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Chapter 4 — Continuity
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4. (a)

(b)

No, f is not continuous at x =0, thus not continuous at every point in the interval.
Yes, f is right continuous at every point in the interval.

Yes, f is continuous at every point in the interval.

The function x —1 is continuous on R . The function le is also continuous on R by verifying this or
using Exercise 5(a). Then, by Theoremn 4.1.9,so1s f.

Since x =0 is the only accumulation point of the domain D, f is automatically continuous at all

1 : . . .
x=+—,nEN.Since x=0€&D, f is not continuous at 0.
n

If x=0, then f(x) is a quotient of 2 continuous functions and thus, continuous. Observe that f is

continuous at x =0 because [im SoF — 1= /f(0). See Remark 3.2.11. Hence, f is continuous on R .

x—0) X

If x=0,then f(x) is continuous by Theorem 4.1.9. At x =0, f is continuous because lim f(x) =
x—0

0=7(0.

Same as in part (d).

By Remark 4.1.5, f is continuous on J\{1}.

By Remark 4.1.11, part (¢), f is discontinuous at every integer.

By Example 4.1.4, f is continuous on R \{0} , and by Remark 4.1.11, part (e), f is discontinuous at

x=0.

Since f is a quotient of 2 continuous functions, it is continuous on (0, ).

Note that every a €R is an accumulation point of the domain D =% for the function f. To show that

S 1s not continuous at any real x =a, use Remark 4.1.11, part (c), with x, being rational numbers

tending to a, and ¢, being irrational numbers tending to a . Then, { Flx, )} converges to 1, and { £ty )}

converges to ~1.

If x=0,then f is a composition of continuous functions and thus, f is continuocus. Since lin(l) f(x)=
x—

lim ex —%)= lim exp(—tz) = lim 3. 0= f(0), f is continuous at x=0. Hence, f is
x—=0 X 1—> t—+0 BXP(IZ)
continuous on R .

The functions f and g are not continuous at x =0 by using Remark 4.1.11, part (c), with x, = 1 and
n

. V2

n
n

: 1 1
Using Example 4.1.4, f is continuous at x = — because f(x)=1-x on (51)\{5} Since

[N]SR

1 1)
lim g(x)=—=g|—|, g is continuous at x =
qu_%g( ) 5 (2 g

By part (b) of Corollary 1.8.6, lim |x| = |a|- Therefore, g(x) = |x| ;R —R* is continuous, with
xX—>q .
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54 Section 4.1

F(D)CR. Thus, by Theorem 4.1.9, I f (x)| is continuous.

(b) Similar to part (a). If the definition is used, consider cases when f(a) =0 and when f(a)=0.

(c) max{f.g}= % (f+g)+ %lf - g|- Now apply Theorem 4.1.8 and part (a) of this exercise.

(d) Similar to part (c).

(e) Note that lim x" = 4", by Example 4.1.4. Thus, [ f (x)]" is continuous functions by Theorem 4.1.9.

xX—>a
6. (a) f(x)=sgnx on [-1,2] is bounded but not continuous at x=0.
(b) j(x)= 1 on (0,1) is continuous but not bounded.
x

(e) f(x)=1 for x rational, and f(x)=-1 for x irrational, is discontinuous at every point, but [ f (,\c)]2 =1
and thus, continuous.

(d) f(x)=1for x=0 and f(x)=-1 for x <0, and g(x) = - f(x), are both discontinuous on (-1,2), but
( fgXx)= -1, which is continuous on (-1,2).

(e) Suppose f(x)=sgnx on (-1,2) and g(x) =—f(x). Then, f and g are not continuous on (-1,2)
since they are both discontinuous at x =0 but, (f+ g)(x) =0, therefore, continuons.

|1, if x =0 Lif x<0 o
(f) Suppose f(x)= and g(x) = . Both, f and g are discontinuous on (-1,2) but,
1,if x=0 -1, if x>0.

(f @ g)(x) = 1, therefore, continuous.

(g) The staternent is true because g = (f + g)— f, which is a difference of two continuous functions.

(h) Consider f(x)=0 on (-1,2),and g(x)=1 for 0 =x <2,and g(x)=-1 for -1 <x<0. Then,
(fgXx)=0, and therefore, continuous on (-1,2).

(i) If f(x)=1for0=x <2,and f(x)=-1 for ~1 <x <0, then |f(x)|= 1, which is continuous on
(-1,2).

(j) The function S Ex; =sinx is continuous on R \{0} . It is not defined at x =0 and thus not continuous

glx

on N.

(k) True, here is a proof. (Also, see Theorem 3.2.6, part (b).) Let £ >0 be given. Since f is continuous at

N

x=c, that is, im f(x) = f(c), there exists § > 0 such that |f(x) —f(c)l < whenever |x —c| <3,
Let {x,,} be anxarbcitrary sequence converging to- ¢ with x, €[a, b]. Then there exists n; EN such that
Ix,, —c| < IEI if n = n;. To prove {f(xn )} converges to f(c), we need to find n* €N so that
If(x,,)— f(c)| <& if n=n*, To this end, choose n* = n;. Then if n = n* we have |x, —c|< 8 , which in
tumn gives lf(xn)-f(c)l <. Hence, nl'_u&f(x,,) = f(c).

Note that the continuity of f is essential. Without it the statement is félse, See Exercise 31 in
Section 3.4 for a counterexample.
True, here is a proof. Suppose f is defined on [a,b] and suppose that for any sequence {x,,} in [a,b]
converging to ¢ €[a, b], we have that { f (x,, )} converges to f(c). To prove f is continuous at x=c¢,
we assume to the contrary. Thus, suppose il_'mt f(x) = f(c). Using Remark 4.1.11, part (b), there exists

£ >0 and a sequence {tn} in [a,b] converging to ¢ such that |f(t,,)—f(c)|2 €. Thus, there exists
6 > 0 such that 'f(t,,) - f(c)l ze if |t,, mcl <d. Hence, lim f(t,, ) = f(c), which contradicts the
n—w
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7.

10,

11.

hypothesis.

(m) Consider f(x)= l on D=(0,1],and x, = l . Then, {xn} converges to 0 but, f(x,,) =n and therefore,
n

(n)

(a)

(b)

(a)

{f (xn )} diverges to + 0,

Consider f(x) = +/x and @ =0. Then, f is continuous at x =0, fOT)=0,but f(07) does
not exist.

We only need to show that f(x) =c if x is irrational and x &(a, b). To this end, let xg be an arbitrary
irrational value in (a, b), and let {rn} be a sequence of rational values in (a, &) which converges to xg.
This is possible because irrationals and rationals are dense in $R , and thus, in (g, ). Since f is
continuous, by Exercise 5(k), the sequence { f (r,, )} converges to f (xo) . But, f (r ,,) =c forall n.

