CHAPTER 2

First Order Differential Equations

2.1

5.(a)

(b) If $y(0)>-3$, solutions eventually have positive slopes, and hence increase without bound. If $y(0) \leq-3$, solutions have negative slopes and decrease without bound.
(c) The integrating factor is $\mu(t)=e^{-\int 2 d t}=e^{-2 t}$. The differential equation can be written as $e^{-2 t} y^{\prime}-2 e^{-2 t} y=3 e^{-t}$, that is, $\left(e^{-2 t} y\right)^{\prime}=3 e^{-t}$. Integration of both sides of the equation results in the general solution $y(t)=-3 e^{t}+c e^{2 t}$. It follows that all solutions will increase exponentially if $c>0$ and will decrease exponentially
if $c \leq 0$. Letting $c=0$ and then $t=0$, we see that the boundary of these behaviors is at $y(0)=-3$.
9.(a)

(b) All solutions eventually have positive slopes, and hence increase without bound.
(c) The integrating factor is $\mu(t)=e^{\int(1 / 2) d t}=e^{t / 2}$. The differential equation can be written as $e^{t / 2} y^{\prime}+e^{t / 2} y / 2=3 t e^{t / 2} / 2$, that is, $\left(e^{t / 2} y / 2\right)^{\prime}=3 t e^{t / 2} / 2$. Integration of both sides of the equation results in the general solution $y(t)=3 t-6+$ $c e^{-t / 2}$. All solutions approach the specific solution $y_{0}(t)=3 t-6$.
10.(a)

(b) For $y>0$, the slopes are all positive, and hence the corresponding solutions increase without bound. For $y<0$, almost all solutions have negative slopes, and hence solutions tend to decrease without bound.
(c) First divide both sides of the equation by $t(t>0)$. From the resulting standard form, the integrating factor is $\mu(t)=e^{-\int(1 / t) d t}=1 / t$. The differential equation can be written as $y^{\prime} / t-y / t^{2}=t e^{-t}$, that is, $(y / t)^{\prime}=t e^{-t}$. Integration leads to the general solution $y(t)=-t e^{-t}+c t$. For $c \neq 0$, solutions diverge, as implied by the direction field. For the case $c=0$, the specific solution is $y(t)=-t e^{-t}$, which evidently approaches zero as $t \rightarrow \infty$.
12.(a)

(b) All solutions eventually have positive slopes, and hence increase without bound.
(c) The integrating factor is $\mu(t)=e^{t / 2}$. The differential equation can be written as $e^{t / 2} y^{\prime}+e^{t / 2} y / 2=3 t^{2} / 2$, that is, $\left(e^{t / 2} y / 2\right)^{\prime}=3 t^{2} / 2$. Integration of both sides of the equation results in the general solution $y(t)=3 t^{2}-12 t+24+c e^{-t / 2}$. It follows that all solutions converge to the specific solution $3 t^{2}-12 t+24$.
14. The integrating factor is $\mu(t)=e^{2 t}$. After multiplying both sides by $\mu(t)$, the equation can be written as $\left(e^{2 t} y\right)^{\prime}=t$. Integrating both sides of the equation results in the general solution $y(t)=t^{2} e^{-2 t} / 2+c e^{-2 t}$. Invoking the specified condition, we require that $e^{-2} / 2+c e^{-2}=0$. Hence $c=-1 / 2$, and the solution to the initial value problem is $y(t)=\left(t^{2}-1\right) e^{-2 t} / 2$.
16. The integrating factor is $\mu(t)=e^{\int(2 / t) d t}=t^{2}$. Multiplying both sides by $\mu(t)$, the equation can be written as $\left(t^{2} y\right)^{\prime}=\cos t$. Integrating both sides of the equation results in the general solution $y(t)=\sin t / t^{2}+c t^{-2}$. Substituting $t=\pi$ and setting the value equal to zero gives $c=0$. Hence the specific solution is $y(t)=\sin t / t^{2}$.
17. The integrating factor is $\mu(t)=e^{-2 t}$, and the differential equation can be written as $\left(e^{-2 t} y\right)^{\prime}=1$. Integrating, we obtain $e^{-2 t} y(t)=t+c$. Invoking the specified initial condition results in the solution $y(t)=(t+2) e^{2 t}$.
19. After writing the equation in standard form, we find that the integrating factor is $\mu(t)=e^{\int(4 / t) d t}=t^{4}$. Multiplying both sides by $\mu(t)$, the equation can be written as $\left(t^{4} y\right)^{\prime}=t e^{-t}$. Integrating both sides results in $t^{4} y(t)=-(t+1) e^{-t}+$ c. Letting $t=-1$ and setting the value equal to zero gives $c=0$. Hence the specific solution of the initial value problem is $y(t)=-\left(t^{-3}+t^{-4}\right) e^{-t}$.
22.(a)

The solutions eventually increase or decrease, depending on the initial value a. The critical value seems to be $a_{0}=-2$.
(b) The integrating factor is $\mu(t)=e^{-t / 2}$, and the general solution of the differential equation is $y(t)=-3 e^{t / 3}+c e^{t / 2}$. Invoking the initial condition $y(0)=a$, the solution may also be expressed as $y(t)=-3 e^{t / 3}+(a+3) e^{t / 2}$. The critical value is $a_{0}=-3$.
(c) For $a_{0}=-3$, the solution is $y(t)=-3 e^{t / 3}$, which diverges to $-\infty$ as $t \rightarrow \infty$.
23.(a)

Solutions appear to grow infinitely large in absolute value, with signs depending on the initial value $y(0)=a_{0}$. The direction field appears horizontal for $a_{0} \approx-1 / 8$.
(b) Dividing both sides of the given equation by 3 , the integrating factor is $\mu(t)=$ $e^{-2 t / 3}$. Multiplying both sides of the original differential equation by $\mu(t)$ and integrating results in $y(t)=\left(2 e^{2 t / 3}-2 e^{-\pi t / 2}+a(4+3 \pi) e^{2 t / 3}\right) /(4+3 \pi)$. The qualitative behavior of the solution is determined by the terms containing $e^{2 t / 3}: 2 e^{2 t / 3}+$ $a(4+3 \pi) e^{2 t / 3}$. The nature of the solutions will change when $2+a(4+3 \pi)=0$. Thus the critical initial value is $a_{0}=-2 /(4+3 \pi)$.
(c) In addition to the behavior described in part (a), when $y(0)=-2 /(4+3 \pi)$, the solution is $y(t)=\left(-2 e^{-\pi t / 2}\right) /(4+3 \pi)$, and that specific solution will converge to $y=0$.
24.(a)

As $t \rightarrow 0$, solutions increase without bound if $y(1)=a>0.4$, and solutions decrease without bound if $y(1)=a<0.4$.
(b) The integrating factor is $\mu(t)=e^{\int(t+1) / t d t}=t e^{t}$. The general solution of the differential equation is $y(t)=t e^{-t}+c e^{-t} / t$. Since $y(1)=a$, we have that $1+$ $c=a e$. That is, $c=a e-1$. Hence the solution can also be expressed as $y(t)=$ $t e^{-t}+(a e-1) e^{-t} / t$. For small values of t, the second term is dominant. Setting $a e-1=0$, the critical value of the parameter is $a_{0}=1 / e$.
(c) When $a=1 / e$, the solution is $y(t)=t e^{-t}$, which approaches 0 as $t \rightarrow 0$.
27. The integrating factor is $\mu(t)=e^{\int(1 / 2) d t}=e^{t / 2}$. Therefore the general solution is $y(t)=(4 \cos t+8 \sin t) / 5+c e^{-t / 2}$. Invoking the initial condition, the specific solution is $y(t)=\left(4 \cos t+8 \sin t-9 e^{-t / 2}\right) / 5$. Differentiating, it follows that $y^{\prime}(t)=$ $\left(-4 \sin t+8 \cos t+4.5 e^{-t / 2}\right) / 5$ and $y^{\prime \prime}(t)=\left(-4 \cos t-8 \sin t-2.25 e^{-t / 2}\right) / 5$. Setting $y^{\prime}(t)=0$, the first solution is $t_{1}=1.3643$, which gives the location of the first stationary point. Since $y^{\prime \prime}\left(t_{1}\right)<0$, the first stationary point in a local maximum. The coordinates of the point are ($1.3643,0.82008$).
28. The integrating factor is $\mu(t)=e^{\int(2 / 3) d t}=e^{2 t / 3}$, and the differential equation can be written as $\left(e^{2 t / 3} y\right)^{\prime}=e^{2 t / 3}-t e^{2 t / 3} / 2$. The general solution is $y(t)=$ $(21-6 t) / 8+c e^{-2 t / 3}$. Imposing the initial condition, we have $y(t)=(21-6 t) / 8+$ $\left(y_{0}-21 / 8\right) e^{-2 t / 3}$. Since the solution is smooth, the desired intersection will be a point of tangency. Taking the derivative, $y^{\prime}(t)=-3 / 4-\left(2 y_{0}-21 / 4\right) e^{-2 t / 3} / 3$. Setting $y^{\prime}(t)=0$, the solution is $t_{1}=(3 / 2) \ln \left[\left(21-8 y_{0}\right) / 9\right]$. Substituting into the solution, the respective value at the stationary point is $y\left(t_{1}\right)=3 / 2+(9 / 4) \ln 3-$ $(9 / 8) \ln \left(21-8 y_{0}\right)$. Setting this result equal to zero, we obtain the required initial value $y_{0}=\left(21-9 e^{4 / 3}\right) / 8 \approx-1.643$.
29.(a) The integrating factor is $\mu(t)=e^{t / 4}$, and the differential equation can be written as $\left(e^{t / 4} y\right)^{\prime}=3 e^{t / 4}+2 e^{t / 4} \cos 2 t$. After integration, we get that the general solution is $y(t)=12+(8 \cos 2 t+64 \sin 2 t) / 65+c e^{-t / 4}$. Invoking the initial condition, $y(0)=0$, the specific solution is $y(t)=12+\left(8 \cos 2 t+64 \sin 2 t-788 e^{-t / 4}\right) / 65$. As $t \rightarrow \infty$, the exponential term will decay, and the solution will oscillate about
an average value of 12 , with an amplitude of $8 / \sqrt{65}$.
(b) Solving $y(t)=12$, we obtain the desired value $t \approx 10.0658$.
31. The integrating factor is $\mu(t)=e^{-3 t / 2}$, and the differential equation can be written as $\left(e^{-3 t / 2} y\right)^{\prime}=3 t e^{-3 t / 2}+2 e^{-t / 2}$. The general solution is $y(t)=-2 t-$ $4 / 3-4 e^{t}+c e^{3 t / 2}$. Imposing the initial condition, $y(t)=-2 t-4 / 3-4 e^{t}+\left(y_{0}+\right.$ $16 / 3) e^{3 t / 2}$. Now as $t \rightarrow \infty$, the term containing $e^{3 t / 2}$ will dominate the solution. Its sign will determine the divergence properties. Hence the critical value of the initial condition is $y_{0}=-16 / 3$. The corresponding solution, $y(t)=-2 t-4 / 3-$ $4 e^{t}$, will also decrease without bound.

