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Chapter 2

Dynamic Models

Problems and Solutions for Section 2.1

1. Write the di¤erential equations for the mechanical systems shown in Fig. 2.43.
For (a) and (b), state whether you think the system will eventually decay
so that it has no motion at all, given that there are non-zero initial condi-
tions for both masses, and give a reason for your answer. Also, for part
(c), answer the question for F=0.
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Fig. 2.43 Mechanical systems

Solution:

The key is to draw the Free Body Diagram (FBD) in order to keep the
signs right. For (a), to identify the direction of the spring forces on the
object, let x2 = 0 and �xed and increase x1 from 0. Then the k1 spring
will be stretched producing its spring force to the left and the k2 spring
will be compressed producing its spring force to the left also. You can use
the same technique on the damper forces and the other mass.

(a)

m1 m2

x1 x2

k (x   x )2 1 2

k (x   x )2 1 2

k (x3 2  y)k x1 1

b x1 1
.

Free body diagram for Problem 2.1(a)

m1�x1 = �k1x1 � b1 _x1 � k2 (x1 � x2)
m2�x2 = �k2 (x2 � x1)� k3 (x2 � y)

There is friction a¤ecting the motion of mass 1 which will continue
to take energy out of the system as long as there is any movement of
x1:Mass 2 is undamped; therefore it will tend to continue oscillating.
However, its motion will drive mass 1 through the spring; therefore,
the entire system will continue to lose energy and will eventually
decay to zero motion for both masses.
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m1 m2

x1 x2

x2k (x   x )2 1 2

k (x   x )2 1 2
k x1 1

b x1 2
.

x2

x2k3

Free body diagram for Problem 2.1(b)

m1�x1 = �k1x1 � k2(x1 � x2)
m2�x2 = �k2(x2 � x1)� b1 _x2 � k3x2

Again, there is friction on mass 2 so there will continue to be a loss
of energy as long as there is any motion; hence the motion of both
masses will eventually decay to zero.

m1 m2

x1 x2

k (x   x )2 1 2 k (x   x )2 1 2

k x1 1

b (x   x )1 1 2 b (x   x )1 1 2
. .. .

F

Free body diagram for Problem 2.1 (c)

m1�x1 = �k1x1 � k2(x1 � x2)� b1( _x1 � _x2)

m2�x2 = F � k2(x2 � x1)� b1( _x2 � _x1)

The situation here is similar to part (a). It is clear that the relative
motion between mass 1 and 2 would decay eventually, but as long
as mass 1 is oscillating, it will drive some relative motion of the two
masses and that will cause energy loss in the damper. So the entire
system will eventually decay to zero.

2. Write the di¤erential equations for the mechanical systems shown in Fig. 2.44.
State whether you think the system will eventually decay so that it has
no motion at all, given that there are non-zero initial conditions for both
masses, and give a reason for your answer.
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Fig. 2.44 Mechanical system for Problem 2.2

Solution:

The key is to draw the Free Body Diagram (FBD) in order to keep the
signs right. To identify the direction of the spring forces on the left side
object, let x2 = 0 and increase x1 from 0. Then the k1 spring on the left
will be stretched producing its spring force to the left and the k2 spring
will be compressed producing its spring force to the left also. You can use
the same technique on the damper forces and the other mass.

m1 m2

x1 x2

x2

k (x   x )2 1 2

k x1 1 k1

b (x   x )2 1 2 b (x   x )2 1 2

. . . .

Free body diagram for Probelm 2.2

Then the forces are summed on each mass, resulting in

m1�x1 = �k1x1 � k2(x1 � x2)� b1( _x1 � _x2)

m2�x2 = k2(x1 � x2)� b1( _x1 � _x2)� k1x2

The relative motion between x1 and x2 will decay to zero due to the
damper. However, the two masses will continue oscillating together
without decay since there is no friction opposing that motion and �exure
of the end springs is all that is required to maintain the oscillation of the
two masses. However, note that the two end springs have the same spring
constant and the two masses are equal If this had not been true, the two
masses would oscillate with di¤erent frequencies and the damper would
be excited thus taking energy out of the system.

3. Write the equations of motion for the double-pendulum system shown in
Fig. 2.45. Assume the displacement angles of the pendulums are small
enough to ensure that the spring is always horizontal. The pendulum
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rods are taken to be massless, of length l, and the springs are attached
3/4 of the way down.

Fig. 2.45 Double pendulum

Solution:

1θ 2θ

k

1sin
4
3

θl 2sin
4
3

θl

m m

l
4
3

De�ne coordinates

If we write the moment equilibrium about the pivot point of the left pen-
dulem from the free body diagram,

M = �mgl sin �1 � k
3

4
l (sin �1 � sin �2) cos �1

3

4
l = ml2��1
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ml2��1 +mgl sin �1 +
9

16
kl2 cos �1 (sin �1 � sin �2) = 0

Similary we can write the equation of motion for the right pendulem

�mgl sin �2 + k
3

4
l (sin �1 � sin �2) cos �2

3

4
l = ml2��2

As we assumed the angles are small, we can approximate using sin �1 �
�1; sin �2 � �2, cos �1 � 1, and cos �2 � 1. Finally the linearized equations
of motion becomes,

ml��1 +mg�1 +
9

16
kl (�1 � �2) = 0

ml��2 +mg�2 +
9

16
kl (�2 � �1) = 0

Or

��1 +
g

l
�1 +

9

16

k

m
(�1 � �2) = 0

��2 +
g

l
�2 +

9

16

k

m
(�2 � �1) = 0

4. Write the equations of motion of a pendulum consisting of a thin, 2-kg
stick of length l suspended from a pivot. How long should the rod be in
order for the period to be exactly 1 sec? (The inertia I of a thin stick
about an endpoint is 1

3ml
2. Assume � is small enough that sin � �= �.)

Solution:

Let�s use Eq. (2.14)

M = I�;
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mg

θ

2
lO

De�ne coordinates
and forces

Moment about point O.

MO = �mg � l

2
sin � = IO��

=
1

3
ml2��

�� +
3g

2l
sin � = 0

As we assumed � is small,

�� +
3g

2l
� = 0

The frequency only depends on the length of the rod

!2 =
3g

2l

T =
2�

!
= 2�

s
2l

3g
= 2

l =
3g

8�2
= 0:3725m
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Grandfather clocks have a period of 2 sec, i.e., 1 sec for a swing from one
side to the other. This pendulum is shorter because the period is faster.
But if the period had been 2 sec, the pendulum length would have been
1.5 meters, and the clock itself would have been about 2 meters to house
the pendulum and the clock face.

<Side notes>

(a) Compare the formula for the period, T = 2�
q

2l
3g with the well known

formula for the period of a point mass hanging with a string with

length l. T = 2�
q

l
g .

(b) Important!

In general, Eq. (2.14) is valid only when the reference point for
the moment and the moment of inertia is the mass center of the
body. However, we also can use the formular with a reference point
other than mass center when the point of reference is �xed or not
accelerating, as was the case here for point O.

5. For the car suspension discussed in Example 2.2, plot the position of the
car and the wheel after the car hits a �unit bump�(i.e., r is a unit step)
using Matlab. Assume thatm1 = 10 kg,m2 = 350 kg, kw = 500; 000 N=m,
ks = 10; 000 N=m. Find the value of b that you would prefer if you were
a passenger in the car.