Therefore, the sequence { F(r, )} converges to ¢. Due to the uniqueness of the limit, f{xo) = c. (Note
that “rational r in (a, b)” can be changed to “any dense subset of (a, b).”)

No, f is not defined at irrational values of (=2,3) and thus, not continuous at these values. However, f

is continuous on §. Also, lim f(x) =35 for any a €(-2,3).
x=>a

Proof of part (a) of Theorem 4.1.7. Suppose that f is continuous at x = @ €D . Then there exists § > 0
such that |f(x)- f(a)|<[1]| whenever |x—¢|<8 and x ED. Thus, if xE(a-d,a+8)ND, by
Exercise 14(a) of Section 1.8, we have, -1 < f(x) - f(a) <1, which gives f(a)-1< f(x)< fla)+1.
Thus, for x E(a- 8,a+ §)N D we have —|f (@)~ 1< f(x) <|f(a)|+1, or equivalently, |f(x)| <
|/(a)|+1 and thus bounded “near x = a.”

Proof of part (d) of Theorem 4.1.7. Since f is continuous at a, there exists § > 0 such that
f{a)

|F ()= @< —|if |x~a|<6. Then, —l—(zﬂ<f(x)—f(a)<—f——(2a—), from which the desired

conclusion follows.

(b)

f)
2
show that if |x—c|<é, then f(x) >0, by assuming to the contrary. Thus, suppose that there exists x*

such that |x*—| <& and f(x*)s0.But, f(c)> 0, which gives f(x*) =0 < f (). Since the distance

of f(c) to 0 is less than the distance of f(c) to f(x*), we write If(x *)~ f(C)I >|fc)-0|= f(c). But,
this contradicts our hypothesis. Hence, if f is continuous and positive at x = ¢, then it is positive on a

small neighborhood of c. )
Continuity is essential in this problem. If f is not continuous, the statement is false. Choose, for

example, f(x) =1 for x rational and f(x)=-1 for x irrational with ¢ =2, Certainly, f2)=1>0
but, every neighborhood of 2 contains irrational values at which the functional values are negative.

Since f is continuous at ¢, there exists & >0 such that |f(x)~ f(c)] < if |x~c|<8. We will

Define h = f - g, which is continuous by Theorem 4.1.8, pat (a). Also, h(c) = f(c)- g(c)>0. Thus, by

part (e) of Theorem 4.1.7, there exists d > 0 such that for x E(a, b) with |x —C| <&, we have A(x)>0.
Hence, f(x) > g(x) for such values.

(a)

(c)

(a)

S(x) =1 for x rational, and f(x) =-1 for x irrational

2 . R .
-1, if
Fi[-221—> R, defined by f(x) = {x if x is rational

0, if x is irrational

Case 1. Suppose that b =1. Then, f(x)=1, and the conclusion follows.
Case 2. Supposc b > 1 and a = 0. We will prove that lim 5% = 1 using Theorem 3.2.6, part (b).

x—=0
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12.

13.

To start, recall Exercise 14 in Section 2.1 where we proved that 1im b* =1=5". Now, let {x,,} be any

n—>

sequence that converges to 0 and let £ > 0 be given. We need to find n* €N such that | VHEAE LI =

b* — ll <& forall n=n*. Since lim b = 1, there exists n1 €N such that b# —1<¢. Now choose

n—>0

n*>ny. Then, if # = n* we have |f(x,,)—L|=|bx" —ll=bx" —1<b%—1<£,if xp>0: If(xn)_L|=

e —1|=1-b% <57 —1<b —1<e. if 2, <0;and [f(xs)- 7] =P 1| =0 <2, if x, =0.
Therefore, { f(x,)} converges to 1, and by Theorem 3.2.6, lim b* = 1=4",

x>0
Case 3. Suppose b >1 and a@ =0 . Suppose {xn} is an arbitrary sequence that convergesto a .

Then, by Exercise 6 of Section 2.1, lim (x,, - a) =0. Thus, by case 2, { Flxp - a)} converges to 1.

n-—»ow

But, f(x,—a)=b%"“ Therefore, lim b**™% 1. This gives lim b5~ =1, thus ™ lim 6™ =1,

n—®w n—w n—w

by Corollary 2.2.4. This yields lim 5™ = 5% . Hence, Theorem 3.2.6, part (b), yields the desired result.

n—+0

(1Y (1)°
Case 4. Suppose 0 <b<1. Then, %> 1, and by cases 2 and 3 we have lim (;) = (—) . But

x—*q b

then, employing Theorem 3.2.5 we have lim b = b".
X—=>a .

34x—1 34(2)—1 37 3 7
We use the just proven result and Theorem 4.1.9 to obtain lim gﬁ = -g-m = ;7— = (g)

x—s2
(b) If g(x) =Inx, then h(x) = xg(x) is continuous by Remark 4.1.5 and Theorem 4.1.8, part (b). If
k(x)=¢", then k is continuous by Remark 4.1.5, and J(x)= (ko h)(x) is continuous by Theorem

4.1.9. Recall that exp(xInx) = exp(ln xx) =x* for x>0.

Let a be any real number. We will prove that f(x) = sinx is continuous at x =@ by showing that
lim sinx = sina . To this end, using Exercise 9 of Section 3.2 and Exercise 22 of Section 3.3, we write,
x—>a
lim sinx = lim sin(e + k) = lim (sina cos 1 +cos asin h) = ( lim sinax lim cos h)+ ( lim cos a)( lim sinh) =
x—>a h—0 h—0 h—0 h—0 h—0 h—0
sina+1+cosa*0=sina. Thus, f(x)=sinx is continuous on N .

Of course there are many proofs of the given statement. Another argument would be this. By Exercise 51
in Section 1.9 and the fact that sin x is an odd function, we have that Isin x| = le for all x real. Also, we know

x—-1 X+t

cos for all x,t €R . Thus, for any a real we have that

that lcos x| =<1 and sinx-sint = 2sin

|x-4]

-4 cos x; a; <2 I 5 |-l =|x - a|. From here it follows that sinx is continuous on

|sin x —sina| = Z.Sin a
2|

R.
To prove that cosx is continuous on I we can proceed in a similar way to the above argument using

the fact that cosx—cost=-2 sinf";:—tsinxT_t for all x,r €N . Thus, for any a real we have that

al |x-al

hd a| sin 1 <2-1- = |x — al. From here it follows that cos x is continuous on
2 | | 2 |

. X
S
2 |

|cos x - cos q| = 2

H

(a) True, here is a proof. By Remark 4.1.5, Inx is a continuous function. Thus, by Exercise 6(k) since
a, [ converges to A, the sequence {c,,}, with ¢, =Ina, converges to InA . By Exercise 36 in Section

2.7, that is, Theorem 2.8.6, the sequence {d, }, with d,, = i(lnal +Ina, + -+ +1Ina,), converges to
n
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14.

15.

16.

