Chapter 2: Business Efficiency

Free-Response

Format: Short Answer

1. Construct a complete graph on four vertices.

Ans: Answers will vary. One solution is:

Format: Short Answer
2. Construct a complete graph whose vertices represent the six largest islands of Hawaii: Kauai, Oahu, Molokai, Lanai, Maui, and Hawaii.
Ans: Answers will vary. One solution is: Kauai

Format: Short Answer
3. Construct an example of a spanning tree on the graph given below.

Ans: Answers will vary. One solution is:

Format: Short Answer
4. Construct an example of a graph with no Hamiltonian circuit.

Ans: Answers will vary. One solution is:

Format: Short Answer
5. Construct a digraph for the following tasks necessary when building a house: get a building permit, install wiring, pour foundation, build walls, build doghouse, pass final inspection.
Ans: Answers will vary. One solution is:

Format: Short Answer
6. Identify six tasks necessary when building a sandwich, and construct a digraph for these tasks.
Ans: Answers will vary. One solution is:

Format: Short Answer
7. Identify six tasks necessary when preparing for a picnic, and construct a digraph for these tasks.
Ans: Answers will vary. One solution is:

Format: Short Answer
8. Use the brute force algorithm to solve the traveling salesman problem for the graph of the four cities shown below.

Ans: Route ABCDA and ACBDA have cost 155. Route ABDCA has (minimum) cost 120.

Format: Short Answer
9. Use the brute force algorithm to solve the traveling salesman problem for the graph of the four cities shown below.

Ans: Route PQRSP and PQSRP have (minimum) cost 1200. Route PRQSP has cost 1400.

Format: Short Answer
10. If a graph of nine vertices is complete, how many edges are there?

Ans: (9)(8)/2=36 edges

Format: Short Answer
11. You own a chain of 12 apartment complexes (including your residence) and you want to plan a trip to visit each of your properties. If it takes $1 / 2$ minute to compute the total length of a tour, how long will it take to apply the brute force algorithm to find the optimal tour?
Ans: $(11!/ 2)(1 / 2)=9,979,200$ minutes, or approximately 19 years

Format: Short Answer
12. You own a chain of 10 one-day photo development kiosks and a lab where the photos are developed. Each morning and evening a delivery truck leaves the lab, visits each kiosk, and returns to the lab. If it takes $1 / 3$ minute to compute the total length of a tour, how long will it take to apply the brute force algorithm to find the optimal tour for the delivery truck?
Ans: $(9!/ 2)(1 / 3)=60,480$ minutes, or 42 days

Format: Short Answer
13. You want to create a mileage grid showing the distance between every pair of the 50
U.S. state capitals. How many numbers will you have to compute?

Ans: $(50)(49) / 2=1225$

Format: Short Answer
14. You want to create a mileage grid showing the distance between every pair of the 10 Canadian provincial and territorial capitals. How many numbers will you have to compute?
Ans: $(10)(9) / 2=45$

Format: Short Answer
15. The local cafe offers three different entrees, 10 different vegetables, and four different salads. A "blue plate special" includes an entree, a vegetable, and a salad. How many different ways can a special be constructed?
Ans: 120

Format: Short Answer
16. A nearby ice cream shop offers 31 different flavors and three different types of cones. How many different single scoop cones can be ordered?
Ans: 93

Format: Short Answer
17. In some states, license plates use a mixture of letters and numerals. How many possible plates could be constructed using three letters followed by three numerals?
Ans: $26^{3} \times 10^{3}=17,576,000$

Format: Short Answer
18. In some states, license plates use a mixture of letters and numerals. How many possible plates could be constructed using three letters followed by four numerals?
Ans: $26^{3} \times 10^{4}=175,760,000$

Format: Short Answer
19. What is an advantage of a heuristic algorithm?

Ans: Fast

Format: Short Answer
20. What is a disadvantage of a heuristic algorithm?

Ans: Not always optimal

Format: Short Answer
21. What is critical about the critical path of an order-requirement digraph?

Ans: It requires the critical or essential amount of time required to complete the project.

Format: Short Answer
22. Construct a graph which has an Euler circuit, but not a Hamiltonian circuit. Ans: Answers may vary. One solution is:

Format: Short Answer
23. Can a graph have a Hamiltonian circuit, but not an Euler circuit?

Ans: Yes

Format: Short Answer
24. Will the nearest-neighbor algorithm ever use the most expensive edge of a graph?

Ans: Yes

Format: Short Answer
25. The route of a neighborhood garbage truck generally follows an Euler circuit. Under what circumstances should it instead follow a Hamiltonian circuit?
Ans: If it only picks up at the intersection of streets

Format: Short Answer
26. The route of a delivery truck generally follows a Hamiltonian circuit. Under what circumstances should it instead follow an Euler circuit?
Ans: If it delivers to houses on the sides of streets

Format: Short Answer
27. In the graph below, construct a Hamiltonian circuit.

Ans: Answers will vary. One solution is:

Format: Short Answer
28. In the graph below, construct a Hamiltonian circuit.

Ans: Answers will vary. One solution is:

Format: Short Answer
29. Construct an example of a connected graph that does not have a Hamiltonian circuit.

Ans: Answers will vary. One solution is:

Format: Short Answer
30. Construct an example of a connected graph that has a Hamiltonian circuit but does not have an Euler circuit.
Ans: Answers will vary. One solution is:

Format: Short Answer
31. A connected graph H has a spanning tree with 50 edges. How many vertices does the spanning tree have? How many vertices does H have? What can one say about the number of edges H has?
Ans: The spanning tree has 51 vertices. H also has 51 vertices. H must have at least 50 edges.

Format: Short Answer
32. Find the earliest completion time for the following order-requirement digraph.

Ans: 60

Format: Short Answer
33. Find the earliest completion time for the following order-requirement digraph.

Ans: 45

Format: Short Answer
34. How many distinct Hamiltonian circuits can you find on the following graph?

Ans: One: ADGEFCBA

Format: Short Answer
35. How many distinct Hamiltonian circuits can you find on the following graph? (Do not count a circuit and the reverse of the same circuit as distinct.)

Ans: Four: ABECDA, ABCEDA, AEDCBA, AEBCDA

Format: Short Answer
36. If you add a new vertex to a complete graph of 10 vertices, how many new edges are needed to make the new graph complete?
Ans: 10