Note on Problems 34-37:
Let $g(t)$ be given, and consider the function $y(t)=y_{1}(t)+g(t)$, in which $y_{1}(t) \rightarrow 0$ as $t \rightarrow \infty$. Differentiating, $y^{\prime}(t)=y_{1}^{\prime}(t)+g^{\prime}(t)$. Letting a be a constant, it follows that $y^{\prime}(t)+a y(t)=y_{1}^{\prime}(t)+a y_{1}(t)+g^{\prime}(t)+a g(t)$. Note that the hypothesis on the function $y_{1}(t)$ will be satisfied, if $y_{1}^{\prime}(t)+a y_{1}(t)=0$. That is, $y_{1}(t)=c e^{-a t}$. Hence $y(t)=c e^{-a t}+g(t)$, which is a solution of the equation $y^{\prime}+a y=g^{\prime}(t)+a g(t)$. For convenience, choose $a=1$.
34. Here $g(t)=3$, and we consider the linear equation $y^{\prime}+y=3$. The integrating factor is $\mu(t)=e^{t}$, and the differential equation can be written as $\left(e^{t} y\right)^{\prime}=3 e^{t}$. The general solution is $y(t)=3+c e^{-t}$.
36. Here $g(t)=2 t-5$. Consider the linear equation $y^{\prime}+y=2+2 t-5$. The integrating factor is $\mu(t)=e^{t}$, and the differential equation can be written as $\left(e^{t} y\right)^{\prime}=(2 t-3) e^{t}$. The general solution is $y(t)=2 t-5+c e^{-t}$.
37. $g(t)=4-t^{2}$. Consider the linear equation $y^{\prime}+y=4-2 t-t^{2}$. The integrating factor is $\mu(t)=e^{t}$, and the equation can be written as $\left(e^{t} y\right)^{\prime}=\left(4-2 t-t^{2}\right) e^{t}$. The general solution is $y(t)=4-t^{2}+c e^{-t}$.
38.(a) Differentiating y and using the fundamental theorem of calculus we obtain that $y^{\prime}=A e^{-\int p(t) d t} \cdot(-p(t))$, and then $y^{\prime}+p(t) y=0$.
(b) Differentiating y we obtain that

$$
y^{\prime}=A^{\prime}(t) e^{-\int p(t) d t}+A(t) e^{-\int p(t) d t} \cdot(-p(t))
$$

If this satisfies the differential equation then

$$
y^{\prime}+p(t) y=A^{\prime}(t) e^{-\int p(t) d t}=g(t)
$$

and the required condition follows.
(c) Let us denote $\mu(t)=e^{\int p(t) d t}$. Then clearly $A(t)=\int \mu(t) g(t) d t$, and after substitution $y=\int \mu(t) g(t) d t \cdot(1 / \mu(t))$, which is just Eq. (33).
40. We assume a solution of the form $y=A(t) e^{-\int(1 / t) d t}=A(t) e^{-\ln t}=A(t) t^{-1}$, where $A(t)$ satisfies $A^{\prime}(t)=3 t \cos 2 t$. This implies that

$$
A(t)=\frac{3 \cos 2 t}{4}+\frac{3 t \sin 2 t}{2}+c
$$

and the solution is

$$
y=\frac{3 \cos 2 t}{4 t}+\frac{3 \sin 2 t}{2}+\frac{c}{t}
$$

41. First rewrite the differential equation as

$$
y^{\prime}+\frac{2}{t} y=\frac{\sin t}{t} .
$$

Assume a solution of the form $y=A(t) e^{-\int(2 / t) d t}=A(t) t^{-2}$, where $A(t)$ satisfies the ODE $A^{\prime}(t)=t \sin t$. It follows that $A(t)=\sin t-t \cos t+c$ and thus $y=$ $(\sin t-t \cos t+c) / t^{2}$.

2.2

Problems 1 through 20 follow the pattern of the examples worked in this section. The first eight problems, however, do not have an initial condition, so the integration constant c cannot be found.
2. For $x \neq-1$, the differential equation may be written as $y d y=\left[x^{2} /\left(1+x^{3}\right)\right] d x$. Integrating both sides, with respect to the appropriate variables, we obtain the relation $y^{2} / 2=(1 / 3) \ln \left|1+x^{3}\right|+c$. That is, $y(x)= \pm \sqrt{(2 / 3) \ln \left|1+x^{3}\right|+c}$.
3. The differential equation may be written as $y^{-2} d y=-\sin x d x$. Integrating both sides of the equation, with respect to the appropriate variables, we obtain the relation $-y^{-1}=\cos x+c$. That is, $(c-\cos x) y=1$, in which c is an arbitrary constant. Solving for the dependent variable, explicitly, $y(x)=1 /(c-\cos x)$.
5. Write the differential equation as $\cos ^{-2} 2 y d y=\cos ^{2} x d x$, which also can be written as $\sec ^{2} 2 y d y=\cos ^{2} x d x$. Integrating both sides of the equation, with respect to the appropriate variables, we obtain the relation $\tan 2 y=\sin x \cos x+x+c$.
7. The differential equation may be written as $\left(y+e^{y}\right) d y=\left(x-e^{-x}\right) d x$. Integrating both sides of the equation, with respect to the appropriate variables, we obtain the relation $y^{2}+2 e^{y}=x^{2}+2 e^{-x}+c$.
8. Write the differential equation as $\left(1+y^{2}\right) d y=x^{2} d x$. Integrating both sides of the equation, we obtain the relation $y+y^{3} / 3=x^{3} / 3+c$.
9.(a) The differential equation is separable, with $y^{-2} d y=(1-2 x) d x$. Integration yields $-y^{-1}=x-x^{2}+c$. Substituting $x=0$ and $y=-1 / 6$, we find that $c=6$. Hence the specific solution is $y=1 /\left(x^{2}-x-6\right)$.
(b)

(c) Note that $x^{2}-x-6=(x+2)(x-3)$. Hence the solution becomes singular at $x=-2$ and $x=3$, so the interval of existence is $(-2,3)$.
11.(a) Rewrite the differential equation as $x e^{x} d x=-y d y$. Integrating both sides of the equation results in $x e^{x}-e^{x}=-y^{2} / 2+c$. Invoking the initial condition, we obtain $c=-1 / 2$. Hence $y^{2}=2 e^{x}-2 x e^{x}-1$. The explicit form of the solution is $y(x)=\sqrt{2 e^{x}-2 x e^{x}-1}$. The positive sign is chosen, since $y(0)=1$.
(b)

(c) The function under the radical becomes negative near $x \approx-1.7$ and $x \approx 0.77$.
12.(a) Write the differential equation as $r^{-2} d r=\theta^{-1} d \theta$. Integrating both sides of the equation results in the relation $-r^{-1}=\ln \theta+c$. Imposing the condition $r(1)=$ 2 , we obtain $c=-1 / 2$. The explicit form of the solution is $r=2 /(1-2 \ln \theta)$.
(b)

(c) Clearly, the solution makes sense only if $\theta>0$. Furthermore, the solution becomes singular when $\ln \theta=1 / 2$, that is, $\theta=\sqrt{e}$.
14.(a) Write the differential equation as $y^{-3} d y=x\left(1+x^{2}\right)^{-1 / 2} d x$. Integrating both sides of the equation, with respect to the appropriate variables, we obtain the relation $-y^{-2} / 2=\sqrt{1+x^{2}}+c$. Imposing the initial condition, we obtain $c=-3 / 2$. Hence the specific solution can be expressed as $y^{-2}=3-2 \sqrt{1+x^{2}}$. The explicit form of the solution is $y(x)=1 / \sqrt{3-2 \sqrt{1+x^{2}}}$. The positive sign is chosen to satisfy the initial condition.
(b)

(c) The solution becomes singular when $2 \sqrt{1+x^{2}}=3$. That is, at $x= \pm \sqrt{5} / 2$.
16.(a) Rewrite the differential equation as $4 y^{3} d y=x\left(x^{2}+1\right) d x$. Integrating both sides of the equation results in $y^{4}=\left(x^{2}+1\right)^{2} / 4+c$. Imposing the initial condition, we obtain $c=0$. Hence the solution may be expressed as $\left(x^{2}+1\right)^{2}-4 y^{4}=0$. The explicit form of the solution is $y(x)=-\sqrt{\left(x^{2}+1\right) / 2}$. The sign is chosen based on $y(0)=-1 / \sqrt{2}$.
(b)

(c) The solution is valid for all $x \in \mathbb{R}$.
18.(a) Write the differential equation as $(3+4 y) d y=\left(e^{-x}-e^{x}\right) d x$. Integrating both sides of the equation, with respect to the appropriate variables, we obtain the relation $3 y+2 y^{2}=-\left(e^{x}+e^{-x}\right)+c$. Imposing the initial condition, $y(0)=1$, we obtain $c=7$. Thus, the solution can be expressed as $3 y+2 y^{2}=-\left(e^{x}+e^{-x}\right)+7$. Now by completing the square on the left hand side, $2(y+3 / 4)^{2}=-\left(e^{x}+e^{-x}\right)+$ $65 / 8$. Hence the explicit form of the solution is $y(x)=-3 / 4+\sqrt{65 / 16-\cosh x}$.
(b)

(c) Note the $65-16 \cosh x \geq 0$ as long as $|x|>2.1$ (approximately). Hence the solution is valid on the interval $-2.1<x<2.1$.
20.(a) Rewrite the differential equation as $y^{2} d y=\arcsin x / \sqrt{1-x^{2}} d x$. Integrating both sides of the equation results in $y^{3} / 3=(\arcsin x)^{2} / 2+c$. Imposing the condition $y(0)=1$, we obtain $c=1 / 3$. The explicit form of the solution is $y(x)=$ $\left(3(\arcsin x)^{2} / 2+1\right)^{1 / 3}$.