InA. But now, since b, =l(/a1 “ay-*-a, ,wehave Inp, = l(lnal +Ina; + -+ +lna,,). Taking
n

limits as n goes to «, we obtain lim Ind, =In A= lim d,,. Since Inx is a continuous function, we

n—a n =00

can write In( Iim b,,) = InA. Hence, lim b, = A, which is what we wanted to prove.

= HnH—wo
(b) False. Suppose that a,, = exp[(—l)"]. The sequence {a,,} oscillates and thus, it diverges. But, 4, =1 for

n even,and b, = He™! for n odd. Thus, {b,,} converges to 1.

Note that, Inx - In{x+1) = ln—x—l. Also, by Remark 4.1.5, Inx is continnous. Therefore, by Exercise 6(k),
X+

X

we have that, lim [lnx— In(x + 1)] = lim In =In lim —— = In1 = 0. Hence, by Theorem 3.1.6, {a,,}
XxX—»x0 X —»00 X+ x—n X+ l

converges to 0.

We write lim arctan—— = arctan( hm L) =arctanl = E, where the first equality holds due to the
x—»o x+1 x—o X + 4

continuity of the arctangent function. Now use Theorem 3.1.6 to conclude that lim arctan

r
n—sw n+l 4~

Observe that a,, > 0 for all a.
(a) Suppose that b =1. Then, a4, =1=a,,;. Thus {a,,} is constant and hence increasing. Next, suppose
b >1. We use mathematical induction to prove that the statement P(n), which stands for Apyeg > 'an , is

true for all n. Note that P(1) is true because for b >1 we have a; =54 = b = a). Next, suppose
P(k) is true for some k €N, that is, ag,; > ax, and show that P(k + 1) is true, that is, @) > ag;, ,

. . Zhel . . a
meaning % > b% or equivalently, p # 1. To this end, since @y 41 > ag, we have =L > 1 Thus,
a

bﬂﬁL >b! > 1. Hence, P(n) is true for all n, and so the sequence {a,,} is increasing.

(b) We will use mathematical induction to prove that a, <3 for all n. Certainly, a; = b= 3. Next, suppose
a; =3 for some k EN . We will show that a;,; < 3. To this end, we write a;,; = b < b < (%)3 =
3. Hence, a, <3 for all n.

(¢} By Theorem 2.4.4, part (a), the sequence {a,,} converges to, say, A. Taking limits of the recursion
formula and keeping in mind that f(x) = " is a continuous function, we obtain A = bA.

(d) In this case b=+/2 < /3. Therefore, the repeated power is the limit of the sequence {an} as given in
parts (a)—(c). Thus, the sequence converges to A, which satisfies A = (-\/-2_)A. This gives A =24 , and
thus, A= 2 or A= 4. But, in part (b) we verified that A <3. Hence, A= 2.

Section 4.2

1.

(a) Since f(0*)=1 and f(@07)=-1, the discontinuity at x =0 is not removable, it is jurmp.
(b) f is discontinuous at x = 0 because f(0) is undefined. However, lim f(x) =1, a finite number.
x—0

Therefore, x =0 is a point of removable discontinuity. If we define £(0) =1, f will be continuous at
x=0.
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(c)

(d)
(e)

()

(g)

(h)

(i)

(i)

(k)

I
(a)

(b)

(c)

sin(—_Si“x -x)
S is discontinuous at x =0 because 7(0) is undefined. However, we have lim Sf(x) = lim X
x—0 x—0

sinx

= lim = 1. Therefore, x =0 is a point of rembvable discontinuity. If we define f(0) =1, f will be

x>0 X
continuous at x =0,
Similar to part (c).
Observe that f(0)=0, f(0+) = lim (0 -1)=-1,and f(0 )= lim (~1-0)=-1. Thus, since
x—0* x 07
lim f(x)=-1= f(0), f has aremovable discontinuity at x = 0. If we redefine f at x=0 to be —1,
x—0

the resulting function will be continuous at x = 0.
Since f is a composition of continuous functions, by Theorem 4.1.9, f is continuous. Therefore, no
discontinuity at x=0.
Since f(0)=0 and lin}) fx)= lin}) (1= x)=1, the discontinuity of f at x = 0 is removable.
X X—>

Redefining f(0) to be 1 will make f continuous at x =0 .

B

Observe that f(0) =1. Also, lim f(x) does not exist because if X, zl and 1, = z , or ﬂ
x—0 n 2n-1 n
or, ..., the sequences {x, | and {¢,} converge to 0, but { Fx, )} and { Sty )} converge to 0 and 1,

respectively. See Theorem 3.2.6. Therefore, the discontinuity at x =0 is not removable. In fact, it is
oscillating.

S is discontinuous at x =0 because f(0) is undefined. By Example 3.2.8, lin(}+ S&) and lim_f(x)

do not exist. Therefore, discontinuity is not removable. In fact, it is oscillam:g_.) 0

J is discontinuous at x =0 because f(0) is undefined. By Exercise 5 from Section 3.2, lim f(x) =0.
Therefore, in order to make f continuous at x = 0, define £(0) to be 0, 0

S 1s discontinuous at x = because f(0) is undefined. However, ER) f(x) =0. Therefore, in order to

make f continuous at x =0, define f(0) to be 0.

S has infinite discontinuity at x =0 since f(0")=+o,and £(07)=0.
y

The function g(f) = l_tJ is continuous whenever ¢ is not an integer. Thus, to determine the points of

. . ] o . . . 1 1
discontinuity of f consider the situation when 2x , is an integer. This occurs when x = —1,—5,0,5

1. When a= —%, 0, and %, we have f(a”)=1and f(a")=0. Therefore, by Definition 4.2.5, part

, and

(a), f has nonremovable jump discontinuities at a = ——;—,O, and % with jump values of —1. If

x=a=-1,then f(-17) does not exist. However, lim+ fx)= 1im+(2x +2)=0. And since
x—+-1 x—= -]

f(~1)=0 as well, f is continuous at x=—1.If x= g =1, then f(1*) does not exist. But,
lim f(x)= lim (2x-1)=1. And since f(1) = O, part (b) of Definition 4.2.5 is satisfied resulting in

x—1" x-1"
a jump discontinuity at x =1 with a jump of —1.

The only accumulation point of the domain D of f is 0. Therefore, a discontinuity can occur only at 0.
In fact, since lim_f(x)=1and lim_f(x)=-1, x=0 is a point of a jump discontinuity with the
x-0* x—=0"

Jjump of 2.

x= —% is an accumulation point of f but, —% ¢ D, the domain of f. Therefore, f is discontinuous
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(d)

(e)

()

(g)

(h)

(i)

@)

(k)

n

(m)
(n)

at x = ~%. This discontinuity is removable because f can be continuously extended by simply defining

3 7
[ (—E) == The function f has jump discontinuities at x = —1 and x =0, with jump of % at each

one of them. In addition, since f(1) =1 and lim f(x)= lim f(x)= -;—, f has a jump of w;v at x=1 as
x—1 x—>1"

well. x=1 is also a point of removable discontinuity.
If n=35,.., lim f(x)=land lim f(x)=-1. Thus, f has jump discontinuities with a jump of ~2.
x—n" x—=n’

If n=2,4,6,..., lim f(x)=-1and lim+ Sx)=1. So, f has jump discontinuities with a jump of 2.