Solution:

The transfer function of the suspension was given in the example in Eq.
(2.12) to be:

(a)

Y (s)

R(s)
=

kwb
m1m2

(s+ ks
b )

s4 + ( b
m1
+ b

m2
)s3 + ( ksm1

+ ks
m2
+ kw

m1
)s2 + ( kwb

m1m2
)s+ kwks

m1m2

:

This transfer function can be put directly into Matlab along with the
numerical values as shown below. Note that b is not the damping ra-
tio, but damping. We need to �nd the proper order of magnitude for
b, which can be done by trial and error. What passengers feel is the
position of the car. Some general requirements for the smooth ride
will be, slow response with small overshoot and oscillation. While
the smallest overshoot is with b=5000, the jump in car position hap-
pens the fastest with this damping value.
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From the �gures, b � 3000 appears to be the best compromise. There
is too much overshoot for lower values, and the system gets too fast
(and harsh) for larger values.
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% Problem 2.5 Using state space methods
% Can also be done using the transfer function above
clear all, close all

m1 = 10;
m2 = 350;
kw = 500000;
ks = 10000;
Bd = [ 1000 3000 4000 5000];
t = 0:0.01:2;

for i = 1:4
b = Bd(i);
A=[0 1 0 0;-( ks/m1 + kw/m1 ) -b/m1 ks/m1 b/m1;

0 0 0 1; ks/m2 b/m2 -ks/m2 -b/m2 ];
B=[0; kw/m1; 0; 0 ];
C=[ 1 0 0 0; 0 0 1 0 ];
D=0;
y=step(A,B,C,D,1,t);
subplot(2,2,i);
plot( t, y(:,1), �:�, t, y(:,2), �-�);
legend(�Wheel�,�Car�);
ttl = sprintf(�Response with b = %4.1f �,b );
title(ttl);

end

6. For the quadcopter shown in Figs. 2.13 and 2.14:

(a) Determine the appropriate commands to rotor #s 1, 2, 3, & 4 so a
pure vertical force will be applied to the quadcopter, that is, a force that
will have no e¤ect on pitch, roll, or yaw.

(b) Determine the transfer function between Fh, and altitude, h. That is,
�nd h(s)=Fh(s).

Solution:

(a) To increase the lifting force, we want to increase the speed of all four
rotors. Since two rotors are rotating CW and two are rotating CCW,
there will be no net torque about the yaw axis. Since rotor #s 1 and 3
are rotating CW, we want to apply a positive torque to those two rotors,
i.e., F

�T1 = �T3 = +KFh;

where Fh is the command for an increased lift for motion in the upward
vertical direction and K is the scale factor between torque and lift. Like-
wise, since rotor #s 2 and 4 are rotating in the CCW direction, we want
tp apply a negative torque to those two rotors, i.e.,



2011

�T2 = �T4 = �KFh;

(b) Assuming the mass of the quadrotor is m, the transfer function would
be

h(s)

Fh(s)
=

1

ms2

7. Automobile manufacturers are contemplating building active suspension
systems. The simplest change is to make shock absorbers with a change-
able damping, b(u1): It is also possible to make a device to be placed in
parallel with the springs that has the ability to supply an equal force, u2;
in opposite directions on the wheel axle and the car body.

(a) Modify the equations of motion in Example 2.2 to include such con-
trol inputs.

(b) Is the resulting system linear?

(c) Is it possible to use the forcer, u2; to completely replace the springs
and shock absorber? Is this a good idea?

Solution:

(a) The FBD shows the addition of the variable force, u2; and shows b
as in the FBD of Fig. 2.5, however, here b is a function of the control
variable, u1: The forces below are drawn in the direction that would
result from a positive displacement of x.

m1 m2

k (xy)s

k (xy)s
k (xr)w

b(xy)

b(xy)

.

.

x

u2

u2

y

.

.

Free body diagram

m1�x = b (u1) ( _y � _x) + ks (y � x)� kw (x� r)� u2
m2�y = �ks (y � x)� b (u1) ( _y � _x) + u2
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(b) The system is linear with respect to u2 because it is additive. But
b is not constant so the system is non-linear with respect to u1 be-
cause the control essentially multiplies a state element. So if we add
controllable damping, the system becomes non-linear.

(c) It is technically possible. However, it would take very high forces
and thus a lot of power and is therefore not done. It is a much bet-
ter solution to modulate the damping coe¢ cient by changing ori�ce
sizes in the shock absorber and/or by changing the spring forces by
increasing or decreasing the pressure in air springs. These features
are now available on some cars... where the driver chooses between
a soft or sti¤ ride.

8. In many mechanical positioning systems there is �exibility between one
part of the system and another. An example is shown in Figure 2.7
where there is �exibility of the solar panels. Figure 2.46 depicts such a
situation, where a force u is applied to the mass M and another mass
m is connected to it. The coupling between the objects is often modeled
by a spring constant k with a damping coe¢ cient b, although the actual
situation is usually much more complicated than this.

(a) Write the equations of motion governing this system.

(b) Find the transfer function between the control input, u; and the
output, y:

Fig. 2.46 Schematic of a system with
�exibility

Solution:

(a) The FBD for the system is
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m

x y

k(x  y)k(x  y)

b(x  y) b(x  y)
. .. .

M u

Free body diagrams

which results in the equations

m�x = �k (x� y)� b ( _x� _y)

M �y = u+ k (x� y) + b ( _x� _y)

or

�x+
k

m
x+

b

m
_x� k

m
y � b

m
_y = 0

� k

M
x� b

M
_x+ �y +

k

M
y +

b

M
_y =

1

M
u

(b) If we make Laplace Transform of the equations of motion

s2X +
k

m
X +

b

m
sX � k

m
Y � b

m
sY = 0

� k

M
X � b

M
sX + s2Y +

k

M
Y +

b

M
sY =

1

M
U

In matrix form,�
ms2 + bs+ k � (bs+ k)
� (bs+ k) Ms2 + bs+ k

� �
X
Y

�
=

�
0
U

�
From Cramer�s Rule,

Y =

det

�
ms2 + bs+ k 0
� (bs+ k) U

�
det

�
ms2 + bs+ k � (bs+ k)
� (bs+ k) Ms2 + bs+ k

�
=

ms2 + bs+ k

(ms2 + bs+ k) (Ms2 + bs+ k)� (bs+ k)2
U

Finally,
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Y

U
=

ms2 + bs+ k

(ms2 + bs+ k) (Ms2 + bs+ k)� (bs+ k)2

=
ms2 + bs+ k

mMs4 + (m+M)bs3 + (M +m)ks2

9. Modify the equation of motion for the cruise control in Example 2.1,
Eq(2.4), so that it has a control law; that is, let

u = K(vr � v);

where

vr = reference speed

K = constant:

This is a �proportional�control law where the di¤erence between vr and
the actual speed is used as a signal to speed the engine up or slow it down.
Put the equations in the standard state-variable form with vr as the input
and v as the state. Assume that m = 1500 kg and b = 70 N � s=m; and
�nd the response for a unit step in vr using Matlab. Using trial and error,
�nd a value of K that you think would result in a control system in which
the actual speed converges as quickly as possible to the reference speed
with no objectional behavior.