(c) Since $\arcsin x$ is defined for $-1 \leq x \leq 1$, this is the interval of existence.
22. The differential equation can be written as $\left(3 y^{2}-4\right) d y=3 x^{2} d x$. Integrating both sides, we obtain $y^{3}-4 y=x^{3}+c$. Imposing the initial condition, the specific solution is $y^{3}-4 y=x^{3}-1$. Referring back to the differential equation, we find that $y^{\prime} \rightarrow \infty$ as $y \rightarrow \pm 2 / \sqrt{3}$. The respective values of the abscissas are $x \approx-1.276$, 1.598. Hence the solution is valid for $-1.276<x<1.598$.
24. Write the differential equation as $(3+2 y) d y=\left(2-e^{x}\right) d x$. Integrating both sides, we obtain $3 y+y^{2}=2 x-e^{x}+c$. Based on the specified initial condition, the solution can be written as $3 y+y^{2}=2 x-e^{x}+1$. Completing the square, it follows that $y(x)=-3 / 2+\sqrt{2 x-e^{x}+13 / 4}$. The solution is defined if $2 x-e^{x}+13 / 4 \geq$ 0 , that is, $-1.5 \leq x \leq 2$ (approximately). In that interval, $y^{\prime}=0$ for $x=\ln 2$. It can be verified that $y^{\prime \prime}(\ln 2)<0$. In fact, $y^{\prime \prime}(x)<0$ on the interval of definition. Hence the solution attains a global maximum at $x=\ln 2$.
26. The differential equation can be written as $\left(1+y^{2}\right)^{-1} d y=2(1+x) d x$. Integrating both sides of the equation, we obtain $\arctan y=2 x+x^{2}+c$. Imposing the given initial condition, the specific solution is $\arctan y=2 x+x^{2}$. Therefore, $y=\tan \left(2 x+x^{2}\right)$. Observe that the solution is defined as long as $-\pi / 2<2 x+x^{2}<$ $\pi / 2$. It is easy to see that $2 x+x^{2} \geq-1$. Furthermore, $2 x+x^{2}=\pi / 2$ for $x \approx-2.6$ and 0.6 . Hence the solution is valid on the interval $-2.6<x<0.6$. Referring back to the differential equation, the solution is stationary at $x=-1$. Since $y^{\prime \prime}(-1)>0$, the solution attains a global minimum at $x=-1$.
28. (a) Write the differential equation as $y^{-1}(4-y)^{-1} d y=t(1+t)^{-1} d t$. Integrating both sides of the equation, we obtain $\ln |y|-\ln |y-4|=4 t-4 \ln |1+t|+c$. Taking the exponential of both sides $|y /(y-4)|=c e^{4 t} /(1+t)^{4}$. It follows that as $t \rightarrow \infty,|y /(y-4)|=|1+4 /(y-4)| \rightarrow \infty$. That is, $y(t) \rightarrow 4$.
(b) Setting $y(0)=2$, we obtain that $c=1$. Based on the initial condition, the solution may be expressed as $y /(y-4)=-e^{4 t} /(1+t)^{4}$. Note that $y /(y-4)<0$, for all $t \geq 0$. Hence $y<4$ for all $t \geq 0$. Referring back to the differential equation, it follows that y^{\prime} is always positive. This means that the solution is monotone
increasing. We find that the root of the equation $e^{4 t} /(1+t)^{4}=399$ is near $t=$ 2.844 .
(c) Note the $y(t)=4$ is an equilibrium solution. Examining the local direction field we see that if $y(0)>0$, then the corresponding solutions converge to $y=$ 4. Referring back to part (a), we have $y /(y-4)=\left[y_{0} /\left(y_{0}-4\right)\right] e^{4 t} /(1+t)^{4}$, for $y_{0} \neq 4$. Setting $t=2$, we obtain $y_{0} /\left(y_{0}-4\right)=\left(3 / e^{2}\right)^{4} y(2) /(y(2)-4)$. Now since the function $f(y)=y /(y-4)$ is monotone for $y<4$ and $y>4$, we need only solve the equations $y_{0} /\left(y_{0}-4\right)=-399\left(3 / e^{2}\right)^{4}$ and $y_{0} /\left(y_{0}-4\right)=401\left(3 / e^{2}\right)^{4}$. The respective solutions are $y_{0}=3.6622$ and $y_{0}=4.4042$.
32.(a) Observe that $\left(x^{2}+3 y^{2}\right) / 2 x y=(1 / 2)(y / x)^{-1}+(3 / 2)(y / x)$. Hence the differential equation is homogeneous.
(b) The substitution $y=x v$ results in $v+x v^{\prime}=\left(x^{2}+3 x^{2} v^{2}\right) / 2 x^{2} v$. The transformed equation is $v^{\prime}=\left(1+v^{2}\right) / 2 x v$. This equation is separable, with general solution $v^{2}+1=c x$. In terms of the original dependent variable, the solution is $x^{2}+y^{2}=c x^{3}$.
(c) The integral curves are symmetric with respect to the origin.

34.(a) Observe that $-(4 x+3 y) /(2 x+y)=-2-(y / x)[2+(y / x)]^{-1}$. Hence the differential equation is homogeneous.
(b) The substitution $y=x v$ results in $v+x v^{\prime}=-2-v /(2+v)$. The transformed equation is $v^{\prime}=-\left(v^{2}+5 v+4\right) /(2+v) x$. This equation is separable, with general solution $(v+4)^{2}|v+1|=c / x^{3}$. In terms of the original dependent variable, the solution is $(4 x+y)^{2}|x+y|=c$.
(c) The integral curves are symmetric with respect to the origin.

36. (a) Divide by x^{2} to see that the equation is homogeneous. Substituting $y=x v$, we obtain $x v^{\prime}=(1+v)^{2}$. The resulting differential equation is separable.
(b) Write the equation as $(1+v)^{-2} d v=x^{-1} d x$. Integrating both sides of the equation, we obtain the general solution $-1 /(1+v)=\ln |x|+c$. In terms of the original dependent variable, the solution is $y=x(c-\ln |x|)^{-1}-x$.
(c) The integral curves are symmetric with respect to the origin.

37.(a) The differential equation can be expressed as $y^{\prime}=(1 / 2)(y / x)^{-1}-(3 / 2)(y / x)$. Hence the equation is homogeneous. The substitution $y=x v$ results in $x v^{\prime}=$ $\left(1-5 v^{2}\right) / 2 v$. Separating variables, we have $2 v d v /\left(1-5 v^{2}\right)=d x / x$.
(b) Integrating both sides of the transformed equation yields $-\left(\ln \left|1-5 v^{2}\right|\right) / 5=$ $\ln |x|+c$, that is, $1-5 v^{2}=c /|x|^{5}$. In terms of the original dependent variable, the general solution is $5 y^{2}=x^{2}-c /|x|^{3}$.
(c) The integral curves are symmetric with respect to the origin.

38.(a) The differential equation can be expressed as $y^{\prime}=(3 / 2)(y / x)-(1 / 2)(y / x)^{-1}$. Hence the equation is homogeneous. The substitution $y=x v$ results in $x v^{\prime}=$ $\left(v^{2}-1\right) / 2 v$, that is, $2 v d v /\left(v^{2}-1\right)=d x / x$.
(b) Integrating both sides of the transformed equation yields $\ln \left|v^{2}-1\right|=\ln |x|+c$, that is, $v^{2}-1=c|x|$. In terms of the original dependent variable, the general solution is $y^{2}=c x^{2}|x|+x^{2}$.
(c) The integral curves are symmetric with respect to the origin.

2.3

1. Let $Q(t)$ be the amount of dye in the tank at time t. Clearly, $Q(0)=200 \mathrm{~g}$. The differential equation governing the amount of dye is $Q^{\prime}(t)=-2 Q(t) / 200$. The solution of this separable equation is $Q(t)=Q(0) e^{-t / 100}=200 e^{-t / 100}$. We need the time T such that $Q(T)=2 \mathrm{~g}$. This means we have to solve $2=200 e^{-T / 100}$ and we obtain that $T=-100 \ln (1 / 100)=100 \ln 100 \approx 460.5 \mathrm{~min}$.
5.(a) Let Q be the amount of salt in the tank. Salt enters the tank of water at a rate of $2(1 / 4)(1+(1 / 2) \sin t)=1 / 2+(1 / 4) \sin t \mathrm{oz} / \mathrm{min}$. It leaves the tank at a
rate of $2 Q / 100 \mathrm{oz} / \mathrm{min}$. Hence the differential equation governing the amount of salt at any time is

$$
\frac{d Q}{d t}=\frac{1}{2}+\frac{1}{4} \sin t-\frac{Q}{50} .
$$

The initial amount of salt is $Q_{0}=50 \mathrm{oz}$. The governing differential equation is linear, with integrating factor $\mu(t)=e^{t / 50}$. Write the equation as $\left(e^{t / 50} Q\right)^{\prime}=$ $e^{t / 50}(1 / 2+(1 / 4) \sin t)$. The specific solution is $Q(t)=25+(12.5 \sin t-625 \cos t+$ $\left.63150 e^{-t / 50}\right) / 2501$ oz.
(b)

(c) The amount of salt approaches a steady state, which is an oscillation of approximate amplitude $1 / 4$ about a level of 25 oz .
6.(a) Using the Principle of Conservation of Energy, the speed v of a particle falling from a height h is given by

$$
\frac{1}{2} m v^{2}=m g h .
$$

(b) The outflow rate is (outflow cross-section area) \times (outflow velocity): $\alpha a \sqrt{2 g h}$. At any instant, the volume of water in the tank is $V(h)=\int_{0}^{h} A(u) d u$. The time rate of change of the volume is given by $d V / d t=(d V / d h)(d h / d t)=A(h) d h / d t$. Since the volume is decreasing, $d V / d t=-\alpha a \sqrt{2 g h}$.
(c) With $A(h)=\pi, a=0.01 \pi, \alpha=0.6$, the differential equation for the water level h is $\pi(d h / d t)=-0.006 \pi \sqrt{2 g h}$, with solution $h(t)=0.000018 g t^{2}-0.006 \sqrt{2 g h(0)} t+$ $h(0)$. Setting $h(0)=3$ and $g=9.8, h(t)=0.0001764 t^{2}-0.046 t+3$, resulting in $h(t)=0$ for $t \approx 130.4 \mathrm{~s}$.
7.(a) The equation governing the value of the investment is $d S / d t=r S$. The value of the investment, at any time, is given by $S(t)=S_{0} e^{r t}$. Setting $S(T)=2 S_{0}$, the required time is $T=\ln (2) / r$.
(b) For the case $r=.07, T \approx 9.9 \mathrm{yr}$.
(c) Referring to part (a), $r=\ln (2) / T$. Setting $T=8$, the required interest rate is to be approximately $r=8.66 \%$.
12.(a) Using Eq.(15) we have $d S / d t-0.005 S=-(800+10 t), S(0)=150,000$. Using an integrating factor and integration by parts we obtain that $S(t)=560,000-$ $410,000 e^{0.005 t}+2000 t$. Setting $S(t)=0$ and solving numerically for t yields $t=$ 146.54 months.
(b) The solution we obtained in part (a) with a general initial condition $S(0)=$ S_{0} is $S(t)=560,000-560,000 e^{0.005 t}+S_{0} e^{0.005 t}+2000 t$. Solving the equation $S(240)=0$ yields $S_{0}=246,758$.
13.(a) Let $Q^{\prime}=-r Q$. The general solution is $Q(t)=Q_{0} e^{-r t}$. Based on the definition of half-life, consider the equation $Q_{0} / 2=Q_{0} e^{-5730 r}$. It follows that $-5730 r=\ln (1 / 2)$, that is, $r=1.2097 \times 10^{-4}$ per year.
(b) The amount of carbon-14 is given by $Q(t)=Q_{0} e^{-1.2097 \times 10^{-4} t}$.
(c) Given that $Q(T)=Q_{0} / 5$, we have the equation $1 / 5=e^{-1.2097 \times 10^{-4} T}$. Solving for the decay time, the apparent age of the remains is approximately $T=13,305$ years.
15.(a) The differential equation $d y / d t=r(t) y-k$ is linear, with integrating factor $\mu(t)=e^{-\int r(t) d t}$. Write the equation as $(\mu y)^{\prime}=-k \mu(t)$. Integration of both sides yields the general solution $y=\left[-k \int \mu(\tau) d \tau+y_{0} \mu(0)\right] / \mu(t)$. In this problem, the integrating factor is $\mu(t)=e^{(\cos t-t) / 5}$.