X=*n X—™Rn

Note that f(ﬂ) = -1- but lim f(x) =0 for every a €(0,1), in particular for a rational @ = £ Thus, f
q q

q x->a
is discontinuous at all rational values and the discontinuities are removable, and there are countably many
of them.

,nEN,wehave lim f(x)=1=0=f(a), f has removable discontinuities at these
X—>a .

|-

Since for g ==

. . L 1
points. Next consider x=a =0. Since if x, =— and 7, = 3 or t, = ﬁ, n €N, sequences {x,,}
n

n n—
and {t,,} both converge to 0 with { F(x, )} and { £z, )} converging to 0 and 1, respectively. Therefore,
lim f(x) does not exist. Hence, f has an oscillating discontinuity at x =0. Also, f has jump
x—+0 .

discontinuities at the endpoints.

If x, =l, then {x, } converges to 0 but { fxn )} divergesto + o . If ¢, = 3 2 , then {t,,} converges
n

to 0 and { f (t,l )} converges to 0. Therefore, xl~i+ng+ Jf(x) does not exist. Similarly, xlixg_ S(x) does not
exist. Thus, f has oscillating discontinuity at x = 0. In addition, f has a removable discontinuity at
x=-t_-%, forany n €EN .

If a <0, then f is discontinuous at x = @ because lim_f(x) do not exist, making it an oscillating
discontinuity. Since lim_f(x) does not exist and i:;l;f f(x) =+, the discontinuity at x =0 is also
oscillating. e o

x =0 is the only possibility for a discontinuity of f. But, xlilg’ JFx)= Xl_i-rg* exp(—in) =0=

lirg_f(x), and f(0) =0, f is continuous at x=0,
X

x =0 is the only possibility for a discontinuity of f. Since, lirrs+ f(x)=1 and ling_ f(x)=0, we
X X
have a jump discontinuity at x =0 with the jump of 1.

x =0 is an accumulation point of the interval (0, ), the domain of f, and lim f(x)=+o. Since f
x—0

is undefined for x <0, the discontinuity is infinite.
Jf has an oscillating discontinuity at x =0 since x =0 is an accumulation point of the interval (-, ()
and lim f(x) does not exist.

0"

Same as part (1).

The only possibilities for discontinuity are x =0 and x = :l, n EN . Consider x = 0. We can use
n

definition of a limit to verify that lixrb f(x)=0= 0% - f(0). Thus, f is continuous at x =0, Consider
X~
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(0)
(p)

x=1. Since lim f(x)= f(1), f is continuous at x=1 aswell. If x=a =:l with n €N and x=1,
x~] n

. 1 1
then lim f(x)=— = :; = f(a). Therefore discontinuities at x = g are removable.
x—>a - n
The discontinuity at x = 2 is infinite.
The only possibilities for discontinuity of f are at x=1 and x = —1. Consider x =—1. Since
lim_f(x)=1and Lm _f(x)=0, f hasajump discontinuity at x = —~1 with the jump of —1.
x—-1*

x—+—1

Consider x=1. Since lim f(x)=0 and lim f(x)=1, f has a jump discontinuity at x =1 with the
x—=1 1

jump of 1.

Section 4.3

1.

(a)

(b)

(c)

(a)

(b)

(a)

Suppose f is continuous on a closed interval which is not bounded. Say, f(x) = x* on [0,). This
function is not bounded.

Suppose f is continuous on a bounded interval which is not closed. Say, f(x)= 1 on (0,1). This
X

function is not bounded.
Suppose the interval is closed and bounded but f is not continuous. Say, f:[0,1]— R is defined by

f&xy=n,if x= l n<EN.and f(x) =0, otherwise. This function is not bounded.
n

Suppose f is continuous on a closed interval which is not bounded. Say, f(x)=1 on [1,). This

function is bounded.
Suppose f is continuous on a bounded interval which is not closed. Say, f(x)=1 on (-1,3]. This

function is bounded.
Suppose the interval is closed and bounded but f is not continuous. Say, f:[0,1]— R is defined by

f(x)=1,if x isrational, and f(x)=-1, if x is irrational. This function is bounded.

‘Say, f:[0,1]— R is defined by f(x)=x,if x€[0,1), and f(1) =0. Clearly, f cannot be

continuous.

By Theorem 4.3.4, f([a,b]) is bounded. Next, we will prove that f([a,b]) is closed. We assume that
{y,,} is an arbitrary sequence in f([a,b]) which converges to some point zg, and we will prove that
29 €f(la,b]). To this end, let {x,} be the sequence in [a,b] for which y, = f{x,). Now, {x,} hasa

subsequence {xnk} that converges to xg €la, b], since [a,b] is closed. Therefore, { f (x,,k }} converges
to f(xo), since f is continuous. But, { Vi (xnk )} also converges to zp. Hence, zp = f(xo) € f(la,b]).

Since f([a,b]) is bounded, sup f(x) = M is finite. Let {y,,} be a sequence in f([a,b]) converging to
M. Since f(la,b]) is closed, M Ef([a, b]). Hence, M = max f(x). Minimum is handled similarly.

f)=xifO=sx=<l,and f(x)=x-1ifl<x=<?2.

R =N definedby f(x)= x2 +1 has no real roots.

Note that p(0)= ap < 0. Since by Theorem 3.1.13, part (¢), lim p(x) =+, there exists & > 0 such that
X—> 00

p(b)=>0. Since p is continnous (see Example 4.1.4), by Theorem 4.3.6, there exists ¢ €(0, ») such that
p(c) =0. The same way we can prove that there exists at least one negative root. Observe that this result is
not true if n is odd. Choose f(x) = x> -1 for all x ER. Here ay =—-1<0, but f has exactly one real root
x=1.
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‘10.

11.

12.

13.

Suppose a is a given positive real number. We want to show it has a unique positive n th root. Consider
f(x)=x"-a for x=0. Note that f(0) =-a <0. Since lim f(x)= + there exists b > 0 such that

x>0
f(b)>0.By Theorem 4.3.6, there exists ¢ €(0, b) such that f(c)=0. Thus, ¢" =q and ¢ is a positive nth
root of a. Next we verify that f is strictly increasing. According to Definition 1.2.10, suppose 0 <x; < x3.
By Theorem 1.8.4, part (b), and the mathematical induction, we have that f (x1 ) <f (xg) and thus, strictly
increasing. Therefore, positive n th root of a is unique.