Solution:

_v +
b

m
v =

1

m
u

substitute in u = K (vr � v)

_v +
b

m
v =

1

m
u =

K

m
(vr � v)

Rearranging, yields the closed-loop system equations,

_v +
b

m
v +

K

m
v =

K

m
vr

A block diagram of the scheme is shown below where the car dynamics
are depicted by its transfer function from Eq. 2.7.



2015

Block diagram

The transfer function of the closed-loop system is,

V (s)

Vr(s)
=

K
m

s+ b
m +

K
m

so that the inputs for Matlab are

num =
K

m

den = [1
b

m
+
K

m
]

For K = 100; 500; 1000; 5000 We have,
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We can see that the larger the K is, the better the performance, with no
objectionable behaviour for any of the cases. The fact that increasing K
also results in the need for higher acceleration is less obvious from the
plot but it will limit how fast K can be in the real situation because the
engine has only so much poop. Note also that the error with this scheme
gets quite large with the lower values of K. You will �nd out how to
eliminate this error in chapter 4 using integral control, which is contained
in all cruise control systems in use today. For this problem, a reasonable
compromise between speed of response and steady state errors would be
K = 1000; where it responds in 5 seconds and the steady state error is
5%.
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% Problem 2.9
clear all, close all

% data
m = 1500;
b = 70;
k = [ 100 500 1000 5000 ];

% Overlay the step response
hold on
t=0:0.2:50;
for i=1:length(k)
K=k(i);
num =K/m;
den = [1 b/m+K/m];
sys=tf(num,den);
y = step(sys,t);
plot(t,y)

end
hold o¤
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10. Determine the dynamic equations for lateral motion of the robot in Fig.
2.47. Assume it has 3 wheels with the front a single, steerable wheel
where you have direct control of the rate of change of the steering angle,
Usteer, with geometry as shown in Fig. 2.48. Assume the robot is go-
ing in approximately a straight line and its angular deviation from that
straight line is very small Also assume that the robot is traveling at a
constant speed, Vo. The dynamic equations relating the lateral veloc-
ity of the center of the robot as a result of commands in Usteer is desired.

.
Fig. 2.47 Robot for delivery of hospital supplies Source: AP Images

Fig. 2.48 Model for robot motion
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Solution:

This is primarily a problem in kinematics. First, we know that the control
input, Usteer; is the time rate of change of the steering wheel angle, so

_�s = Usteer

When �s is nonzero, the cart will be turning, so that its orientation wrt
the x axis will change at the rate

_	 =
Vo�s
L
:

as shown by the diagram below.

Diagram showing turning rate due to �s
T

The actual change in the carts lateral position will then be proportional
to 	 according to

_y = Vo	

as shown below.
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Lateral motion as a function of 	

These linear equations will hold providing 	 and �s stay small enough
that sin	 ' 	; and sin �s ' �s:Combining them all, we obtain,

...
y =

V 2o
L
Usteer

Note that no dynamics come into play here. It was assumed that the
velocity is constant and the front wheel angle time rate of change is directly
commanded. Therefore, there was no need to invoke Eqs (2.1) or (2.10).
As you will see in future chapters, feedback control of such a system with
a triple integration is tricky and needs signi�cant damping in the feedback
path to achieve stability.

11. Determine the pitch, yaw, and roll control equations for the hexacopter
shown in Fig. 2.49 that are similar to those for the quadcopter given in
Eqs. (2.18) to (2.20).

Fig. 2.49 Hexacopter
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Assume that rotor #1 is in the direction of �ight and the remaining rotors
are numbered CW from that rotor. In other words, rotors #1 and #4
will determine the pitch motion. Rotor #s 2, 3, 5, & 6 will determine
roll motion. Pitch, roll and yaw motions are de�ned by the coordinate
system shown in Fig. 2.14 in Example 2.5. In addition to developing the
equations for the 3 degrees of freedom in terms of how the six rotor motors
should be commanded (similar to thoseforthe quadrotorinEqs. (2.18)�
(2.20)), it will also be necessary to decide which rotors are turning CW
and which ones are turning CCW. The direction of rotation for the rotors
needs to be selected so there is no net torque about the vertical axis; that
is, the hexicopter will have no tendancy for yaw rotation in steadystate.
Furthermore, a control action to a¤ect pitch should have no e¤ect on yaw
or roll. Likewise, a control action for roll should have no e¤ect on pitch
or yaw, and a control action for yaw should have no e¤ect on pitch or
roll. In other words, the control actions should produce no cross-coupling
between pitch, roll, and yaw just as was the case for the quadcopter in
Example 2.5.

Solution: For starters, the instructions above give us the following def-
initions

Hexacopter coordinate system de�nition

To obtain some symmetry in the rotations, let�s assign rotor #s 1, 3, & 5
to rotate CW, while rotor #s 2, 4, & 6 rotate CCW.

Now let�s start out by examining the yaw torque e¤ects. If we assume
the same control action as we found for the quadrotor in Eq. (2.20), we
would apply a negative torque on all six rotors. This will clearly produce
a positive yawing torque on the hexacopter with no net change in vertical
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lift for the same reasons given on pages 38 and 39. However, it not
necessarily produce zero torque about the pitch and roll axes. So let�s
check that and adjust things if required. Unlike the quadrotor where
the two rotors on the x-axis were both turning CW, rotors1 and 4 are
turning in the opposite direction. So in this case, giving those two rotors
an equal negative torque will speed one up rotor 4 and slow down,rotor 1,
thus producing a negative torque about the y-axis. However, note that
rotors 2 and 6 will speed up, while rotors 3 and 5 will slow down, thus
producing a positive torque.about the y-axis. These two torques cancel
each other because the angle between rotors 2, 3, 5 & 6 and the y-axis are
all 30o between the arms and the y-axis. Since the sine of 30o = 1/2, that
means that the torque about the y-axis from rotors 2, 3, 5 & 6 will o¤set
the torque from rotors 1 & 4. For no roll moment, we require a net zero
torque about the x-axis. Rotors 1 & 4 are on the x-axis, so no torque
from them. Rotors 2 & 6 are both CCW, so they produce no net torque
about the x-axis, and the same applies for rotors 3 & 5; hence when we
apply an equal torque on all six rotors in the same direction along the
z-axis, we obtain a yaw torque with no e¤ect on pitch or roll or a vertical
force. So, the control using:

Yaw control: �T1 = �T2 = �T3 = �T4 = �T5 = �T6 = �T ;

will produce motion in yaw, with no e¤ect on pitch, roll, or vertical
motion.

For pitch control, we want an increase in the speed and lift of the
CW rotor 1 (ie a positive �T1) and a decrease in the speed of the CCW
rotor 4, which requires a positive �T4; so �T1 = �T4 = +T�. But note
that this action will produce a yawing torque, which.can be canceled if we
apply an equal and opposite yawing torque from rotors 2, 3, 5, 6. This
accomplished by �T2 = �T3 = �T5 = �T6 = �T�=2: In fact, this additional
control will also add to the torque about the pitch (y-axis) by 50% while
having no e¤ect on roll. Thus the control using:

Pitch control: �T1 = 2 ��T2 = 2 ��T3 = ��T4 = 2 ��T5 = 2 ��T6 = �
2

3
T�;

will produce motion in pitch, with no e¤ect on yaw, roll, or vertical mo-
tion.