(b) The population becomes extinct, if $y\left(t^{*}\right)=0$, for some $t=t^{*}$. Referring to part (a), we find that $y\left(t^{*}\right)=0$ when

$$
\int_{0}^{t^{*}} e^{(\cos \tau-\tau) / 5} d \tau=5 e^{1 / 5} y_{c}
$$

It can be shown that the integral on the left hand side increases monotonically, from zero to a limiting value of approximately 5.0893 . Hence extinction can happen only if $5 e^{1 / 5} y_{0}<5.0893$. Solving $5 e^{1 / 5} y_{c}=5.0893$ yields $y_{c}=0.8333$.
(c) Repeating the argument in part (b), it follows that $y\left(t^{*}\right)=0$ when

$$
\int_{0}^{t^{*}} e^{(\cos \tau-\tau) / 5} d \tau=\frac{1}{k} e^{1 / 5} y_{c}
$$

Hence extinction can happen only if $e^{1 / 5} y_{0} / k<5.0893$, so $y_{c}=4.1667 k$.
(d) Evidently, y_{c} is a linear function of the parameter k.
17.(a) The solution of the governing equation satisfies $u^{3}=u_{0}^{3} /\left(3 \alpha u_{0}^{3} t+1\right)$. With the given data, it follows that $u(t)=2000 / \sqrt[3]{6 t / 125+1}$.
(b)

(c) Numerical evaluation results in $u(t)=600$ for $t \approx 750.77 \mathrm{~s}$.
22.(a) The differential equation for the upward motion is $m d v / d t=-\mu v^{2}-m g$, in which $\mu=1 / 1325$. This equation is separable, with $m /\left(\mu v^{2}+m g\right) d v=-d t$. Integrating both sides and invoking the initial condition, $v(t)=44.133 \tan (0.425-$ $0.222 t)$. Setting $v\left(t_{1}\right)=0$, the ball reaches the maximum height at $t_{1}=1.916 \mathrm{~s}$. Integrating $v(t)$, the position is given by $x(t)=198.75 \ln [\cos (0.222 t-0.425)]+$ 48.57. Therefore the maximum height is $x\left(t_{1}\right)=48.56 \mathrm{~m}$.
(b) The differential equation for the downward motion is $m d v / d t=+\mu v^{2}-m g$. This equation is also separable, with $m /\left(m g-\mu v^{2}\right) d v=-d t$. For convenience, set $t=0$ at the top of the trajectory. The new initial condition becomes $v(0)=0$. Integrating both sides and invoking the initial condition, we obtain $\ln ((44.13-$ $v) /(44.13+v))=t / 2.25$. Solving for the velocity, $v(t)=44.13\left(1-e^{t / 2.25}\right) /(1+$ $\left.e^{t / 2.25}\right)$. Integrating $v(t)$, we obtain $x(t)=99.29 \ln \left(e^{t / 2.25} /\left(1+e^{t / 2.25}\right)^{2}\right)+186.2$. To estimate the duration of the downward motion, set $x\left(t_{2}\right)=0$, resulting in $t_{2}=3.276 \mathrm{~s}$. Hence the total time that the ball spends in the air is $t_{1}+t_{2}=5.192 \mathrm{~s}$.
(c)

24.(a) Setting $-\mu v^{2}=v(d v / d x)$, we obtain $d v / d x=-\mu v$.
(b) The speed v of the sled satisfies $\ln \left(v / v_{0}\right)=-\mu x$. Noting that the unit conversion factors cancel, solution of $\ln (15 / 150)=-2000 \mu$ results in $\mu=\ln (10) / 2000 \mathrm{ft}^{-1} \approx$ $0.00115 \mathrm{ft}^{-1} \approx 6.0788 \mathrm{mi}^{-1}$.
(c) Solution of $d v / d t=-\mu v^{2}$ can be expressed as $1 / v-1 / v_{0}=\mu t$. Noting that $1 \mathrm{mi} / \mathrm{hr}=5280 / 3600 \mathrm{ft} / \mathrm{s}$, the elapsed time is

$$
t=(1 / 15-1 / 150) /((5280 / 3600)(\ln (10) / 2000)) \approx 35.53 \mathrm{~s}
$$

25.(a) Measure the positive direction of motion upward. The equation of motion is given by $m d v / d t=-k v-m g$. The initial value problem is $d v / d t=-k v / m-$ g, with $v(0)=v_{0}$. The solution is $v(t)=-m g / k+\left(v_{0}+m g / k\right) e^{-k t / m}$. Setting $v\left(t_{m}\right)=0$, the maximum height is reached at time $t_{m}=(m / k) \ln \left[\left(m g+k v_{0}\right) / m g\right]$. Integrating the velocity, the position of the body is

$$
x(t)=-m g t / k+\left[\left(\frac{m}{k}\right)^{2} g+\frac{m v_{0}}{k}\right]\left(1-e^{-k t / m}\right)
$$

Hence the maximum height reached is

$$
x_{m}=x\left(t_{m}\right)=\frac{m v_{0}}{k}-g\left(\frac{m}{k}\right)^{2} \ln \left[\frac{m g+k v_{0}}{m g}\right]
$$

(b) Recall that for $\delta \ll 1, \ln (1+\delta)=\delta-\delta^{2} / 2+\delta^{3} / 3-\delta^{4} / 4+\ldots$.
(c) The dimensions of the quantities involved are $[k]=M T^{-1},\left[v_{0}\right]=L T^{-1},[m]=$ M and $[g]=L T^{-2}$. This implies that $k v_{0} / m g$ is dimensionless.
31.(a) Both equations are linear and separable. Initial conditions: $v(0)=u \cos A$ and $w(0)=u \sin A$. We obtain the solutions $v(t)=(u \cos A) e^{-r t}$ and $w(t)=-g / r+$ $(u \sin A+g / r) e^{-r t}$.
(b) Integrating the solutions in part (a), and invoking the initial conditions, the coordinates are $x(t)=u \cos A\left(1-e^{-r t}\right) / r$ and

$$
y(t)=-\frac{g t}{r}+\frac{g+u r \sin A+h r^{2}}{r^{2}}-\left(\frac{u}{r} \sin A+\frac{g}{r^{2}}\right) e^{-r t}
$$

(c)

(d) Let T be the time that it takes the ball to go 350 ft horizontally. Then from above, $e^{-T / 5}=(u \cos A-70) / u \cos A$. At the same time, the height of the ball is given by

$$
y(T)=-160 T+803+5 u \sin A-\frac{(800+5 u \sin A)(u \cos A-70)}{u \cos A}
$$

Hence A and u must satisfy the equality

$$
800 \ln \left[\frac{u \cos A-70}{u \cos A}\right]+803+5 u \sin A-\frac{(800+5 u \sin A)(u \cos A-70)}{u \cos A}=10
$$

for the ball to touch the top of the wall. To find the optimal values for u and A, consider u as a function of A and use implicit differentiation in the above equation to find that

$$
\frac{d u}{d A}=-\frac{u\left(u^{2} \cos A-70 u-11200 \sin A\right)}{11200 \cos A}
$$

Solving this equation simultaneously with the above equation yields optimal values for u and $A: u \approx 145.3 \mathrm{ft} / \mathrm{s}, A \approx 0.644 \mathrm{rad}$.
32.(a) Solving equation (i), $y^{\prime}(x)=\left[\left(k^{2}-y\right) / y\right]^{1 / 2}$. The positive answer is chosen, since y is an increasing function of x.
(b) Let $y=k^{2} \sin ^{2} t$. Then $d y=2 k^{2} \sin t \cos t d t$. Substituting into the equation in part (a), we find that

$$
\frac{2 k^{2} \sin t \cos t d t}{d x}=\frac{\cos t}{\sin t}
$$

Hence $2 k^{2} \sin ^{2} t d t=d x$.
(c) Setting $\theta=2 t$, we further obtain $k^{2} \sin ^{2}(\theta / 2) d \theta=d x$. Integrating both sides of the equation and noting that $t=\theta=0$ corresponds to the origin, we obtain the solutions $x(\theta)=k^{2}(\theta-\sin \theta) / 2$ and (from part (b)) $y(\theta)=k^{2}(1-\cos \theta) / 2$.
(d) Note that $y / x=(1-\cos \theta) /(\theta-\sin \theta)$. Setting $x=1, y=2$, the solution of the equation $(1-\cos \theta) /(\theta-\sin \theta)=2$ is $\theta \approx 1.401$. Substitution into either of the expressions yields $k \approx 2.193$.

2.4

2. Rewrite the differential equation as $y^{\prime}+1 /(t(t-4)) y=0$. It is evident that the coefficient $1 / t(t-4)$ is continuous everywhere except at $t=0,4$. Since the initial condition is specified at $t=2$, Theorem 2.4.1 assures the existence of a unique solution on the interval $0<t<4$.
3. The function $\tan t$ is discontinuous at odd multiples of $\pi / 2$. Since $\pi / 2<\pi<$ $3 \pi / 2$, the initial value problem has a unique solution on the interval $(\pi / 2,3 \pi / 2)$.
4. $p(t)=2 t /\left(4-t^{2}\right)$ and $g(t)=3 t^{2} /\left(4-t^{2}\right)$. These functions are discontinuous at $x= \pm 2$. The initial value problem has a unique solution on the interval $(-2,2)$.
5. The function $\ln t$ is defined and continuous on the interval $(0, \infty)$. At $t=1$, $\ln t=0$, so the normal form of the differential equation has a singularity there. Also, $\cot t$ is not defined at integer multiples of π, so the initial value problem will have a solution on the interval $(1, \pi)$.
6. The function $f(t, y)$ is continuous everywhere on the plane, except along the straight line $y=-2 t / 5$. The partial derivative $\partial f / \partial y=-7 t /(2 t+5 y)^{2}$ has the same region of continuity.
7. The function $f(t, y)$ is discontinuous along the coordinate axes, and on the hyperbola $t^{2}-y^{2}=1$. Furthermore,

$$
\frac{\partial f}{\partial y}=\frac{ \pm 1}{y\left(1-t^{2}+y^{2}\right)}-2 \frac{y \ln |t y|}{\left(1-t^{2}+y^{2}\right)^{2}}
$$

has the same points of discontinuity.
10. $f(t, y)$ is continuous everywhere on the plane. The partial derivative $\partial f / \partial y$ is also continuous everywhere.
12. The function $f(t, y)$ is discontinuous along the lines $t= \pm k \pi$ for $k=0,1,2, \ldots$ and $y=-1$. The partial derivative $\partial f / \partial y=\cot t /(1+y)^{2}$ has the same region of continuity.
14. The equation is separable, with $d y / y^{2}=2 t d t$. Integrating both sides, the solution is given by $y(t)=y_{0} /\left(1-y_{0} t^{2}\right)$. For $y_{0}>0$, solutions exist as long as $t^{2}<1 / y_{0}$. For $y_{0} \leq 0$, solutions are defined for all t.
15. The equation is separable, with $d y / y^{3}=-d t$. Integrating both sides and invoking the initial condition, $y(t)=y_{0} / \sqrt{2 y_{0}^{2} t+1}$. Solutions exist as long as
$2 y_{0}^{2} t+1>0$, that is, $2 y_{0}^{2} t>-1$. If $y_{0} \neq 0$, solutions exist for $t>-1 / 2 y_{0}^{2}$. If $y_{0}=0$, then the solution $y(t)=0$ exists for all t.
16. The function $f(t, y)$ is discontinuous along the straight lines $t=-1$ and $y=0$. The partial derivative $\partial f / \partial y$ is discontinuous along the same lines. The equation is separable, with $y d y=t^{2} d t /\left(1+t^{3}\right)$. Integrating and invoking the initial condition, the solution is $y(t)=\left[(2 / 3) \ln \left|1+t^{3}\right|+y_{0}^{2}\right]^{1 / 2}$. Solutions exist as long as $(2 / 3) \ln \left|1+t^{3}\right|+y_{0}^{2} \geq 0$, that is, $y_{0}^{2} \geq-(2 / 3) \ln \left|1+t^{3}\right|$. For all y_{0} (it can be verified that $y_{0}=0$ yields a valid solution, even though Theorem 2.4.2 does not guarantee one), solutions exist as long as $\left|1+t^{3}\right| \geq e^{-3 y_{0}^{2} / 2}$. From above, we must have $t>-1$. Hence the inequality may be written as $t^{3} \geq e^{-3 y_{0}^{2} / 2}-1$. It follows that the solutions are valid for $\left(e^{-3 y_{0}^{2} / 2}-1\right)^{1 / 3}<t<\infty$.
18.

Based on the direction field, and the differential equation, for $y_{0}<0$, the slopes eventually become negative, and hence solutions tend to $-\infty$. For $y_{0}>0$, solutions increase without bound if $t_{0}<0$. Otherwise, the slopes eventually become negative, and solutions tend to zero. Furthermore, $y_{0}=0$ is an equilibrium solution. Note that slopes are zero along the curves $y=0$ and $t y=3$.
19.