Suppose f is not constant on [a,b]. Then there exists x;, x; E[a, b] such that f (xl) < f (xz) . But then there
exists an irrational number r such that f (xl ) <r< f( x ) By Theorem 4.3.6 there exists ¢ E( X1, x2)
Cla, b] such that f(c) = r. This is a contradiction because images of f were assumed to be rational.

Suppose f: D— R is continuous, one to one, but not monotone. Then since D is an interval, there exists
a,b,c €D such that a < b < ¢ and, either f(a) < f(b) and f(b)> f(c), or f(a)> f(b) and f(b)< f(c).
Without loss of generality, we suppose the first possibility holds. Next, we distinguish further 2 cases:
fla)<f(c)and f(a) > f(c). Note that f(a) = f(c) is not a possibility since f is one to one. We again
consider the first case and leave 3 remaining situations to the reader. Thus, f(a) < f(c) < f(b). Now, let
k€ (f().f®)). Then, k €(f(a),f(®)) and by Theorem 4.3.6, there exists ¢; E(a, b) such that f(c;) =
But, £ €(f(c),f®)) and so by Theorem 4.3.6, there exists ¢y (b, ¢) such that f(c;) =k . Since ¢; = ¢y,
we have a contradiction to the fact that f is one to one on D.

(a) Iff(x)=xif05x<1, J()=0,and f(x)=x-2 if 1 < x=2, then the range of f is (-1,1).

(b) If f(x)= 1f0<x<l and f(x)=2 if x=0 and 1, then the range of f is (1, ).
(c) If f(x)=lif0<xsl,and f(0)=1,thenthcrangeoff is [1,0).
X

The continuity is a stronger assumption because f continuous implies that f possesses the intermediate
value property, and Exercise 3(a) shows the converse is not true.

Suppose f :[a,b]— R is continuous and f(x) =0 forany x Ela, b]. We first prove that either f(x) > 0 for
all x&la, b] or f(x) <0 for all x €[a, b]. We argue this by contradiction. Sprpose there exists ¢) and ¢ in
[a,b] such that ¢; # ¢; but f(cl)< 0< f(q ) Then, by Theorem 4.3.6, there exists xg between ¢y and ¢y
such that f (xg) = 0. Contradiction to hypothesis. Without loss of generality, we suppose f(x) > 0 for all

x €[a, b]. We need to prove that there exists £ > 0 such that f(x) z ¢ for all x €[a, ]. To this end, observe
that by Corollary 4.3.9, the range of f is an interval [c,d]. But by the above, 0 &[c,d]. Thus, pick £=c.
(a) Since for any x wehave e™e™* =¢*F = = 1, we know that e* = 0 for any real x. Also, we observe

that ¢* >0 for all x, because if it were ever negatlve then, since e =1, by Theorem 4.3.6, it would
have to vanish somewhere, which we showed is not poss1ble Recall that, by Problem 2.8.1, part (e), we

have 2 = ¢< 3, and by Problem 2.8.2, part (c) we have ¢* > 1 forany x> 0. Next Wc let any 5,tER
with s < t, and we show ¢° <e’ Smce s <t we have 1 - s > 0, which gives us ¢’ ~* > 1. Thus, since
e’ >0, wecanwrite ¢’ = %¢* > 1-¢° = ¢*. Hence, F(x) =¢" is strictly increasing for all x real.

(b) Since f is strictly increasing and by Example 2.3.4, lim f(n) =+, the conclusion follows.

H=—>rx

. , 1 i
(¢) lim ¢*= lim —= 11mi=0_
X —>—00 X—>—0 e_x t—»o0 er

If m=min{f(x1 F(x)} and M = max{f x) f(x 2)},then m= f(x)s Mand m= f(x,)s M. This gives
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14.

15,

1le.

17.

kym s kif (x1 ) skM and kom=ky f (xg) = kM . Adding these together we obtain m(kl + kz) =

kyf(x1)+ ko f(x2) s M(ky +k,) . This gives us that m =

ki f(xp) + ko f(x2)
kl +k2

= M . The existence of the desired

¢ follows from Theorem 4.3.6.

(a)

(f)
(g)

(h)

(i)

(b)

Note that x> +x~2=0 < (x+2)x-1)s0. Since f(x)=(x+2Xx-1)=0 if x=-2 and 1, the
intervals to be tested are (-, ~2), (-2,1), and (1,), Since f(-3) >0, none of the values in (-, -2)
satisfy the inequality. Since f(0) <0, every value in (-2,1) satisfies the inequality. Finally, since
S(2)>0, none of the values in (1,0) satisfy the inequality.

Note that x3—2x+1=(x—1)(x2+x_1)_

First solve f(x)= X 42x? _5x- 6 = 0. Note that f(~1)= 0. Therefore, x +1 divides f(x}. Thus,
JxX)=(x+ 1)(x2 +x- 6) =(x+D)(x+3)(x-2). So, f(x)=0 if x=-3, -1, and 2. Therefore, intervals
to be tested are (-, =3), (-3,-1), (~1,2), and (2, »). Since f(-4)<0, every point in (-, -3)
satisfies the given inequality. Since f(-2)> 0, none of the points in (=3, ~1) satisfy the given
inequality. Since f(0)<0, every point in (-1,2) satisfies the inequality. Lastly, since f(3)> 0, none
of the points in (2, «) satisfy the inequality. In addition, x = -3, — 1, and 2 do not satisfy

f(x) < 0. Hence, the desired inequality is satisfied if x E(—<0,-3)U(-1,2).

Do not multiply by x —35 unless you decide on its sign. We resort to writing 2x +51 -3=0, which is
X~
-16
equivalent to d z0. Since x-16 =0 when x=16, and x -5 =0 when x =5, the intervals to be
X—

tested are (-,5), (5,16), and (16, «). Since x =0 satisfies the above inequality, all the points in
(-2, 5) will satisfy it. Since x=10 does not satisfy the above inequality, none of the points in (5,16)
will. Finally, since 20 satisfies the inequality, then all the points in (16, ) will. Also, note that x = 16
satisfies the inequality but x =5 does not. Hence, the desired inequality is satisfied if

x E(=00,5)U[16, o).

Consider two inequalities separately.

Define f(x)=2" -3x. Since f(0)=1>0 and f()=-1<0,and J is continuous on [0,1], by
Theorem 4.3.6, there exists ¢ €(0,1) such that f(c) = 0. Therefore, 2° = 3¢.

Define g(x)= %(2"). Since g :[0,1]—=[0,1] and g is continuous, by Theorem 4.3.10, there exists

¢ €[0,1] such that g(c) = ¢, which yields %(?) =¢, and thus, 2° = 3¢ . Note however that ¢ = 0 and
¢ = 1, Thus, ¢ €©,1).