For roll control, by increasing the speed of rotors 5 & 6, and decreasing
the speed of rotors 2 & 3, we will obtain a positive roll torque about the
x-axis. No change is needed for rotors 1 & 4. To accomplish these
speed changes, we need to apply a positive torque to the CW rotor 5 and
a negative torque to the CCW rotor 6. Likewise, we need a positive
torque to the CCW rotor 2 and a negative torque to the CW rotor 3.
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Since the torques applied are half positive and half negative, there will be
no yaw torque. Furthermore, there will be no pitch torque of change in
overall lift with these torque applications. However, the moment arm is
not 1 arm length; rather it is cos(30o), so to keep the scale factor for the
two arms consistent with the pitch axis, we need to divide by 2 � cos(30o):
Therefore, the control using:

Roll control: �T2 = ��T3 = �T5 = ��T6 = T�=(2 � cos(30o));

will produce motion in roll, with no e¤ect on pitch, yaw, or vertical mo-
tion.

12. In most cases, quadcopters have a camera mounted that does not swivel
in the x� y plane and its direction of view is oriented at 45o to the arms
supporting the rotors. Therefore, these drones typically �y in a direction
that is aligned with the camera rather than along an axis containing two
of the rotors. To simplify the �ight dynamics, the x-direction of the
coordinate system is aligned with the camera direction. Based on the
coordinate de�nitions for the axes in Fig. 2.14, assume the x-axis lies half
way between rotors # 1 and 2 and determine the rotor commands for the
four rotors that would accomplish independent motion for pitch, roll, and
yaw.

Solution:

The orientation of the coordinate system and arrangement of the rotors is
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Coorinate system and rotor arrangement

It should be clear from the discussion on pages 38 and 39 of the book (plus
the discussion here for Problem 2.11) that the following commands to the
rotors produces the desired independent motion:

Roll control: �T1 = �T2 = ��T3 = ��T4 = T�;
Pitch control: �T1 = ��T2 = ��T3 = �T4 = T�;
Yaw control: �T1 = �T2 = �T3 = �T4 = T :

Problems and Solutions for Section 2.2

13. A �rst step toward a realistic model of an op amp is given by the equations
below and shown in Fig. 2.50.

Vout =
107

s+ 1
[V+ � V�]

i+ = i� = 0
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Fig. 2.50 Circuit for Problem 2.13

Find the transfer function of the simple ampli�cation circuit shown using
this model.

Solution:

As i� = 0,

(a)
Vin � V�
Rin

=
V� � Vout

Rf

V� =
Rf

Rin +Rf
Vin +

Rin
Rin +Rf

Vout

Vout =
107

s+ 1
[V+ � V�]

=
107

s+ 1

�
V+ �

Rf
Rin +Rf

Vin �
Rin

Rin +Rf
Vout

�
= � 107

s+ 1

�
Rf

Rin +Rf
Vin +

Rin
Rin +Rf

Vout

�

Vout
Vin

=
�107 Rf

Rin+Rf

s+ 1 + 107 Rin

Rin+Rf

14. Show that the op amp connection shown in Fig. 2.51 results in Vo = Vin
if the op amp is ideal. Give the transfer function if the op amp has the
non-ideal transfer function of Problem 2.13.
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Fig. 2.51 Circuit for Problem 2.14

Solution:

Ideal case:

Vin = V+

V+ = V�

V� = Vout

Non-ideal case:

Vin = V+; V� = Vout

but,

V+ 6= V�
instead,

Vout =
107

s+ 1
[V+ � V�]

=
107

s+ 1
[Vin � Vout]

so,

Vout
Vin

=
107

s+1

1 + 107

s+1

=
107

s+ 1 + 107
�=

107

s+ 107
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15. A common connection for a motor power ampli�er is shown in Fig. 2.52.
The idea is to have the motor current follow the input voltage and the
connection is called a current ampli�er. Assume that the sense resistor,
Rs is very small compared with the feedback resistor, R and �nd the
transfer function from Vin to Ia: Also show the transfer function when
Rf =1:

Node A

Node B

Fig. 2.52 Op Amp circuit for Problem 2.15 with nodes
marked.

Solution:

At node A,
Vin � 0
Rin

+
Vout � 0
Rf

+
VB � 0
R

= 0 (201)

At node B, with Rs � R

Ia +
0� VB
R

+
0� VB
Rs

= 0 (202)

VB =
RRs
R+Rs

Ia

VB � RsIa

The dynamics of the motor is modeled with negligible inductance as

Jm��m + b _�m = KtIa (203)

Jms
+ b
 = KtIa
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At the output, from Eq. (202). Eq. (203) and the motor equation Va =
IaRa +Kes


Vo = IaRs + Va

= IaRs + IaRa +Ke
KtIa
Jms+ b

Substituting this into Eq.(201)

Vin
Rin

+
1

Rf

�
IaRs + IaRa +Ke

KtIa
Jms+ b

�
+
IaRs
R

= 0

This expression shows that, in the steady state when s ! 0; the current
is proportional to the input voltage.

If fact, the current ampli�er normally has no feedback from the output
voltage, in which case Rf !1 and we have simply

Ia
Vin

= � R

RinRs

16. An op amp connection with feedback to both the negative and the positive
terminals is shown in Fig 2.53. If the op amp has the non-ideal transfer
function given in Problem 13, give the maximum value possible for the
positive feedback ratio, P =

r

r +R
in terms of the negative feedback

ratio,N =
Rin

Rin +Rf
for the circuit to remain stable.

Fig. 2.53 Op Amp circuit for Problem 2.16
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Solution:

Vin � V�
Rin

+
Vout � V�

Rf
= 0

Vout � V+
R

+
0� V+
r

= 0

V� =
Rf

Rin +Rf
Vin +

Rin
Rin +Rf

Vout

= (1�N)Vin +NVout
V+ =

r

r +R
Vout = PVout

Vout =
107

s+ 1
[V+ � V�]

=
107

s+ 1
[PVout � (1�N)Vin �NVout]

Vout
Vin

=

107

s+ 1
(1�N)

107

s+ 1
P � 107

s+ 1
N � 1

=
107 (1�N)

107P � 107N � (s+ 1)

=
�107 (1�N)

s+ 1� 107P + 107N

0 < 1� 107P + 107N
P < N + 10�7

17. Write the dynamic equations and �nd the transfer functions for the circuits
shown in Fig. 2.54.

(a) passive lead circuit

(b) active lead circuit

(c) active lag circuit.
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(d) passive notch circuit

Fig. 2.54 (a) Passive lead, (b) active lead, (c)
active lag, (d) passive notch circuits
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Solution:

(a) Passive lead circuit

With the node at y+, summing currents into that node, we get

Vu � Vy
R1

+ C
d

dt
(Vu � Vy)�

Vy
R2

= 0 (204)

rearranging a bit,

C _Vy +

�
1

R1
+
1

R2

�
Vy = C _Vu +

1

R1
Vu

and, taking the Laplace Transform, we get

Vy(s)

Vu(s)
=

Cs+ 1
R1

Cs+
�
1
R1
+ 1

R2

�
(b) Active lead circuit

inV outV

C

V

1R 2R

fR

Active lead circuit with node marked

Vin � V
R2

+
0� V
R1

+ C
d

dt
(0� V ) = 0 (205)

Vin � V
R2

=
0� Vout
Rf

(206)

We need to eliminate V . From Eq. (206),

V = Vin +
R2
Rf
Vout

Substitute V �s in Eq. (205).
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1

R2

�
Vin � Vin �

R2
Rf
Vout

�
� 1

R1

�
Vin +

R2
Rf
Vout

�
�C

�
_Vin +

R2
Rf

_Vout

�
= 0

1

R1
Vin + C _Vin = �

1

Rf

��
1 +

R2
R1

�
Vout +R2C _Vout

�
Laplace Transform

Vout
Vin

=
Cs+ 1

R1

� 1
Rf

�
R2Cs+ 1 +

R2

R1

�
= �Rf

R2

s+ 1
R1C

s+ 1
R1C

+ 1
R2C

We can see that the pole is at the left side of the zero, which means
a lead compensator.