For initial conditions $\left(t_{0}, y_{0}\right)$ satisfying $t y<3$, the respective solutions all tend to zero. For $y_{0} \leq 9$, the solutions tend to 0 ; for $y_{0}>9$, the solutions tend to ∞. Also, $y_{0}=0$ is an equilibrium solution.
20.

Solutions with $t_{0}<0$ all tend to $-\infty$. Solutions with initial conditions $\left(t_{0}, y_{0}\right)$ to the right of the parabola $t=1+y^{2}$ asymptotically approach the parabola as $t \rightarrow \infty$. Integral curves with initial conditions above the parabola (and $y_{0}>0$) also approach the curve. The slopes for solutions with initial conditions below the parabola (and $y_{0}<0$) are all negative. These solutions tend to $-\infty$.
21.(a) No. There is no value of $t_{0} \geq 0$ for which $(2 / 3)\left(t-t_{0}\right)^{2 / 3}$ satisfies the condition $y(1)=1$.
(b) Yes. Let $t_{0}=1 / 2$ in Eq.(19).
(c) For $t_{0}>0,|y(2)| \leq(4 / 3)^{3 / 2} \approx 1.54$.
24. The assumption is $\phi^{\prime}(t)+p(t) \phi(t)=0$. But then $c \phi^{\prime}(t)+p(t) c \phi(t)=0$ as well.
26.(a) Recalling Eq.(33) in Section 2.1,

$$
y=\frac{1}{\mu(t)} \int_{t_{0}}^{t} \mu(s) g(s) d s+\frac{c}{\mu(t)}
$$

It is evident that $y_{1}(t)=1 / \mu(t)$ and $y_{2}(t)=(1 / \mu(t)) \int_{t_{0}}^{t} \mu(s) g(s) d s$.
(b) By definition, $1 / \mu(t)=e^{-\int p(t) d t}$. Hence $y_{1}^{\prime}=-p(t) / \mu(t)=-p(t) y_{1}$. That is, $y_{1}^{\prime}+p(t) y_{1}=0$.
(c) $y_{2}^{\prime}=(-p(t) / \mu(t)) \int_{0}^{t} \mu(s) g(s) d s+\mu(t) g(t) / \mu(t)=-p(t) y_{2}+g(t)$. This implies that $y_{2}^{\prime}+p(t) y_{2}=g(t)$.
30. Since $n=3$, set $v=y^{-2}$. It follows that $v^{\prime}=-2 y^{-3} y^{\prime}$ and $y^{\prime}=-\left(y^{3} / 2\right) v^{\prime}$. Substitution into the differential equation yields $-\left(y^{3} / 2\right) v^{\prime}-\varepsilon y=-\sigma y^{3}$, which further results in $v^{\prime}+2 \varepsilon v=2 \sigma$. The latter differential equation is linear, and can be written as $\left(v e^{2 \varepsilon t}\right)^{\prime}=2 \sigma e^{2 \varepsilon t}$. The solution is given by $v(t)=\sigma / \varepsilon+c e^{-2 \varepsilon t}$. Converting back to the original dependent variable, $y= \pm v^{-1 / 2}= \pm\left(\sigma / \varepsilon+c e^{-2 \varepsilon t}\right)^{-1 / 2}$.
31. Since $n=3$, set $v=y^{-2}$. It follows that $v^{\prime}=-2 y^{-3} y^{\prime}$ and $y^{\prime}=-\left(y^{3} / 2\right) v^{\prime}$. The differential equation is written as $-\left(y^{3} / 2\right) v^{\prime}-(\Gamma \cos t+T) y=\sigma y^{3}$, which upon
further substitution is $v^{\prime}+2(\Gamma \cos t+T) v=2$. This ODE is linear, with integrating factor $\mu(t)=e^{2 \int(\Gamma \cos t+T) d t}=e^{2 \Gamma \sin t+2 T t}$. The solution is

$$
v(t)=2 e^{-(2 \Gamma \sin t+2 T t)} \int_{0}^{t} e^{2 \Gamma \sin \tau+2 T \tau} d \tau+c e^{-(2 \Gamma \sin t+2 T t)}
$$

Converting back to the original dependent variable, $y= \pm v^{-1 / 2}$.
33. The solution of the initial value problem $y_{1}^{\prime}+2 y_{1}=0, y_{1}(0)=1$ is $y_{1}(t)=e^{-2 t}$. Therefore $y\left(1^{-}\right)=y_{1}(1)=e^{-2}$. On the interval $(1, \infty)$, the differential equation is $y_{2}^{\prime}+y_{2}=0$, with $y_{2}(t)=c e^{-t}$. Therefore $y\left(1^{+}\right)=y_{2}(1)=c e^{-1}$. Equating the limits $y\left(1^{-}\right)=y\left(1^{+}\right)$, we require that $c=e^{-1}$. Hence the global solution of the initial value problem is

$$
y(t)= \begin{cases}e^{-2 t}, & 0 \leq t \leq 1 \\ e^{-1-t}, & t>1\end{cases}
$$

Note the discontinuity of the derivative

$$
y^{\prime}(t)= \begin{cases}-2 e^{-2 t}, & 0<t<1 \\ -e^{-1-t}, & t>1\end{cases}
$$

2.5

1.

For $y_{0} \geq 0$, the only equilibrium point is $y^{*}=0$, and $y^{\prime}=a y+b y^{2}>0$ when $y>0$, hence the equilibrium solution $y=0$ is unstable.
2.

The equilibrium points are $y^{*}=-a / b$ and $y^{*}=0$, and $y^{\prime}>0$ when $y>0$ or $y<$ $-a / b$, and $y^{\prime}<0$ when $-a / b<y<0$, therefore the equilibrium solution $y=-a / b$ is asymptotically stable and the equilibrium solution $y=0$ is unstable.
4.

The only equilibrium point is $y^{*}=0$, and $y^{\prime}>0$ when $y>0, y^{\prime}<0$ when $y<0$, hence the equilibrium solution $y=0$ is unstable.
6.

The only equilibrium point is $y^{*}=0$, and $y^{\prime}>0$ when $y<0, y^{\prime}<0$ when $y>0$, hence the equilibrium solution $y=0$ is asymptotically stable.
8.

The only equilibrium point is $y^{*}=1$, and $y^{\prime}<0$ for $y \neq 1$. As long as $y_{0} \neq 1$, the corresponding solution is monotone decreasing. Hence the equilibrium solution $y=1$ is semistable.
10.

The equilibrium points are $y^{*}=0, \pm 1$, and $y^{\prime}>0$ for $y<-1$ or $0<y<1$ and $y^{\prime}<0$ for $-1<y<0$ or $y>1$. The equilibrium solution $y=0$ is unstable, and the remaining two are asymptotically stable.
12.

The equilibrium points are $y^{*}=0, \pm 2$, and $y^{\prime}<0$ when $y<-2$ or $y>2$, and $y^{\prime}>0$ for $-2<y<0$ or $0<y<2$. The equilibrium solutions $y=-2$ and $y=2$ are unstable and asymptotically stable, respectively. The equilibrium solution $y=0$ is semistable.
13.

The equilibrium points are $y^{*}=0,1$. $y^{\prime}>0$ for all y except $y=0$ and $y=1$. Both equilibrium solutions are semistable.
15.(a) Inverting Eq.(11), Eq.(13) shows t as a function of the population y and the
carrying capacity K. With $y_{0}=K / 3$,

$$
t=-\frac{1}{r} \ln \left|\frac{(1 / 3)[1-(y / K)]}{(y / K)[1-(1 / 3)]}\right|
$$

Setting $y=2 y_{0}$,

$$
\tau=-\frac{1}{r} \ln \left|\frac{(1 / 3)[1-(2 / 3)]}{(2 / 3)[1-(1 / 3)]}\right| .
$$

That is, $\tau=(\ln 4) / r$. If $r=0.025$ per year, $\tau \approx 55.45$ years.
(b) In Eq.(13), set $y_{0} / K=\alpha$ and $y / K=\beta$. As a result, we obtain

$$
T=-\frac{1}{r} \ln \left|\frac{\alpha[1-\beta]}{\beta[1-\alpha]}\right|
$$

Given $\alpha=0.1, \beta=0.9$ and $r=0.025$ per year, $\tau \approx 175.78$ years.
19.(a) The rate of increase of the volume is given by rate of flow in-rate of flow out. That is, $d V / d t=k-\alpha a \sqrt{2 g h}$. Since the cross section is constant, $d V / d t=A d h / d t$. Hence the governing equation is $d h / d t=(k-\alpha a \sqrt{2 g h}) / A$.
(b) Setting $d h / d t=0$, the equilibrium height is $h_{e}=(1 / 2 g)(k / \alpha a)^{2}$. Furthermore, since $d h / d t<0$ for $h>h_{e}$ and $d h / d t>0$ for $h<h_{e}$, it follows that the equilibrium height is asymptotically stable.
22.(a) The equilibrium points are at $y^{*}=0$ and $y^{*}=1$. Since $f^{\prime}(y)=\alpha-2 \alpha y$, the equilibrium solution $y=0$ is unstable and the equilibrium solution $y=1$ is asymptotically stable.
(b) The differential equation is separable, with $[y(1-y)]^{-1} d y=\alpha d t$. Integrating both sides and invoking the initial condition, the solution is

$$
y(t)=\frac{y_{0} e^{\alpha t}}{1-y_{0}+y_{0} e^{\alpha t}}=\frac{y_{0}}{y_{0}+\left(1-y_{0}\right) e^{-\alpha t}}
$$

It is evident that (independent of $\left.y_{0}\right) \lim _{t \rightarrow-\infty} y(t)=0$ and $\lim _{t \rightarrow \infty} y(t)=1$.
23.(a) $y(t)=y_{0} e^{-\beta t}$.
(b) From part (a), $d x / d t=-\alpha x y_{0} e^{-\beta t}$. Separating variables, $d x / x=-\alpha y_{0} e^{-\beta t} d t$. Integrating both sides, the solution is $x(t)=x_{0} e^{-\alpha y_{0}\left(1-e^{-\beta t}\right) / \beta}$.
(c) As $t \rightarrow \infty, y(t) \rightarrow 0$ and $x(t) \rightarrow x_{0} e^{-\alpha y_{0} / \beta}$. Over a long period of time, the proportion of carriers vanishes. Therefore the proportion of the population that escapes the epidemic is the proportion of susceptibles left at that time, $x_{0} e^{-\alpha y_{0} / \beta}$.
26.(a) For $a<0$, the only critical point is at $y=0$, which is asymptotically stable. For $a=0$, the only critical point is at $y=0$, which is asymptotically stable. For $a>0$, the three critical points are at $y=0, \pm \sqrt{a}$. The critical point at $y=0$ is unstable, whereas the other two are asymptotically stable.
(b) Below, we graph solutions in the case $a=-1, a=0$ and $a=1$ respectively.

(c)

27.(a) $f(y)=y(a-y) ; \quad f^{\prime}(y)=a-2 y$. For $a<0$, the critical points are at $y=a$ and $y=0$. Observe that $f^{\prime}(a)>0$ and $f^{\prime}(0)<0$. Hence $y=a$ is unstable and $y=0$ asymptotically stable. For $a=0$, the only critical point is at $y=0$, which is semistable since $f(y)=-y^{2}$ is concave down. For $a>0$, the critical points are at $y=0$ and $y=a$. Observe that $f^{\prime}(0)>0$ and $f^{\prime}(a)<0$. Hence $y=0$ is unstable and $y=a$ asymptotically stable.
(b) Below, we graph solutions in the case $a=-1, a=0$ and $a=1$ respectively.