Even if g is continuous with a fixed point, the sequence {x,,} might not converge. For example, pick

glx) = x* and xp = 2. Then, g is continuous with fixed points x=0, 1 but lim x, = + . Note that

n—»0

1 . . N .
xp = -2- would create a sequence that converges to the fixed point x = 0. The given argument in this exercise

proves that the sequence converges to a fixed point only if we start with a converging sequence {x n }

If D=(0,1)U(2,3], consider the function f : D — R defined by f(x)= x if x€ (0,1), and f(x)=4-x if
x € (2,3]. Note that f is a continuous injection on D, However, f -! 1(0,2) — R is not continuous, since it
has a discontinuity at x=1.
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19. (a)

T
Use Exercise 18(c). The given function is the inverse of tanx on (——2-3)

(b) Use Exercise 18(c). The given function is the inverses of e* on R .

20. (=) Suppose E is closed and @ €R \ E. We will show there exists a neighborhood I of @ such that 7 is
entirely contained in R \ E. To this end, since E contains all accumulation points of E, ¢ is not an
accumulation point of E. Thus, there exists a neighborhood I of a that contains no points of E. Therefore,
I'C R\ E. Hence, by Definition 4.3.2, R \ E is open,

(=) Suppose R\ £ is open and a is an accumulation point of E. We need to show that ¢ EE. To this

end, suppose a ER\ E. But, R\ E is open. Thus, if a R \ E, there exists a neighborhood I of a such
that  C R\ E or IN E = ¢ . But this contradicts the fact that @ is an accumulation point of E. Hence,

a ER\ E, which implies 2 €E and thus, E is closed. Theorem 4.3.3 proves that 9t and ¢ are both open
and closed.

Section 4.4

1. (a)

. . . . . 1 1 1
The function f is not uniformly continuous because if £ = 7 x,=—,and 7, = UL then
n n+

1 1
Pen = 1] = vl 1 (xa)- 7(ta)| =12 5 Now use Remark 4.4.4.

(b) We will prove that f is uniformly continuous. Let ¢ > 0 be given. We need to find & > 0 such that

(c)

@

(e)

[f(x)= f()|<¢ forall x,t€[0,2) satisfying |x—1| <6, To this end, if x, €[0,2), then
lf(x)ﬁf(t)|= |x3_t3|:|x—t|lx2 +xt+t2|s|x— t|(4+4+4) =12|x— t| <€, provided |x—t|< ng— Thué,

we choose & = i.
12

We will prove that f is uniformly continuous. Let ¢ > 0 be given. We need to find 8 > 0 such that
|7y~ f(0)| <& forall x,r €[0,2) satisfying [x—¢] <. To this end, if x,z €[0,2), then
X t Hx -t 4x -t
RIS [N R N, e S,
[x+4 t+4] (x+d)(r+4) (0+H0+4)
choose § =4¢. :

= %|x— t| <&, provided |x - < 4¢. Thus, we

We will prove that f is uniformly continuous. Let £ > 0 be given. Pick & = &> and consider the 2
possibilities. Case I. Suppose that both x,t ER satisfy [x}|¢| € [0,8). Then, {/l;l,%/ﬂ € [0’% ) =
[0,£), and thus, |x— <3 implies |£(x)- £(£)|= |%/I-§/?|s|i/§| <e.

Case 2. Suppose cither le and/or ltl are/is greater than or equal to & . Then we have,

lx% +208 413 26% =2, and thus, [x—4 <8 implies that |£(x)- £ ()] =

2 1L 2
X2 +x313 +42 _ - 3

x -3l L -1 < -1 0 _E =¢. Hence, we found § which depends
2 11 2 2 11 2 2 2 2
X3+ X33+ P Hx% +t0 € £ &

only on € so that whenever lx— t| <8, we have |f(x) - f(t)[ <€.

2n+l 7

We will prove that f is not uniformly continuous. Choose & = %, X, = 2L and ty = 1
n 1
2

f(xn)—f(tn)|=|0—ll=lz%.

. Then, |xn - t,,l =< l but,
n

4n+1
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()

(b)

(c)

)
(e)
)

(g)

(h)

(i)

3. (a)

We will prove that f is uniformly continuous. Let ¢ > 0 be given and pick § = % Then, if x,t =1 and

1 1
=<8, wenave |f(0)- 1 0]= 1=~ 5

1 1 £
=lx -t — ¢ —— x—t<2-~—=¢,
|x I( - + zt)s Ix |< £

False statement because ¢ may be a or b. For example, choose f(x) = 1 with x €(0,2). Then the
X

sequence {xn} defined by x, = 1 is in (0, 2), but the sequence { f (x,, )} diverges to + . Observe that
n

if we pick any sequence converging to a value ¢ E(a,b), then by Exercise 5(k) from Section 4.1, the

sequence { F(x, )} converges to f(c).

True, because a uniformly continuous function cannot run away too fast. The interval (a, b) can be
changed to any bounded domain D. To prove, let £ > 0 be given. Since f is uniformly continuous on

(a.b), there exists § > 0 such that | f(x)-f (t)| < if ]x— tl <@ and x,t E(a, b). Furthermore, since
{x,,} converges, it is Cauchy. Therefore, there exists n; EN such that [x,, - xml <|E] form,n=mn.
We need to find n* €N such that If(x,,) —f(xm )| < ¢, whenever m,n = n*. Thus, choose n* = ny.
Then, if m,n = n*, we have |x, - x,,| < &, which in turn gives |f(x,,) ~ f(xm )l < £. Therefore, {f(xn )}
is Cauchy (and hence, convergent.)

False. Choose f(x)=sin 1 , with x &€(0,1).
x

True. This is the contrapositive of Theorem 4.4.7.

False. If f(x)= x forall x €R, then f is uniformly continuous on R but not bounded.

True. To prove this recall that uniform continuity implies continuity. Thus, f is continuous on (a, )
and moreover, by Theorem 4.4.7, f(a*) and f(b~) are both finite. Therefore, Jf can be continnously
extended to the function g : [a, £]— R by defining it as g(x) = f(x) if xE(a, b), gla) = f(a*), and
gb)= f(b"). Thus, by Theorem 4.3.4, g is bounded. Hence, f is bounded on (a, b).

False. Choose any bounded discontinuous function, say, f(x)= sinwlm, with x €(0,1). By Exercise 1(e),
x

f is not uniformly ¢ontinuous.

True. Proof. Since f is uniformly continuous on [a,b], then f is continuous on [a,b] and
lim_f(x) = f(b). Since f is uniformly continuous on [b,c], then f is continuous on [b,c] and
x—b

‘ lim+f(x) = f(b). Therefore, lin}, f(x)=f(b),and so f is continuous on [a,c}. Since [a,c] is
x—+b X~

compact, by Theorem 4.4.6, f is uniformly continuous on [a,c].
False. Let f : (0,3) — 3 be defined by f(x)= -1 if x & (0,1), and f(x)=2 if x&[1.,3).