(c) active lag circuit

inR

inV outV

1R2R

C

V

Active lag circuit with node marked

Vin � 0
Rin

=
0� V
R2

=
V � Vout
R1

+ C
d

dt
(V � Vout)

V = � R2
Rin

Vin

Vin
Rin

=
� R2

Rin
Vin � Vout
R1

+ C
d

dt

�
� R2
Rin

Vin � Vout
�

=
1

R1

�
� R2
Rin

Vin � Vout
�
+ C

�
� R2
Rin

_Vin � _Vout

�
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1

Rin

�
1 +

R2
R1

�
Vin +

1

Rin
R2C _Vin = �

1

R1
Vout � C _Vout

Vout
Vin

= � R1
Rin

R2Cs+ 1 +
R2

R1

R1Cs+ 1

= � R2
Rin

s+ 1
R2C

+ 1
R1C

s+ 1
R1C

We can see that the pole is at the right side of the zero, which means
a lag compensator.

(d) notch circuit

outV

C1V
C

C2

R R
2/R

+ +

− −

inV

2V

Passive notch �lter with nodes marked

C
d

dt
(Vin � V1) +

0� V1
R=2

+ C
d

dt
(Vout � V1) = 0

Vin � V2
R

+ 2C
d

dt
(0� V2) +

Vout � V2
R

= 0

C
d

dt
(V1 � Vout) +

V2 � Vout
R

= 0

We need to eliminat V1; V2 from three equations and �nd the relation
between Vin and Vout

V1 =
Cs

2
�
Cs+ 1

R

� (Vin + Vout)
V2 =

1
R

2
�
Cs+ 1

R

� (Vin + Vout)
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CsV1 � CsVout +
1

R
V2 �

1

R
Vout

= Cs
Cs

2
�
Cs+ 1

R

� (Vin + Vout) + 1

R

1
R

2
�
Cs+ 1

R

� (Vin + Vout)� �Cs+ 1

R

�
Vout

= 0

C2s2 + 1
R2

2
�
Cs+ 1

R

�Vin =

"�
Cs+

1

R

�
�
C2s2 + 1

R2

2
�
Cs+ 1

R

�#Vout
Vout
Vin

=

C2s2+ 1
R2

2(Cs+ 1
R )�

Cs+ 1
R

�
� C2s2+ 1

R2

2(Cs+ 1
R )

=

�
C2s2 + 1

R2

�
2
�
Cs+ 1

R

�2 � �C2s2 + 1
R2

�
=

C2
�
s2 + 1

R2C2

�
C2s2 + 4CsR + 1

R2

=
s2 + 1

R2C2

s2 + 4
RC s+

1
R2C2

18. The very �exible circuit shown in Fig. 2.55 is called a biquad because
its transfer function can be made to be the ratio of two second-order or
quadratic polynomials. By selecting di¤erent values for Ra; Rb; Rc; and
Rd the circuit can realise a low-pass, band-pass, high-pass, or band-reject
(notch) �lter.

(a) Show that if Ra = R; and Rb = Rc = Rd =1; the transfer function
from Vin to Vout can be written as the low-pass �lter

Vout
Vin

=
A

s2

!2n
+ 2�

s

!n
+ 1

where

A =
R

R1

!n =
1

RC

� =
R

2R2
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(b) Using the MATLAB comand step compute and plot on the same
graph the step responses for the biquad of Fig. 2.55 for A = 2;
!n = 2; and � = 0:1; 0:5; and 1:0:

Fig. 2.55 Op-amp biquad

Solution:

Before going in to the speci�c problem, let�s �nd the general form of the
transfer function for the circuit.

Vin
R1

+
V3
R

= �
�
V1
R2

+ C _V1

�
V1
R

= �C _V2
V3 = �V2

V3
Ra

+
V2
Rb

+
V1
Rc

+
Vin
Rd

= �Vout
R

There are a couple of methods to �nd the transfer function from Vin to
Vout with set of equations but for this problem, we will directly solve for
the values we want along with the Laplace Transform.

From the �rst three equations, slove for V1;V2.

Vin
R1

+
V3
R

= �
�
1

R2
+ Cs

�
V1

V1
R

= �CsV2
V3 = �V2
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�
1

R2
+ Cs

�
V1 �

1

R
V2 = � 1

R1
Vin

1

R
V1 + CsV2 = 0

�
1
R2
+ Cs � 1

R
1
R Cs

� �
V1
V2

�
=

�
� 1
R1
Vin
0

�

�
V1
V2

�
=

1�
1
R2
+ Cs

�
Cs+ 1

R2

�
Cs 1

R
� 1
R

1
R2
+ Cs

� �
� 1
R1
Vin
0

�

=
1

C2s2 + C
R2
s+ 1

R2

�
� C
R1
sVin

1
RR1

Vin

�

Plug in V1, V2 and V3 to the fourth equation.

V3
Ra

+
V2
Rb

+
V1
Rc

+
Vin
Rd

=

�
� 1

Ra
+
1

Rb

�
V2 +

1

Rc
V1 +

1

Rd
Vin

=

�
� 1

Ra
+
1

Rb

� 1
RR1

C2s2 + C
R2
s+ 1

R2

Vin +
1

Rc

� C
R1
s

C2s2 + C
R2
s+ 1

R2

Vin +
1

Rd
Vin

=

"�
� 1

Ra
+
1

Rb

� 1
RR1

C2s2 + C
R2
s+ 1

R2

+
1

Rc

� C
R1
s

C2s2 + C
R2
s+ 1

R2

+
1

Rd

#
Vin

= �Vout
R

Finally,

Vout
Vin

= �R
"�
� 1

Ra
+
1

Rb

� 1
RR1

C2s2 + C
R2
s+ 1

R2

+
1

Rc

� C
R1
s

C2s2 + C
R2
s+ 1

R2

+
1

Rd

#

= �R

�
� 1
Ra
+ 1

Rb

�
1

RR1
� 1

Rc

C
R1
s+ 1

Rd

�
C2s2 + C

R2
s+ 1

R2

�
C2s2 + C

R2
s+ 1

R2

= � R

C2

C2

Rd
s2 +

�
1
Rd

C
R2
� 1

Rc

C
R1

�
s+

�
1
Rb
� 1

Ra

�
1

RR1
+ 1

Rd

1
R2

s2 + 1
R2C

s+ 1
(RC)2
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(a) If Ra = R; and Rb = Rc = Rd =1;