(c)

1. $M(x, y)=2 x+3$ and $N(x, y)=2 y-2$. Since $M_{y}=N_{x}=0$, the equation is exact. Integrating M with respect to x, while holding y constant, yields $\psi(x, y)=$ $x^{2}+3 x+h(y)$. Now $\psi_{y}=h^{\prime}(y)$, and equating with N results in the possible function $h(y)=y^{2}-2 y$. Hence $\psi(x, y)=x^{2}+3 x+y^{2}-2 y$, and the solution is defined implicitly as $x^{2}+3 x+y^{2}-2 y=c$.
2. $M(x, y)=2 x+4 y$ and $N(x, y)=2 x-2 y$. Note that $M_{y} \neq N_{x}$, and hence the differential equation is not exact.
3. First divide both sides by $(2 x y+2)$. We now have $M(x, y)=y$ and $N(x, y)=x$. Since $M_{y}=N_{x}=0$, the resulting equation is exact. Integrating M with respect to x, while holding y constant, results in $\psi(x, y)=x y+h(y)$. Differentiating with respect to $y, \psi_{y}=x+h^{\prime}(y)$. Setting $\psi_{y}=N$, we find that $h^{\prime}(y)=0$, and hence $h(y)=0$ is acceptable. Therefore the solution is defined implicitly as $x y=c$. Note that if $x y+1=0$, the equation is trivially satisfied.
4. Write the equation as $(a x-b y) d x+(b x-c y) d y=0$. Now $M(x, y)=a x-b y$ and $N(x, y)=b x-c y$. Since $M_{y} \neq N_{x}$, the differential equation is not exact.
5. $M(x, y)=e^{x} \sin y+3 y$ and $N(x, y)=-3 x+e^{x} \sin y$. Note that $M_{y} \neq N_{x}$, and hence the differential equation is not exact.
6. $M(x, y)=y / x+6 x$ and $N(x, y)=\ln x-2$. Since $M_{y}=N_{x}=1 / x$, the given equation is exact. Integrating N with respect to y, while holding x constant, results in $\psi(x, y)=y \ln x-2 y+h(x)$. Differentiating with respect to $x, \psi_{x}=$ $y / x+h^{\prime}(x)$. Setting $\psi_{x}=M$, we find that $h^{\prime}(x)=6 x$, and hence $h(x)=3 x^{2}$. Therefore the solution is defined implicitly as $3 x^{2}+y \ln x-2 y=c$.
7. $M(x, y)=x \ln y+x y$ and $N(x, y)=y \ln x+x y$. Note that $M_{y} \neq N_{x}$, and hence the differential equation is not exact.
8. $M(x, y)=2 x-y$ and $N(x, y)=2 y-x$. Since $M_{y}=N_{x}=-1$, the equation is exact. Integrating M with respect to x, while holding y constant, yields $\psi(x, y)=x^{2}-x y+h(y)$. Now $\psi_{y}=-x+h^{\prime}(y)$. Equating ψ_{y} with N results in $h^{\prime}(y)=2 y$, and hence $h(y)=y^{2}$. Thus $\psi(x, y)=x^{2}-x y+y^{2}$, and the solution is given implicitly as $x^{2}-x y+y^{2}=c$. Invoking the initial condition $y(1)=3$, the specific solution is $x^{2}-x y+y^{2}=7$. The explicit form of the solution is $y(x)=\left(x+\sqrt{28-3 x^{2}}\right) / 2$. Hence the solution is valid as long as $3 x^{2} \leq 28$.
9. $M(x, y)=y e^{2 x y}+x$ and $N(x, y)=b x e^{2 x y}$. Note that $M_{y}=e^{2 x y}+2 x y e^{2 x y}$, and $N_{x}=b e^{2 x y}+2 b x y e^{2 x y}$. The given equation is exact, as long as $b=1$. Integrating N with respect to y, while holding x constant, results in $\psi(x, y)=$ $e^{2 x y} / 2+h(x)$. Now differentiating with respect to $x, \psi_{x}=y e^{2 x y}+h^{\prime}(x)$. Setting $\psi_{x}=M$, we find that $h^{\prime}(x)=x$, and hence $h(x)=x^{2} / 2$. We conclude that $\psi(x, y)=e^{2 x y} / 2+x^{2} / 2$. Hence the solution is given implicitly as $e^{2 x y}+x^{2}=c$.
10. Note that ψ is of the form $\psi(x, y)=f(x)+g(y)$, since each of the integrands is a function of a single variable. It follows that $\psi_{x}=f^{\prime}(x)$ and $\psi_{y}=g^{\prime}(y)$. That is, $\psi_{x}=M\left(x, y_{0}\right)$ and $\psi_{y}=N\left(x_{0}, y\right)$. Furthermore,

$$
\frac{\partial^{2} \psi}{\partial x \partial y}\left(x_{0}, y_{0}\right)=\frac{\partial M}{\partial y}\left(x_{0}, y_{0}\right) \text { and } \frac{\partial^{2} \psi}{\partial y \partial x}\left(x_{0}, y_{0}\right)=\frac{\partial N}{\partial x}\left(x_{0}, y_{0}\right)
$$

based on the hypothesis and the fact that the point $\left(x_{0}, y_{0}\right)$ is arbitrary, $\psi_{x y}=\psi_{y x}$ and $M_{y}(x, y)=N_{x}(x, y)$.
18. Observe that $(M(x))_{y}=(N(y))_{x}=0$.
20. $M_{y}=y^{-1} \cos y-y^{-2} \sin y$ and $N_{x}=-2 e^{-x}(\cos x+\sin x) / y$. Multiplying both sides by the integrating factor $\mu(x, y)=y e^{x}$, the given equation can be written as $\left(e^{x} \sin y-2 y \sin x\right) d x+\left(e^{x} \cos y+2 \cos x\right) d y=0$. Let $\tilde{M}=\mu M$ and $\tilde{N}=\mu N$. Observe that $\tilde{M}_{y}=\tilde{N}_{x}$, and hence the latter ODE is exact. Integrating \tilde{N} with respect to y, while holding x constant, results in $\psi(x, y)=e^{x} \sin y+2 y \cos x+$ $h(x)$. Now differentiating with respect to $x, \psi_{x}=e^{x} \sin y-2 y \sin x+h^{\prime}(x)$. Setting $\psi_{x}=\tilde{M}$, we find that $h^{\prime}(x)=0$, and hence $h(x)=0$ is feasible. Hence the solution of the given equation is defined implicitly by $e^{x} \sin y+2 y \cos x=c$.
21. $M_{y}=1$ and $N_{x}=2$. Multiply both sides by the integrating factor $\mu(x, y)=y$ to obtain $y^{2} d x+\left(2 x y-y^{2} e^{y}\right) d y=0$. Let $\tilde{M}=y M$ and $\tilde{N}=y N$. It is easy to see that $\tilde{M}_{y}=\tilde{N}_{x}$, and hence the latter ODE is exact. Integrating \tilde{M} with respect to x yields $\psi(x, y)=x y^{2}+h(y)$. Equating ψ_{y} with \tilde{N} results in $h^{\prime}(y)=-y^{2} e^{y}$, and hence $h(y)=-e^{y}\left(y^{2}-2 y+2\right)$. Thus $\psi(x, y)=x y^{2}-e^{y}\left(y^{2}-2 y+2\right)$, and the solution is defined implicitly by $x y^{2}-e^{y}\left(y^{2}-2 y+2\right)=c$.
24. The equation $\mu M+\mu N y^{\prime}=0$ has an integrating factor if $(\mu M)_{y}=(\mu N)_{x}$, that is, $\mu_{y} M-\mu_{x} N=\mu N_{x}-\mu M_{y}$. Suppose that $N_{x}-M_{y}=R(x M-y N)$, in which R is some function depending only on the quantity $z=x y$. It follows that the modified form of the equation is exact, if $\mu_{y} M-\mu_{x} N=\mu R(x M-y N)=$ $R(\mu x M-\mu y N)$. This relation is satisfied if $\mu_{y}=(\mu x) R$ and $\mu_{x}=(\mu y) R$. Now consider $\mu=\mu(x y)$. Then the partial derivatives are $\mu_{x}=\mu^{\prime} y$ and $\mu_{y}=\mu^{\prime} x$. Note that $\mu^{\prime}=d \mu / d z$. Thus μ must satisfy $\mu^{\prime}(z)=R(z)$. The latter equation is separable, with $d \mu=R(z) d z$, and $\mu(z)=\int R(z) d z$. Therefore, given $R=R(x y)$, it is possible to determine $\mu=\mu(x y)$ which becomes an integrating factor of the differential equation.
28. The equation is not exact, since $N_{x}-M_{y}=2 y-1$. However, $\left(N_{x}-M_{y}\right) / M=$ $(2 y-1) / y$ is a function of y alone. Hence there exists $\mu=\mu(y)$, which is a solution of the differential equation $\mu^{\prime}=(2-1 / y) \mu$. The latter equation is separable, with $d \mu / \mu=2-1 / y$. One solution is $\mu(y)=e^{2 y-\ln y}=e^{2 y} / y$. Now rewrite the given ODE as $e^{2 y} d x+\left(2 x e^{2 y}-1 / y\right) d y=0$. This equation is exact, and it is easy to see that $\psi(x, y)=x e^{2 y}-\ln |y|$. Therefore the solution of the given equation is defined implicitly by $x e^{2 y}-\ln |y|=c$.
30. The given equation is not exact, since $N_{x}-M_{y}=8 x^{3} / y^{3}+6 / y^{2}$. But note that $\left(N_{x}-M_{y}\right) / M=2 / y$ is a function of y alone, and hence there is an integrating factor $\mu=\mu(y)$. Solving the equation $\mu^{\prime}=(2 / y) \mu$, an integrating factor is $\mu(y)=y^{2}$. Now rewrite the differential equation as $\left(4 x^{3}+3 y\right) d x+\left(3 x+4 y^{3}\right) d y=0$. By inspection, $\psi(x, y)=x^{4}+3 x y+y^{4}$, and the solution of the given equation is defined implicitly by $x^{4}+3 x y+y^{4}=c$.
32. Multiplying both sides of the ODE by $\mu=[x y(2 x+y)]^{-1}$, the given equation is equivalent to $\left[(3 x+y) /\left(2 x^{2}+x y\right)\right] d x+\left[(x+y) /\left(2 x y+y^{2}\right)\right] d y=0$. Rewrite the differential equation as

$$
\left[\frac{2}{x}+\frac{2}{2 x+y}\right] d x+\left[\frac{1}{y}+\frac{1}{2 x+y}\right] d y=0
$$

It is easy to see that $M_{y}=N_{x}$. Integrating M with respect to x, while keeping y constant, results in $\psi(x, y)=2 \ln |x|+\ln |2 x+y|+h(y)$. Now taking the partial derivative with respect to $y, \psi_{y}=(2 x+y)^{-1}+h^{\prime}(y)$. Setting $\psi_{y}=N$, we find that $h^{\prime}(y)=1 / y$, and hence $h(y)=\ln |y|$. Therefore $\psi(x, y)=2 \ln |x|+$ $\ln |2 x+y|+\ln |y|$, and the solution of the given equation is defined implicitly by $2 x^{3} y+x^{2} y^{2}=c$.