Here is a proof of Theorem 4.4.7. We assume f : (g, b)— R is uniformly continuous and prove f @h)

is finite. Proof that f(b7) is finite is similar. So, let ¢ > 0 be given. We prove that f(a") =

lim f(x) is finite by the use of Theorem 3.2.6. To this end, f uniformly continuous on (a, b)
X—+q

£
implies that there exists & > 0 such that ] f(x)—f (t)[ < if Ix— t| <9 and x,t E(a, b). Now, pick an
arbitrary sequence {xn} in (a, b) that converges to . Then, there exists ny EN such that n = n) we
have a <x, <a+4d. By the uniform continuity of f we have 'f(x)-f(x,, )| < %, if n=n;. Also, by

Exercise 2(b), { f(x, )} converges to, say, L. This means that there exists ny €N such that
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5.

£
|f(x,,)—q< if 7 = ny. Now, choose n* = max{nl,nz} . Then, if n =n* we have |f(x)—L|s
£ = £l )|+ [f(x0) - 1] < §+§ —¢. By Theorem 3.2.6, f(a*) is finite.

{b) Suppose f is continuous on (a, b). Define g : [a,b]— R by g(a) = f(a+), gx)=fx)ifa<x<b,
and g(b) = f(b™). Since g is continuous {a,b], by Theorem 4.3.4 it follows that g is bounded on
[a,b]. Thus, f is bounded on (a, b). Converse is false because fx)= sin—l— , with x €(0,1), is

x
bounded and continuous, but £(0*) does not exist.

(¢) (=>) [ uniformly continuous on (a,b) implies f(a*) and f(b~) are both finite, by Theorem 4.4.7.
Thus, the function g from part (b) is a continuous extension of f.
(¢<=) Let g be the continuous extension of f to [a,b]. Then, by Theorem 4.4.6, g is uniformly
continuous on [a,b], and thus, f is uniformly continuous on (a, b).
a) If f(x)= sini, with x €(0,1), then f£(0*) does not exist. Therefore, f has no continuous extension
x
to [0,1], and therefore, by Corollary 4.4.8, not uniformly continuous on (0,1).
If g(x)= xsinl, with x €(0,1), then since g(0*)=0 and g(I")=sinl, g has a continuous extension
x

to [0,1]. Therefore, by Corollary 4.4.8, g is uniformly continuous on (0,1).

Since f is periodic on R , there exists p > 0 such that f(x +p) = f(x) for all x ER. By Theorem 4.4.6, f
is uniformly continuous on [- p, p]. Therefore, given any ¢ > 0, there exists 8 > 0, in particular < !2-’-, such
that |f (x) - £(#)| < £ provided |x 1< 0 and x,r €[~ p, p], Now, suppose |x~{ <8, where x and ¢ are any

P

real values. Note that there exists an integer n such that x+np € [_E E] Then, t+ np €[~ p, p] since

x-1<d < g. Thus we can write |f(x) - f ()} =|f(x+np) - f(t+ np)|<e. Hence, f is uniformly

continuous,

(a) Let £ >0 be given. To show f +g is uniformly continuous on I, we need to find 6 > 0 so that
[(f + &)%) (f + g)1)| <€, for all x,t ED satisfying |x— ] <8 . To this end, observe that £ uniformly

£
continuous implies that there exists 8; > 0 such that |£(x) - £(¢)| < whenever |¥ -1 <) and

x,t €ED. Also, f uniformly continuous implies that there exists d, > 0 such that lg(x)— g(t)l <
whenever |x~ 4 <8, and x,t €D . Thus, choose & = min{8;,8,}. Then for x,t ED with |x—1]<8, we
have |(f + £)(x) = (f + g)(®)| s|f (x) - F () +]|g (%) - g()| < %+% =¢. Hence, f +g is uniformly

continuous on D.

(b) Let £ >0 be given. Since f is uniformly continuous, there exists & >0 such that
£

Vm—ﬂM<Hﬁ

by 0 in case ¢ =0.) Now, choose § = §;. Then for x,t €D with Ix—~ t|<5 we have |(cf)(x) (cf)(t)|

le|lf () - ﬂm|4|

(c) Proof by contradiction. Suppose f is unbounded. Then there exists a sequence {x,, } in D such that

whenever Ix - tI <98j and x,t €D . (We added 1 in the denominator to avoid division

<¢. Hence, ¢f is uniformly continuous on D.
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(d)

(e)
)

(b)

(c)
(a)

(b)

(¢)

(d)

(e)

169)

l f(x, )I z n foreach n EN . But, by Theorem 2.6.4, there exists {xnk} in D that converges and thus,

by Exercise 2(b), with (4, b) replaced by D, the sequence { f (x,,k )} converges. Contradiction to the
hypothesis. Hence, f must be finite.

Let ¢ > 0 be given. To show fg is uniformly continuous on D we need to find 6 > 0 so that -
[(fe)(x) - (fe)(B)| < £ for all x,r €D satisfying |x~f|< 8. To this end, let K> 0 be abound on f and
§- Also, f and g uniformly continuous on D implies that there exist d; and &, such that

& €
|f) - f@)| < % e

choose & =min{6,,6,}. Then for x,# ED with [x~ 1< 8, we have [(fg)(x) - (fo)®)| =

[f @)lle) - g+ g @llf - F 0] s Klg(x) -]+ Klf ) - F@) < K -%m -§=e.

By part (¢), f and g are bounded on D. The result follows from part (d).
S

By Theorem 4.1.8, part (¢), = is continuous on D. Since D is closed and bounded, the result follows
4

if [x~1| <6y, and ls(x)- g(1)] < if |x—1| <8, provided x, €D. Thus,

from Theorem 4.4.6.
f{x)= sin(xz) - Note that oscillation of f speeds up.
fG)=-x.

The function f is Lipschitz because we can write
,f(x) - f(t)' = IX - t”x + Il s |x - t|(|x|+|t|) = |x - t|(2 +2)= 4|x - tl. Thus, a Lipschitz constant is 4.

The function f is not Lipschitz because its domain is unbounded. To see this, observe that by Example
4.4.5, f is not uniformly continuous. Therefore, using the contrapositive of the statement in Theorem

4.4.11, f is not Lipschitz on R . In fact, no polynomial of degree greater than 1 is Lipschitz on & .

The function f is not Lipschitz if the domain includes a neighborhood of x = 0. We will prove f is not
Lipschitz by contradiction. Thus, suppose there exists a Lipschitz constant L >0 . Then, | f(x)-f (0)| =
1 1 L
le-0|, that is, fx < Lx for all x&R. So, let Xp =—5. Then, " = —, which is equivalent to
n n
nts L. However, since lim n? = +, L cannot be a finite number. Contradiction.
n—x0
Since f is not uniformly continuous, by the contrapositive of the statement in Theorem 4.4.11, f is
not Lipschitz.