Vout
Vin

= � R

C2

C2

Rd
s2 +

�
1
Rd

C
R2
� 1

Rc

C
R1

�
s+

�
1
Rb
� 1

Ra

�
1

RR1
+ 1

Rd

1
R2

s2 + 1
R2C

s+ 1
(RC)2

= � R

C2
� 1
R

1
RR1

s2 + 1
R2C

s+ 1
(RC)2

=
1

RR1C2

s2 + 1
R2C

s+ 1
(RC)2

=
R
R1

(RC)
2
s2 + R2C

R2
s+ 1

So,

R

R1
= A

(RC)
2
=

1

!2n

2
�

!n
=

R2C

R2

!n =
1

RC

� =
!n
2

R2C

R2
=

1

2RC

R2C

R2
=

R

2R2

(b) Step response using MatLab
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Step responses

% Problem 2.18
A = 2;
wn = 2;
z = [ 0.1 0.5 1.0 ];

hold on
for i = 1:3

num = [ A ];
den = [ 1/wn^2 2*z(i)/wn 1 ]
step( num, den )

end
hold o¤

19. Find the equations and transfer function for the biquad circuit of Fig. 2.55
if Ra = R; Rd = R1 and Rb = Rc =1:

Solution:
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Vout
Vin

= � R

C2

C2

Rd
s2 +

�
1
Rd

C
R2
� 1

Rc

C
R1

�
s+

�
1
Rb
� 1

Ra

�
1

RR1
+ 1

Rd

1
R2

s2 + 1
R2C

s+ 1
(RC)2

= � R

C2

C2

R1
s2 +

�
1
R1

C
R2

�
s+

�
� 1
R

�
1

RR1
+ 1

R1

1
R2

s2 + 1
R2C

s+ 1
(RC)2

= � R
R1

s2 + 1
R2C

s

s2 + 1
R2C

s+ 1
(RC)2
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Problems and Solutions for Section 2.3

20. The torque constant of a motor is the ratio of torque to current and is
often given in ounce-inches per ampere. (ounce-inches have dimension
force-distance where an ounce is 1=16 of a pound.) The electric constant
of a motor is the ratio of back emf to speed and is often given in volts per
1000 rpm. In consistent units the two constants are the same for a given
motor.

(a) Show that the units ounce-inches per ampere are proportional to
volts per 1000 rpm by reducing both to MKS (SI) units.

(b) A certain motor has a back emf of 30 V at 1000 rpm. What is its
torque constant in ounce-inches per ampere?

(c) What is the torque constant of the motor of part (b) in newton-meters
per ampere?

Solution:

Before going into the problem, let�s review the units.

� Some remarks on non SI units.
�Ounce

1oz = 2:835� 10�2 kg

Actuall, the ounce is a unit of mass, but like pounds, it is com-
monly used as a unit of force. If we translate it as force,

1oz(f) = 2:835� 10�2 kgf = 2:835� 10�2 � 9:81N = 0:2778N

� Inch

1 in = 2:540� 10�2m

�RPM (Revolution per Minute)

1 RPM =
2� rad

60 s
=
�

30
rad/ s

� Relation between SI units
�Voltage and Current

V olts � Current(amps) = Power = Energy(joules)= sec

V olts =
Joules= sec

amps
=
Newton�meters= sec

amps
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(a) Relation between torque constant and electric constant.
Torque constant:

1 ounce� 1 inch
1 Ampere

=
0:2778N� 2:540� 10�2m

1A
= 7:056�10�3Nm=A

Electric constant:

1V

1000 RPM
=

1J=(A sec)
1000� �

30 rad/ s
= 9:549� 10�3Nm=A

So,

1 oz in=A =
7:056� 10�3
9:549� 10�3 V=1000 RPM

= (0:739) V=1000 RPM

and the constant of proportionality = (0:739) :

(b)

30V=1000 RPM = 30� 1

0:739
oz in=A = 40:6 oz in=A

(c)

30V=1000 RPM = 30� 9:549� 10�3Nm=A = 0:286Nm=A

21. The electromechanical system shown in Fig. 2.56 represents a simpli�ed
model of a capacitor microphone. The system consists in part of a parallel
plate capacitor connected into an electric circuit. Capacitor plate a is
rigidly fastened to the microphone frame. Sound waves pass through the
mouthpiece and exert a force fe(t) on plate b, which has mass M and is
connected to the frame by a set of springs and dampers. The capacitance
C is a function of the distance x between the plates, as follows:

C(x) =
"A

x
;

where

" = dielectric constant of the material between the plates;

A = surface area of the plates:

The charge q and the voltage e across the plates are related by

q = C(x)e:

The electric �eld in turn produces the following force fe on the movable
plate that opposes its motion:

fe =
q2

2"A
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(a) Write di¤erential equations that describe the operation of this sys-
tem. (It is acceptable to leave in nonlinear form.)

(b) Can one get a linear model?

(c) What is the output of the system?

Fig. 2.56 Simpli�ed model for capacitor microphone

Solution:

(a) The free body diagram of the capacitor plate b

x

M
( )tf

Kx−
xB&−

( ) efx&sgn−

e

Free body diagram for Prob. 2.21

So the equation of motion for the plate is

M �x+B _x+Kx+ fesgn ( _x) = fs (t) :

The equation of motion for the circuit is
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v = iR+ L
d

dt
i+ e

where e is the voltage across the capacitor,

e =
1

C

Z
i(t)dt

and where C = "A=x; a variable. Because i = d
dtq and e = q=C; we

can rewrite the circuit equation as

v = R _q + L�q +
qx

"A

In summary, we have these two, couptled, non-linear di¤erential
equation.

M �x+ b _x+ kx+ sgn ( _x)
q2

2"A
= fs (t)

R _q + L�q +
qx

"A
= v

(b) The sgn function, q2, and qx; terms make it impossible to determine
a useful linearized version.

(c) The signal representing the voice input is the current, i, or _q:

22. A very typical problem of electromechanical position control is an electric
motor driving a load that has one dominant vibration mode. The problem
arises in computer-disk-head control, reel-to-reel tape drives, and many
other applications. A schematic diagram is sketched in Fig. 2.57. The
motor has an electrical constant Ke, a torque constant Kt, an armature
inductance La, and a resistance Ra. The rotor has an inertia J1 and
a viscous friction B. The load has an inertia J2. The two inertias are
connected by a shaft with a spring constant k and an equivalent viscous
damping b. Write the equations of motion.

(a)
Fig. 2.57 Motor with a �exible load
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Solution:

(a) Rotor:

J1��1 = �B _�1 � b
�
_�1 � _�2

�
� k (�1 � �2) + Tm

Load:

J2��2 = �b
�
_�2 � _�1

�
� k (�2 � �1)

Circuit:

va �Ke
_�1 = La

d

dt
ia +Raia

Relation between the output torque and the armature current:

Tm = Ktia
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23. For the robot in Fig. 2.47, assume you have command of the torque on a
servo motor that is connected to the drive wheels with gears that have a
2:1 ratio so that the torque on the wheels is increased by a factor of 2 over
that delivered by the servo. Determine the dynamic equations relating
the speed of the robot with respect to the torque command of the servo.
Your equations will require certain quantities, e.g., mass of vehicle, inertia
and radisus of the wheels, etc. Assume you have access to whatever you
need. .