2.7

2. The Euler formula is given by $y_{n+1}=y_{n}+h\left(2 y_{n}-1\right)=(1+2 h) y_{n}-h$.
(a) $1.1,1.22,1.364,1.5368$
(b) $1.105,1.23205,1.38578,1.57179$
(c) $1.10775,1.23873,1.39793,1.59144$
(d) The differential equation is linear with solution $y(t)=\left(1+e^{2 t}\right) / 2$. The values are $1.1107,1.24591,1.41106,1.61277$.
3.

All solutions seem to converge to $y=25 / 9$.
7.

All solutions seem to converge to a specific function.
8.

Solutions with initial conditions $|y(0)|>2.5$ seem to diverge. On the other hand, solutions with initial conditions $|y(0)|<2.5$ seem to converge to zero. Also, $y=0$ is an equilibrium solution.
10.

Solutions with positive initial conditions increase without bound. Solutions with negative initial conditions decrease without bound. Note that $y=0$ is an equilibrium solution.
11. The Euler formula is $y_{n+1}=y_{n}-3 h \sqrt{y_{n}}+5 h$. The initial value is $y_{0}=2$.
(a) $2.30800,2.49006,2.60023,2.66773,2.70939,2.73521$
(b) $2.30167,2.48263,2.59352,2.66227,2.70519,2.73209$
(c) $2.29864,2.47903,2.59024,2.65958,2.70310,2.73053$
(d) $2.29686,2.47691,2.58830,2.65798,2.70185,2.72959$
12. The Euler formula is $y_{n+1}=(1+3 h) y_{n}-h t_{n} y_{n}^{2}$. The initial value is $\left(t_{0}, y_{0}\right)=$ (0, 0.5).
(a) $1.70308,3.06605,2.44030,1.77204,1.37348,1.11925$
(b) $1.79548,3.06051,2.43292,1.77807,1.37795,1.12191$
(c) $1.84579,3.05769,2.42905,1.78074,1.38017,1.12328$
(d) $1.87734,3.05607,2.42672,1.78224,1.38150,1.12411$
14. The Euler formula is $y_{n+1}=\left(1-h t_{n}\right) y_{n}+h y_{n}^{3} / 10$, with $\left(t_{0}, y_{0}\right)=(0,1)$.
(a) $0.950517,0.687550,0.369188,0.145990,0.0421429,0.00872877$
(b) $0.938298,0.672145,0.362640,0.147659,0.0454100,0.0104931$
(c) $0.932253,0.664778,0.359567,0.148416,0.0469514,0.0113722$
(d) $0.928649,0.660463,0.357783,0.148848,0.0478492,0.0118978$
17. The Euler formula is $y_{n+1}=y_{n}+h\left(y_{n}^{2}+2 t_{n} y_{n}\right) /\left(3+t_{n}^{2}\right)$. The initial point is $\left(t_{0}, y_{0}\right)=(1,2)$. Using this iteration formula with the specified h values, the value of the solution at $t=2.5$ is somewhere between 18 and 19. At $t=3$ there is no reliable estimate.
19.(a)

(b) The iteration formula is $y_{n+1}=y_{n}+h y_{n}^{2}-h t_{n}^{2}$. The critical value α_{0} appears to be between 0.67 and 0.68 . For $y_{0}>\alpha_{0}$, the iterations diverge.
20.(a) The ODE is linear, with general solution $y(t)=t+c e^{t}$. Invoking the specified initial condition, $y\left(t_{0}\right)=y_{0}$, we have $y_{0}=t_{0}+c e^{t_{0}}$. Hence $c=\left(y_{0}-t_{0}\right) e^{-t_{0}}$. Thus the solution is given by $\phi(t)=\left(y_{0}-t_{0}\right) e^{t-t_{0}}+t$.
(b) The Euler formula is $y_{n+1}=(1+h) y_{n}+h-h t_{n}$. Now set $k=n+1$.
(c) We have $y_{1}=(1+h) y_{0}+h-h t_{0}=(1+h) y_{0}+\left(t_{1}-t_{0}\right)-h t_{0}$. Rearranging the terms, $y_{1}=(1+h)\left(y_{0}-t_{0}\right)+t_{1}$. Now suppose that $y_{k}=(1+h)^{k}\left(y_{0}-t_{0}\right)+$ t_{k}, for some $k \geq 1$. Then $y_{k+1}=(1+h) y_{k}+h-h t_{k}$. Substituting for y_{k}, we find
that

$$
y_{k+1}=(1+h)^{k+1}\left(y_{0}-t_{0}\right)+(1+h) t_{k}+h-h t_{k}=(1+h)^{k+1}\left(y_{0}-t_{0}\right)+t_{k}+h
$$

Noting that $t_{k+1}=t_{k}+h$, the result is verified.
(d) Substituting $h=\left(t-t_{0}\right) / n$, with $t_{n}=t$, $y_{n}=\left(1+\left(t-t_{0}\right) / n\right)^{n}\left(y_{0}-t_{0}\right)+t$. Taking the limit of both sides, and using the fact that $\lim _{n \rightarrow \infty}(1+a / n)^{n}=e^{a}$, pointwise convergence is proved.
21. The exact solution is $y(t)=e^{t}$. The Euler formula is $y_{n+1}=(1+h) y_{n}$. It is easy to see that $y_{n}=(1+h)^{n} y_{0}=(1+h)^{n}$. Given $t>0$, set $h=t / n$. Taking the limit, we find that $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}(1+t / n)^{n}=e^{t}$.
23. The exact solution is $y(t)=t / 2+e^{2 t}$. The Euler formula is $y_{n+1}=(1+$ $2 h) y_{n}+h / 2-h t_{n}$. Since $y_{0}=1, y_{1}=(1+2 h)+h / 2=(1+2 h)+t_{1} / 2$. It is easy to show by mathematical induction, that $y_{n}=(1+2 h)^{n}+t_{n} / 2$. For $t>$ 0 , set $h=t / n$ and thus $t_{n}=t$. Taking the limit, we find that $\lim _{n \rightarrow \infty} y_{n}=$ $\lim _{n \rightarrow \infty}\left[(1+2 t / n)^{n}+t / 2\right]=e^{2 t}+t / 2$. Hence pointwise convergence is proved.
2. Let $z=y-3$ and $\tau=t+1$. It follows that $d z / d \tau=(d z / d t)(d t / d \tau)=d z / d t$. Furthermore, $d z / d t=d y / d t=1-y^{3}$. Hence $d z / d \tau=1-(z+3)^{3}$. The new initial condition is $z(0)=0$.
3.(a) The approximating functions are defined recursively by

$$
\phi_{n+1}(t)=\int_{0}^{t} 2\left[\phi_{n}(s)+1\right] d s
$$

Setting $\phi_{0}(t)=0, \phi_{1}(t)=2 t$. Continuing, $\phi_{2}(t)=2 t^{2}+2 t, \phi_{3}(t)=4 t^{3} / 3+2 t^{2}+$ $2 t, \phi_{4}(t)=2 t^{4} / 3+4 t^{3} / 3+2 t^{2}+2 t, \ldots$ Based upon these we conjecture that $\phi_{n}(t)=\sum_{k=1}^{n} 2^{k} t^{k} / k$! and use mathematical induction to verify this form for $\phi_{n}(t)$. First, let $n=1$, then $\phi_{n}(t)=2 t$, so it is certainly true for $n=1$. Then, using Eq.(7) again we have

$$
\phi_{n+1}(t)=\int_{0}^{t} 2\left[\phi_{n}(s)+1\right] d s=\int_{0}^{t} 2\left[\sum_{k=1}^{n} \frac{2^{k}}{k!} s^{k}+1\right] d s=\sum_{k=1}^{n+1} \frac{2^{k}}{k!} t^{k}
$$

and we have verified our conjecture.
(b)

(c) Recall from calculus that $e^{a t}=1+\sum_{k=1}^{\infty} a^{k} t^{k} / k$!. Thus

$$
\phi(t)=\sum_{k=1}^{\infty} \frac{2^{k}}{k!} t^{k}=e^{2 t}-1
$$

(d)

From the plot it appears that ϕ_{4} is a good estimate for $|t|<1 / 2$.
5.(a) The approximating functions are defined recursively by

$$
\phi_{n+1}(t)=\int_{0}^{t}\left[-\phi_{n}(s) / 2+s\right] d s
$$

Setting $\phi_{0}(t)=0, \phi_{1}(t)=t^{2} / 2$. Continuing, $\phi_{2}(t)=t^{2} / 2-t^{3} / 12, \phi_{3}(t)=t^{2} / 2-$ $t^{3} / 12+t^{4} / 96, \phi_{4}(t)=t^{2} / 2-t^{3} / 12+t^{4} / 96-t^{5} / 960, \ldots$. Based upon these we conjecture that $\phi_{n}(t)=\sum_{k=1}^{n} 4(-1 / 2)^{k+1} t^{k+1} /(k+1)$! and use mathematical induction to verify this form for $\phi_{n}(t)$.
(b)

(c) Recall from calculus that $e^{a t}=1+\sum_{k=1}^{\infty} a^{k} t^{k} / k$!. Thus

$$
\phi(t)=\sum_{k=1}^{\infty} 4 \frac{(-1 / 2)^{k+1}}{k+1!} t^{k+1}=4 e^{-t / 2}+2 t-4 .
$$

(d)

From the plot it appears that ϕ_{4} is a good estimate for $|t|<2$.
6.(a) The approximating functions are defined recursively by

$$
\phi_{n+1}(t)=\int_{0}^{t}\left[\phi_{n}(s)+1-s\right] d s .
$$

Setting $\phi_{0}(t)=0, \phi_{1}(t)=t-t^{2} / 2, \phi_{2}(t)=t-t^{3} / 6, \phi_{3}(t)=t-t^{4} / 24, \phi_{4}(t)=t-$ $t^{5} / 120, \ldots$. Based upon these we conjecture that $\phi_{n}(t)=t-t^{n+1} /(n+1)$! and use mathematical induction to verify this form for $\phi_{n}(t)$.
(b)

(c) Clearly $\phi(t)=t$.
(d)

From the plot it appears that ϕ_{4} is a good estimate for $|t|<1$.
8.(a) The approximating functions are defined recursively by

$$
\phi_{n+1}(t)=\int_{0}^{t}\left[s^{2} \phi_{n}(s)-s\right] d s
$$

Set $\phi_{0}(t)=0$. The iterates are given by $\phi_{1}(t)=-t^{2} / 2, \phi_{2}(t)=-t^{2} / 2-t^{5} / 10$, $\phi_{3}(t)=-t^{2} / 2-t^{5} / 10-t^{8} / 80, \phi_{4}(t)=-t^{2} / 2-t^{5} / 10-t^{8} / 80-t^{11} / 880, \ldots$. Upon inspection, it becomes apparent that

$$
\begin{gathered}
\phi_{n}(t)=-t^{2}\left[\frac{1}{2}+\frac{t^{3}}{2 \cdot 5}+\frac{t^{6}}{2 \cdot 5 \cdot 8}+\ldots+\frac{\left(t^{3}\right)^{n-1}}{2 \cdot 5 \cdot 8 \ldots[2+3(n-1)]}\right]= \\
=-t^{2} \sum_{k=1}^{n} \frac{\left(t^{3}\right)^{k-1}}{2 \cdot 5 \cdot 8[2+3(k-1)]}
\end{gathered}
$$

(b)

