge 1$ we have $|f(x) f(t)| \le L|x t|$ with $L \in (0, 1)$. To this end, since for all $x, t \ge 1$, we have that, $xt \ge 1$, and thus, $\frac{2}{xt} \le 2$, we can write that, $|f(x) f(t)| = \left|\left(\frac{x}{2} + \frac{1}{x}\right) \left(\frac{t}{2} + \frac{1}{t}\right)\right| = \frac{1}{2}|x t| \frac{2}{xt}(x t)| = \frac{1}{2}|x t| + \frac{1}{2}|x t| + \frac{1}{2}|x t|$. Therefore, f is a contraction.
- **14.** (a) False. Consider $f(x) = \cot x$, if $x \neq n\pi$, n an integer, and f(x) = 0 otherwise.
 - (b) False. There exist infinitely many discontinuities.
 - (c) False. A constant function has no smallest period.
 - (d) False. It does if f(x) = c, c a constant.
- 15. (a) f(x) = f(x+p) = f[(x+p)+p] = f(x+2p), and so on. Use a proof by induction.
 - (b) The fundamental period for $\sin nx$ is $\frac{2\pi}{n}$. By part (a), $n \cdot \frac{2\pi}{n}$ is a period for $\sin nx$ as well. Similarly for $\cos nx$.

Section 4.5

1. T	9. T	17. T	25. T	33. F	41. T	49. F
2. (T	10. F	18. T	26. F	34. F	42. T	50. T
3. F	11. F	19. T	27. T	35. F	43. T	
4. F	12. F	20. T	28. F	36. T	44. F	
5. T	13. F	21. F	29. F	37. F	45. T	
6. T	14. T	22. F	30. F	38. F	46. T	
7. T	15. F	23. T	31. T	39. F	47. T	
8. F	16. F	24. F	32. T	40. T	48. F	