Fig. 2.47 Hospital robot

(a) Solution: First, let�s consider the problem for the case along the
lines of the development in Section 2.3.3. That is, a system where
the torque is applied by a motor on a gear that is simply accelerating
an attached gear, like the picture in Fig. 2.36(b). This basically is
assuming that the robot has no mass; but we�ll come back to that.
In order to multiply the torque by a factor of 2, the motor must have
a gear that is half the size of the gear attached to the wheel, i.e.,
n = 2 in Eq. (2.78). For simplicity, let�s also assume there is no
damping on the motor shaft or the wheel shaft, so b1 and b2 are both
= 0. If the wheel was not attached to the robot, Eq. (2.78) yields

(Jw + Jmn
2)��w = nTm

where Jw = the inertia of the drive wheel, Jm = motor inertia, ��w =
wheel angular acceleration, n = 2, and Tm = commanded torque from
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the motor. However, the mass of the robot plus all it�s wheels need
to be taken into account, since the acceleration of the drive wheel is
directly related to the acceleration of the robot and its other wheels
provided there is no slippage. (And, hospital robots probably won�t
be burning rubber ). So that means we need to add the rotational
inertia of the two other wheels and the inertia due to the translation
of the cart plus the center of mass of the 3 wheels. The acceleration of
all these quantities are directly related through kinematics because of
the nonslip assumption. Let�s assume the other two wheels have the
same radius as the drive wheel; therefore, their angular acceleration
is also ��w and we�ll also assume they have the same inertia as the
drive wheel. That means, if we neglect the translation inertia of the
system, the equation becomes

(3Jw + Jmn
2)��w = nTm

When you apply a torque to a drive wheel, that torque partly provides
an angular accelation of the wheel and the remainder is tranferred to
the contact point as a friction force that accelerates the mass of the
vehicle. That friction force is

f = mtota = mtotrw��w

where mtot = the mass of the cart plus all three wheels. By looking
at a FBD of the wheel, we see that the friction force acts as a torque
(= rwf) applied to the wheel; and, therefore, it is essentially another
angular inertia term in the equation above. So the end result is:

(mtotr
2
w + 3Jw + Jmn

2)��w = nTm

(mtotr
2
w + 3Jw + 4Jm)

��w = 2Tm

24. Using Fig. 2.36, derive the transfer function between the applied torque,
Tm, and the output, �2; for the case when there is a spring attached to
the output load. That is, there is a torque applied to the output load,
Ts; where Ts = �Ks�2
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Fig. 2.36 (a) geometry de�nitions and forces on teeth (b)
de�nitions for the dynamic analysis.

Solution: Equation (2.78), repeated, is

(J2 + J1n
2)��2 + (b2 + b1n

2) _�2 = nTm

Since the spring is only applied to the second rotational mass, its torque
only e¤ects Eq. (2.77). Adding the spring torque to Eq. 2.77 yields

J2��2 + b2 _�2 +Ks�2 = T2

and following the devleopment in the text on page 61, we see that the
result is a revised version of Eq. (2.78), that is

(J2 + J1n
2)��2 + (b2 + b1n

2) _�2 +Ks�2 = nTm

Problems and Solutions for Section 2.4
25. A precision-table leveling scheme shown in Fig. 2.58 relies on thermal

expansion of actuators under two corners to level the table by raising or
lowering their respective corners. The parameters are:

Tact = actuator temperature;

Tamb = ambient air temperature;

Rf = heat� ow coe�cient between the actuator and the air;
C = thermal capacity of the actuator;

R = resistance of the heater:

Assume that (1) the actuator acts as a pure electric resistance, (2) the
heat �ow into the actuator is proportional to the electric power input,
and (3) the motion d is proportional to the di¤erence between Tact and
Tamb due to thermal expansion. Find the di¤erential equations relating
the height of the actuator d versus the applied voltage vi.
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Fig. 2.58 (a) Precision table kept level by actuators; (b) side view of
one actuator

Solution:

Electric power in is proportional to the heat �ow in

_Qin = Kq
v2i
R

and the heat �ow out is from heat transfer to the ambient air

_Qout =
1

Rf
(Tact � Tamb) :

The temperature is governed by the di¤erence in heat �ows

_Tact =
1

C

�
_Qin � _Qout

�
=

1

C

�
Kq
v2i
R
� 1

Rf
(Tact � Tamb)

�
and the actuator displacement is

d = K (Tact � Tamb) :

where Tamb is a given function of time, most likely a constant for a table
inside a room. The system input is vi and the system output is d:

26. An air conditioner supplies cold air at the same temperature to each room
on the fourth �oor of the high-rise building shown in Fig. 2.59(a). The �oor
plan is shown in Fig. 2.59(b). The cold air �ow produces an equal amount
of heat �ow q out of each room. Write a set of di¤erential equations
governing the temperature in each room, where

To = temperature outside the building;

Ro = resistance to heat ow through the outer walls;

Ri = resistance to heat ow through the inner walls:
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Assume that (1) all rooms are perfect squares, (2) there is no heat �ow
through the �oors or ceilings, and (3) the temperature in each room is
uniform throughout the room. Take advantage of symmetry to reduce the
number of di¤erential equations to three.

Fig. 2.59 Building air conditioning: (a) high-rise
building, (b) �oor plan of the fourth �oor

Solution:

We can classify 9 rooms to 3 types by the number of outer walls they have.

Type 1 Type 2 Type 1
Type 2 Type 3 Type 2
Type 1 Type 2 Type 1

We can expect the hotest rooms on the outside and the corners hotest of
all, but solving the equations would con�rm this intuitive result. That is,

To > T1 > T2 > T3

and, with a same cold air �ow into every room, the ones with some sun
load will be hotest.

Let�s rede�nce the resistances

Ro = resistance to heat ow through one unit of outer wall

Ri = resistance to heat ow through one unit of inner wall

Room type 1:
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qout =
2

Ri
(T1 � T2) + q

qin =
2

Ro
(To � T1)

_T1 =
1

C
(qin � qout)

=
1

C

�
2

Ro
(To � T1)�

2

Ri
(T1 � T2)� q

�

Room type 2:

qin =
1

Ro
(To � T2) +

2

Ri
(T1 � T2)

qout =
1

Ri
(T2 � T3) + q

_T2 =
1

C

�
1

Ro
(To � T2) +

2

Ri
(T1 � T2)�

1

Ri
(T2 � T3)� q

�

Room type 3:

qin =
4

Ri
(T2 � T3)

qout = q

_T3 =
1

C

�
4

Ri
(T2 � T3)� q

�

27. For the two-tank �uid-�ow system shown in Fig. 2.59, �nd the di¤erential
equations relating the �ow into the �rst tank to the �ow out of the second
tank.
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Fig. 2.60 Two-tank �uid-�ow system for Problem 27

Solution:

This is a variation on the problem solved in Example 2.21 and the de�ni-
tions of terms is taken from that. From the relation between the height
of the water and mass �ow rate, the continuity equations are

_m1 = �A1 _h1 = win � w
_m2 = �A2 _h2 = w � wout

Also from the relation between the pressure and outgoing mass �ow rate,

w =
1

R1
(�gh1)

1
2

wout =
1

R2
(�gh2)

1
2

Finally,

_h1 = � 1

�A1R1
(�gh1)

1
2 +

1

�A1
win

_h2 =
1

�A2R1
(�gh1)

1
2 � 1

�A2R2
(�gh2)

1
2 :

28. A laboratory experiment in the �ow of water through two tanks is sketched
in Fig. 2.61. Assume that Eq. (2.96) describes �ow through the equal-sized
holes at points A, B, or C.

