ENERGY, ENVIRONMENT, AND CLIMATE, Third Edition

CHAPTER 1: A Changing Planet

QUESTIONS

- 1. Life has changed Earth's atmosphere.
- 2. In the first few hundred million years after the planet's formation, Earth's active geology and bombardment from solar system debris eradicated any evidence of early life.
- 3. Oxygen is highly reactive.
- 4. Fuels (such as oil or coal) store energy. Flows (such as sunlight) deliver streams of energy.
- 5. Volcanoes emitted CO₂ (carbon dioxide).
- 6. Higher standards of living and greater education, which are associated with higher energy consumption, tend to enable and encourage people to choose smaller families.
- 7. In 1988, more people were reproducing.

EXERCISES

1. Solar radiation intensity $S = 1,360 \text{ W/m}^2 = \text{power/area}$. The power is the rate at which solar energy arrives at Earth.

The effective absorbing area of Earth is that of a disk of radius $R_E = 6.37 \times 10^6 \,\mathrm{m}$:

area =
$$\pi R^2 = \pi (6.37 \times 10^6 \text{ m})^2 = 1.27 \times 10^{14} \text{ m}^2$$

Therefore, power = S area = 1.72×10¹⁷ W » <u>170 PW</u>.

2. From Figure 1.8, geothermal energy provides 0.025% of Earth's total power and solar energy provides 99.98% of Earth's total power.

geothermal power =
$$0.025\%$$
 total power = $0.025\% \times \frac{\text{solar power}}{99.98\%}$ geothermal power = $0.025\% \times \frac{1.74 \cdot 10^{17} \text{ W}}{99.98\%} = 4.3 \cdot 10^{13} \text{ W} = \underline{43 \text{ TW}}$

© 2017 W. W. Norton & Company, Inc. —pg. 1

Because the Sun's power provides nearly 100% of Earth's total power, we could just as well have approximated this as

geothermal power =
$$0.025\%$$
 $1.7 \cdot 10^{17}$ W = $4.3 \cdot 10^{13}$ W

3. Let P_0 = the initial population and P(t) = population at a later time, t. As long as we look at population increases over short time periods (just a year), we can approximate the population growth as linear: $P(t) = P_0 + m$ t, where the growth rate in people per year, m, is proportional to the percentage growth rate, g, and to the initial population: $m = P_0$ g.

The population grows each year by approximately $\Delta P = P(t) - P_0 = m$ $t = g - P_0 - t$, where t = 1 year.

1965: $P_0 = 3.4$ billion people, g = 2% per year. Population grows this year by approximately $\Delta P = g$ P_0 t = 3.4 billion people 2%/y 1 y = 68 million people.

1985: $P_0 = 4.9$ billion people, g = 1.7% per year. Population grows this year by approximately $\Delta P = g - P_0 - t = 4.9$ billion people = 1.7%/y - 1 y = 83 million people.

2000: $P_0 = 6.1$ billion people, g = 1.2% per year. Population grows this year by approximately $\Delta P = g - P_0$ t = 6.1 billion people 1.2%/y - 1 y = 73 million people.

Although there were more people in 2000, the growth rate was lower, so the population grew by a smaller number than in 1985.

4. The population growth is exponential: $P = P_0 e^{rt}$. Here P_0 is the initial population of 7.5 billion, r is the growth rate of 1% per year or 0.01/year, and t = 2050 - 2017 = 33 years. Then

$$P = (7.5 \text{ billion})(e^{(0.01/\text{year})(33} \text{ years}) = \underline{10.4 \text{ billion people}}$$

5. Total fossil and nuclear energy flow = 0.008% or 0.00008 of the solar energy flow, which is $1.7 \cdot 10^{17}$ W. So the total fossil and nuclear flow is $(0.00008)(1.7 \cdot 10^{17} \text{ W}) = 1.4 \cdot 10^{13}$ W, or 14 TW. This is consistent to this level of approximation with the human energy consumption of 18 TW (nearly all of which is from fossil and nuclear sources).

ARGUE YOUR CASE

- 1. The natural flows have been in equilibrium. The "human uses" flow, although small, has significantly disrupted the equilibrium of the Earth system.
- 2. Waterpower is fundamentally driven by solar radiation, which evaporates water and drives the hydrologic cycle.