The function f is not Lipschitz. By contradiction, suppose there exists a Lipschitz constant L > 0. Then
2

T @n+lx
x=x, and t =1, . Then, for all n EN we have If(xn)—f(zn)lslen - 1,]. But, |f(x,,)—f(t,,)|=

—2—. Therefore, -2— = [ 1 ——2—
(n+ 1w 2n+ ) nr (QCn+nx
contradiction.

The function S is not Lipschitz. By contradiction, suppose there exists a Lipschitz constant L > 0. Then

pick sequences {x,,} and {t,,}, where x, = L and ¢, - Now, in Definition 4.4.10, let
nam

for all n. Hence, 2= -L~ for all n, which is a
n

pick sequences {x,,} and {t,,} , where x, = L and ¢, . Now, in Definition 4.4.10, let
n

_ 2
C@n+Dn
X=X, and t = #,. Then, for all n EN we have lf(x,,)—f(t,,)lsL|x,, ~t,|. But, If(xn)—f(t,,)lz

—--—2—.Thus, —2—5L I - 2 | L foral]n.Hencn;a,st~L 2n+1
Cn+)x Cn+hn k4

nw (2n+1);n:|=n(2n+1)ar nt 2n+1 "’
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10.

11.

which tends to 0. Hence, a contradiction.

Several examples of functions that are uniformly continuous but not Lipschitz are:
SR >R definedby f(x)= 3fx. See Exercise.1(d) and Exercise 7(e).

f:[0,) =R definedby f(x)=+/x-
[ 10,11 —= R defined by f(x)= Vx sinl. See Exercise 7(e). The uniform continuity follows from Corollary
X

4.438.

[ (0,11 — R defined by f(x)=xsin—1~.
x

Suppose f :[a, b]— R is contractive, that is, f is Lipschitz with the Lipschitz constant L €(0,1).
Therefore, by Theorem 4.4.11, f is uniformly continuous on [a,b], and thus, continuous. Also,
f:la,b]—[a,b], and thus, by Theorem 4.3.10, f has a fixed point. This proves the existence.

To prove uniqueness, we suppose that x; and x; are 2 fixed points of f and show they must be equal.
Since f is contractive, we have | f(x1)-f (x2)| o

» LE(0,1). Since x; and x; are fixed points,

that is, f(xl ) = x; and f(xz) = x7, the previous inequality gives |x; —xo| < L|x| - x5|. Since L<1, we

must have ]x1 - x2| = 0. Therefore, x| = x, , and thus uniqueness is established.

(a)

(b)

(c)

(b)

(c)

(@)

Choose f(x)=x+1, with x ER. Note that |f(x) - f(t)| =|x 1| for all x,r ER. Therefore, L=1 but
f has no fixed points.

Choose f(x)=x, with x €R. Note that |f(x) - f(t)] = lx - t] for all x,s €R. Therefore, L =1 and
every real number is a fixed point of f.

Choose f(x) =2x, with x ER. Note that |f (x)— £(¢)|=2|x ~ 4| for all x,s ER. Therefore, L =2 and
f has only one fixed point, namely x=0,

Define g(x)=|x~ f(x)|and show g attains its minimum value that is 0. Since f is Lipschitz, f is
continuous, Therefore, g is continuous on a ¢losed and bounded interval. By the extreme value theorem,
Theorem 4.3.5, g attains its minimum value m. Thus, there exists p E[a,b] such that g(p)=m. We
prove m =0 by assuming to the contrary. So, since g(x) =z 0, we assume that m >0 and look for
contradiction. Since |f(x)~ f(#)| <|x~1| for any x,t E[a, 4] and f : [a,b] >[4, b], we choose x = p
and 7 = f(p). Then we have ¢(f(p)) =|/ ()~ F(f(P)) <|p- F(P)|= 8(p)=m. But, g(p) is a
minimum value of g, thus g( S p)) 2 g(p). Contradiction. Hence, g(p) = 0, which implies that
f(p)= p. Thus, at least one fixed point exists.

Suppose x; and x5 are 2 fixed points of f. Then, f (x1 )= x; and f (xz) =x3 and x; = x; . Therefore,
|F(x1)= f(x2)| =1 = x5]- But, |f(x) = £(0)| <|x—1 forall x,t €D with x=+. Thus, if x = x; and

t = xp we have |x; - x| <|x; - x|, which is not possible. Hence, there exists at most 1 fixed point.

Suppose f: (0,1) = (0,1), where f(x)= % Note that |f(x) - £(1)| = %lx—t| <|x-1|. But, f has no

fixed points, that is, f does not cross the line y =x when x €(0,1). Observe that D= (0,1) cannot be
both closed and bounded, for otherwise, Theorem 4.3.7 will guarantee a fixed point.

n n
Consider f : [0—2—] - [O,E], where f(x) =sinx. Note that by Exercise 51 of Section 1.9 and by

7
Exercise 4 in this section, |f(x)- f (1)< |x~¢| forall xE [0, 5] but there is no constant L €(0,1)

such that |f(x)- f(@)] = Lx~ 1.
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Section 4.5

12.

13.

14.

15.

1 1y 1 1
(a) The condition follows since f is increasing, f(x) >0 forall x&€ (O’E]’ and f (g) = 5 < -3;

1.1 2
(b) Since |f(x)- f()|= |x2 —t2l=|x+t||x—t|s(~3—+§)|x—t|=§|x—tl, f is a contraction.
(¢) The function f has no fixed points because f(x)= x >xl= = x = 0,1, and neither of them is in
(o]
A3
We will show that for all x,r =1 we have |f(x)- f(#)= L|x -] with L E(0,1). To this end, since for all
(x 1] (t 1
—t—|-|l=+=]=
2 x 2 1t

< —;-Ix -4j2-1|= %Ix —1|. Therefore, f is a contraction.

x,t =1, we have that, xt =1, and thus, % < 2, we can write that, | (x)- f ()] =
X

=l|x-t|’£_1
2 xt

(a) False. Consider f(x)=cotx, if x s nm, n aninteger, and f(x) =0 otherwise.

x-1) == (x=1)
Xt

1
2

(b) False. There exist infinitely many discontinuities.
(¢) False. A constant function has no smallest period.
(d) False. It does if f(x)=c, ¢ aconstant.

(@) fx)=f(x+p)=fl(x+ p)+ pl=f(x+2p), and so on. Use a proof by induction.

2 A
(b) The fundamental period for sinnx is 2“—35 By part (a), n L isa period for sinnx as well. Similarly
n n

for cos nx.

Section 4.5

1. T 9. T 17. T 25. T 33.F 41. T 49. F .
Z.m 10. F 18. T 26. F 34. F 42. T 50. T
3. F 11. F 19. T 27. T 35. F 43. T

4. F 12. F 20, T 28. F 36. T 44. F

5 T 13. F 21. F 29. F 37. F 45. T

6. T 14. T 22. F 30. F 38. F 46. T

7. T 15. F 23. T 31. T 39. F 47. T
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