(a) With holes at B and C but none at A, write the equations of motion
for this system in terms of h1 and h2. Assume that when h2 = 15 cm,
the out�ow is 200 g/min.

(b) At h1 = 30 cm and h2 = 10 cm, compute a linearized model and the
transfer function from pump �ow (in cubic centimeters per minute)
to h2.
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(c) Repeat parts (a) and (b) assuming hole B is closed and hole A is
open. Assume that h3 = 20 cm, h1 > 20 cm, and h2 < 20:cm.

Fig. 2.61 Two-tank �uid-�ow system for Problem 28

Solution:

(a) Following the solution of Example 2.21, and assuming the area of
both tanks is A; the values given for the heights ensure that the
water will �ow according to

WB =
1

R
[�g (h1 � h2)]

1
2

WC =
1

R
[�gh2]

1
2

WB �WC = �A _h2

Win �WB = �A _h1

From the out�ow information given, we can compute the ori�ce re-
sistance, R; noting that for water, � = 1 gram/cc and g = 981
cm/sec2 ' 1000 cm/sec2:

WC = 200 g=mn =
1

R

p
�gh2 =

1

R

p
�g � 15 cm

R =

p
�g � 10 cm
200 g=mn

=

p
1 g= cm3 � 1000 cm= s2 � 15 cm

200 g=60 s

=
122:5

200
60

s
g cm2 s2

cm3 s2 g2
= 36:7 g�

1
2 cm�

1
2
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(b) The nonlinear equations from above are

_h1 = � 1

�AR

p
�g (h1 � h2) +

1

�A
Win

_h2 =
1

�AR

p
�g (h1 � h2)�

1

�AR

p
�gh2

The square root functions need to be linearized about the nominal
heights. In general the square root function can be linearized as
below

p
x0 + �x =

s
x0

�
1 +

�x

x0

�
�=

p
x0

�
1 +

1

2

�x

x0

�
So let�s assume that h1 = h10+�h1 and h2 = h20+�h2 where h10 = 30
cm and h20 = 10 cm. And for round numbers, let�s assume the area
of each tank A = 100 cm2: The equations above then reduce to

� _h1 = � 1

(1)(100)(36:7)

p
(1)(1000) (30 + �h1 � 10� �h2) +

1

(1)(100)
Win

� _h2 =
1

(1)(100)(36:7)

p
(1)(1000) (30 + �h1 � 10� �h2)�

1

(1)(100)(36:7)

p
(1)(1000)(10 + �h2)

which, with the square root approximations, is equivalent to,

� _h1 = �
p
2

36:7
(1 +

1

40
�h1 �

1

40
�h2) +

1

100
Win

� _h2 =

p
2

36:7
(1 +

1

40
�h1 �

1

40
�h2)�

1

36:7
(1 +

1

20
�h2)

The nominal in�owWnom =
10
3:67

p
2cc/sec is required in order for the

system to be in equilibrium, as can be seen from the �rst equation.
So we will de�ne the total in�ow to be Win =Wnom+ �W: Including
the nominal in�ow, the equations become

� _h1 = �
p
2

1468
(�h1 � �h2) +

1

100
�W

� _h2 =

p
2

1468
�h1 + (

p
2

1468
� 1

734
)�h2 +

p
2� 1
36:7

However, holding the nominal �ow rate maintains h1 at equilibrium,
but h2 will not stay at equilibrium. Instead, there will be a con-
stant term increasing h2: Thus the standard transfer function will
not result.
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(c) With hole B closed and hole A open, the relevant relations are

Win �WA = �A _h1

WA =
1

R

p
�g(h1 � h3)

WA �WC = �A _h2

WC =
1

R

p
�gh2

_h1 = � 1

�AR

p
�g(h1 � h3) +

1

�A
Win

_h2 =
1

�AR

p
�g(h1 � h3)�

1

�AR

p
�gh2

For the value of R, we will use the same calculation from part (a),
since that value has not changed with di¤erent hole openings, so we
still have

R =
122:5

200
60

s
g cm2 s2

cm3 s2 g2
= 36:7 g�

1
2 cm�

1
2

. With the same de�nitions for the perturbed quantities as for part
(b), plus h3 = 20 cm,.we obtain

� _h1 = � 1

(1)(100)(36:7)

p
(1)(1000)(30 + �h1 � 20) +

1

(1)(100)
Win

� _h2 =
1

(1)(100)(36:7)

p
(1)(1000)(30 + �h1 � 20)

� 1

(1)(100)(36:7)

p
(1)(1000)(10 + �h2)

which, with the linearization carried out, reduces to

� _h1 = � 1

(36:7)
(1 +

1

20
�h1) +

1

(100)
Wnom +

1

(100)
�W

� _h2 =
1

(36:7)
(1 +

1

20
�h1)�

1

(36:7)
(1 +

1

20
�h2)

and with the nominal �ow rate of Win =
10
3:67 removed

� _h1 = � 1

734
�h1 +

1

100
�W

� _h2 =
1

734
�h1 �

1

734
�h2
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Taking the Laplace transform of these two equations, and solving for
the desired transfer function (in cc/sec) yields

�H2(s)

�W (s)
=

1

734

0:01

(s+ 1=734)2
:

which becomes, with the in�ow in grams/min,

�H2(s)

�W (s)
=

1

734

(0:01)(60)

(s+ 1=734)2
= :

0:000817

(s+ 1=734)2

29. The equations for heating a house are given by Eqs. (2.81) and (2.82)
and, in a particular case can be written with time in hours as

C
dTh
dt

= Ku� Th � To
R

where

(a) C is the Thermal capacity of the house, BTU=oF

(b) Th is the temperature in the house, oF

(c) To is the temperature outside the house, oF

(d) K is the heat rating of the furnace, = 90; 000 BTU=hour

(e) R is the thermal resistance, oF per BTU=hour

(f) u is the furnace switch, =1 if the furnace is on and =0 if the furnace
is o¤.

It is measured that, with the outside temperature at 32 oF and the house
at 60 oF , the furnace raises the temperature 2 oF in 6 minutes (0.1
hour). With the furnace o¤, the house temperature falls 2 oF in 40
minutes. What are the values of C and R for the house?

Solution:

For the �rst case, the furnace is on which means u = 1.

C
dTh
dt

= K � 1

R
(Th � To)

_Th =
K

C
� 1

RC
(Th � To)

and with the furnace o¤,

_Th = �
1

RC
(Th � To)

In both cases, it is a �rst order system and thus the solutions involve
exponentials in time. The approximate answer can be obtained by simply
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looking at the slope of the exponential at the outset. This will be fairly
accurate because the temperature is only changing by 2 degrees and this
represents a small fraction of the 30 degree temperature di¤erence. Let�s
solve the equation for the furnace o¤ �rst

�Th
�t

= � 1

RC
(Th � To)

plugging in the numbers available, the temperature falls 2 degrees in 2/3
hr, we have

� 2

2=3
= � 1

RC
(60� 32)

which means that
RC = 28=3

For the second case, the furnace is turned on which means

�Th
�t

=
K

C
� 1

RC
(Th � To)

and plugging in the numbers yields

2

0:1
=
90; 000

C
� 1

28=3
(60� 32)

and we have

C =
90; 000

23
= 3913

R =
RC

C
=
28=3

3913
= 0:00239
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