(c) Using the identity $\phi_{n}(t)=\phi_{1}(t)+\left[\phi_{2}(t)-\phi_{1}(t)\right]+\left[\phi_{3}(t)-\phi_{2}(t)\right]+\ldots+\left[\phi_{n}(t)-\right.$ $\left.\phi_{n-1}(t)\right]$, consider the series $\phi_{1}(t)+\sum_{k=1}^{\infty}\left[\phi_{k+1}(t)-\phi_{k}(t)\right]$. Fix any t value now. We use the Ratio Test to prove the convergence of this series:

$$
\left|\frac{\phi_{k+1}(t)-\phi_{k}(t)}{\phi_{k}(t)-\phi_{k-1}(t)}\right|=\left|\frac{\left.\frac{\left(-t^{2}\right)\left(t^{3}\right)^{k}}{2 \cdot 5 \cdot(2+3 k}\right)}{\frac{\left(-t^{2}\right)\left(t^{3}\right)^{k-1}}{2 \cdot 5 \cdots(2+3(k-1))}}\right|=\frac{|t|^{3}}{2+3 k} .
$$

The limit of this quantity is 0 for any fixed t as $k \rightarrow \infty$, and we obtain that $\phi_{n}(t)$ is convergent for any t.
9.(a) The approximating functions are defined recursively by

$$
\phi_{n+1}(t)=\int_{0}^{t}\left[s^{2}+\phi_{n}^{2}(s)\right] d s .
$$

Set $\phi_{0}(t)=0$. The first three iterates are given by $\phi_{1}(t)=t^{3} / 3, \phi_{2}(t)=t^{3} / 3+$ $t^{7} / 63, \phi_{3}(t)=t^{3} / 3+t^{7} / 63+2 t^{11} / 2079+t^{15} / 59535$.
(b)

The iterates appear to be converging.
12.(a) The approximating functions are defined recursively by

$$
\phi_{n+1}(t)=\int_{0}^{t}\left[\frac{3 s^{2}+4 s+2}{2\left(\phi_{n}(s)-1\right)}\right] d s
$$

Note that $1 /(2 y-2)=-(1 / 2) \sum_{k=0}^{6} y^{k}+O\left(y^{7}\right)$. For computational purposes, use the geometric series sum to replace the above iteration formula by

$$
\phi_{n+1}(t)=-\frac{1}{2} \int_{0}^{t}\left[\left(3 s^{2}+4 s+2\right) \sum_{k=0}^{6} \phi_{n}^{k}(s)\right] d s
$$

Set $\phi_{0}(t)=0$. The first four approximations are given by $\phi_{1}(t)=-t-t^{2}-t^{3} / 2$, $\phi_{2}(t)=-t-t^{2} / 2+t^{3} / 6+t^{4} / 4-t^{5} / 5-t^{6} / 24+\ldots, \phi_{3}(t)=-t-t^{2} / 2+t^{4} / 12-$ $3 t^{5} / 20+4 t^{6} / 45+\ldots, \phi_{4}(t)=-t-t^{2} / 2+t^{4} / 8-7 t^{5} / 60+t^{6} / 15+\ldots$
(b)

The approximations appear to be converging to the exact solution, which can be found by separating the variables: $\phi(t)=1-\sqrt{1+2 t+2 t^{2}+t^{3}}$.
14.(a) $\phi_{n}(0)=0$, for every $n \geq 1$. Let $a \in(0,1]$. Then $\phi_{n}(a)=2 n a e^{-n a^{2}}=$ $2 n a / e^{n a^{2}}$. Using l'Hospital's rule, $\lim _{z \rightarrow \infty} 2 a z / e^{a z^{2}}=\lim _{z \rightarrow \infty} 1 / z e^{a z^{2}}=0$. Hence $\lim _{n \rightarrow \infty} \phi_{n}(a)=0$.
(b) $\int_{0}^{1} 2 n x e^{-n x^{2}} d x=-\left.e^{-n x^{2}}\right|_{0} ^{1}=1-e^{-n}$. Therefore,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \phi_{n}(x) d x \neq \int_{0}^{1} \lim _{n \rightarrow \infty} \phi_{n}(x) d x
$$

15. Let t be fixed, such that $\left(t, y_{1}\right),\left(t, y_{2}\right) \in D$. Without loss of generality, assume that $y_{1}<y_{2}$. Since f is differentiable with respect to y, the mean value theorem asserts that there exists $\xi \in\left(y_{1}, y_{2}\right)$ such that $f\left(t, y_{1}\right)-f\left(t, y_{2}\right)=f_{y}(t, \xi)\left(y_{1}-y_{2}\right)$. This means that $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right|=\left|f_{y}(t, \xi)\right|\left|y_{1}-y_{2}\right|$. Since, by assumption, $\partial f / \partial y$ is continuous in D, f_{y} attains a maximum K on any closed and bounded subset of D. Hence $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right|$.
16. For a sufficiently small interval of $t, \phi_{n-1}(t), \phi_{n}(t) \in D$. Since f satisfies a Lipschitz condition, $\left|f\left(t, \phi_{n}(t)\right)-f\left(t, \phi_{n-1}(t)\right)\right| \leq K\left|\phi_{n}(t)-\phi_{n-1}(t)\right|$. Here $K=$ $\max \left|f_{y}\right|$.
17.(a) $\phi_{1}(t)=\int_{0}^{t} f(s, 0) d s$. Hence $\left|\phi_{1}(t)\right| \leq \int_{0}^{|t|}|f(s, 0)| d s \leq \int_{0}^{|t|} M d s=M|t|$, in which M is the maximum value of $|f(t, y)|$ on D.
(b) By definition, $\phi_{2}(t)-\phi_{1}(t)=\int_{0}^{t}\left[f\left(s, \phi_{1}(s)\right)-f(s, 0)\right] d s$. Taking the absolute value of both sides, $\left|\phi_{2}(t)-\phi_{1}(t)\right| \leq \int_{0}^{|t|}\left|\left[f\left(s, \phi_{1}(s)\right)-f(s, 0)\right]\right| d s$. Based on the results in Problems 16 and 17,

$$
\left|\phi_{2}(t)-\phi_{1}(t)\right| \leq \int_{0}^{|t|} K\left|\phi_{1}(s)-0\right| d s \leq K M \int_{0}^{|t|}|s| d s
$$

Evaluating the last integral, we obtain that $\left|\phi_{2}(t)-\phi_{1}(t)\right| \leq M K|t|^{2} / 2$.
(c) Suppose that

$$
\left|\phi_{i}(t)-\phi_{i-1}(t)\right| \leq \frac{M K^{i-1}|t|^{i}}{i!}
$$

for some $i \geq 1$. By definition,

$$
\phi_{i+1}(t)-\phi_{i}(t)=\int_{0}^{t}\left[f\left(s, \phi_{i}(s)\right)-f\left(s, \phi_{i-1}(s)\right)\right] d s
$$

It follows that

$$
\begin{gathered}
\left|\phi_{i+1}(t)-\phi_{i}(t)\right| \leq \int_{0}^{|t|}\left|f\left(s, \phi_{i}(s)\right)-f\left(s, \phi_{i-1}(s)\right)\right| d s \\
\leq \int_{0}^{|t|} K\left|\phi_{i}(s)-\phi_{i-1}(s)\right| d s \leq \int_{0}^{|t|} K \frac{M K^{i-1}|s|^{i}}{i!} d s= \\
=\frac{M K^{i}|t|^{i+1}}{(i+1)!} \leq \frac{M K^{i} h^{i+1}}{(i+1)!}
\end{gathered}
$$

Hence, by mathematical induction, the assertion is true.
18.(a) Use the triangle inequality, $|a+b| \leq|a|+|b|$.
(b) For $|t| \leq h,\left|\phi_{1}(t)\right| \leq M h$, and $\left|\phi_{n}(t)-\phi_{n-1}(t)\right| \leq M K^{n-1} h^{n} /(n$!). Hence

$$
\left|\phi_{n}(t)\right| \leq M \sum_{i=1}^{n} \frac{K^{i-1} h^{i}}{i!}=\frac{M}{K} \sum_{i=1}^{n} \frac{(K h)^{i}}{i!}
$$

(c) The sequence of partial sums in (b) converges to $M\left(e^{K h}-1\right) / K$. By the comparison test, the sums in (a) also converge. Since individual terms of a convergent series must tend to zero, $\left|\phi_{n}(t)-\phi_{n-1}(t)\right| \rightarrow 0$, and it follows that the sequence $\left|\phi_{n}(t)\right|$ is convergent.
19.(a) Let $\phi(t)=\int_{0}^{t} f(s, \phi(s)) d s$ and $\psi(t)=\int_{0}^{t} f(s, \psi(s)) d s$. Then by linearity of the integral, $\phi(t)-\psi(t)=\int_{0}^{t}[f(s, \phi(s))-f(s, \psi(s))] d s$.
(b) It follows that $|\phi(t)-\psi(t)| \leq \int_{0}^{t}|f(s, \phi(s))-f(s, \psi(s))| d s$.
(c) We know that f satisfies a Lipschitz condition, $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq K\left|y_{1}-y_{2}\right|$, based on $|\partial f / \partial y| \leq K$ in D. Therefore,

$$
|\phi(t)-\psi(t)| \leq \int_{0}^{t}|f(s, \phi(s))-f(s, \psi(s))| d s \leq \int_{0}^{t} K|\phi(s)-\psi(s)| d s
$$

1. Writing the equation for each $n \geq 0, y_{1}=-0.9 y_{0}, y_{2}=-0.9 y_{1}=\left(-0.9^{2}\right) y_{0}$, $y_{3}=-0.9 y_{2}=(-0.9)^{3} y_{0}$ and so on, it is apparent that $y_{n}=(-0.9)^{n} y_{0}$. The terms constitute an alternating series, which converge to zero, regardless of y_{0}.
2. Write the equation for each $n \geq 0, y_{1}=\sqrt{3} y_{0}, y_{2}=\sqrt{4 / 2} y_{1}, y_{3}=\sqrt{5 / 3} y_{2}, \ldots$ Upon substitution, we find that $y_{2}=\sqrt{(4 \cdot 3) / 2} y_{1}, y_{3}=\sqrt{(5 \cdot 4 \cdot 3) /(3 \cdot 2)} y_{0}, \ldots$ It can be proved by mathematical induction, that

$$
y_{n}=\frac{1}{\sqrt{2}} \sqrt{\frac{(n+2)!}{n!}} y_{0}=\frac{1}{\sqrt{2}} \sqrt{(n+1)(n+2)} y_{0}
$$

This sequence is divergent, except for $y_{0}=0$.
4. Writing the equation for each $n \geq 0, y_{1}=-y_{0}, y_{2}=y_{1}, y_{3}=-y_{2}, y_{4}=y_{3}$, and so on. It can be shown that

$$
y_{n}=\left\{\begin{aligned}
y_{0}, & \text { for } n=4 k \text { or } n=4 k-1 \\
-y_{0}, & \text { for } n=4 k-2 \text { or } n=4 k-3
\end{aligned}\right.
$$

The sequence is convergent only for $y_{0}=0$.
6. Writing the equation for each $n \geq 0$,

$$
\begin{aligned}
y_{1} & =-0.5 y_{0}+6 \\
y_{2} & =-0.5 y_{1}+6=-0.5\left(-0.5 y_{0}+6\right)+6=(-0.5)^{2} y_{0}+6+(-0.5) 6 \\
y_{3} & =-0.5 y_{2}+6=-0.5\left(-0.5 y_{1}+6\right)+6=(-0.5)^{3} y_{0}+6\left[1+(-0.5)+(-0.5)^{2}\right] \\
& \vdots \\
y_{n} & =(-0.5)^{n} y_{0}+4\left[1-(-0.5)^{n}\right]
\end{aligned}
$$

which follows from Eq.(13) and (14). The sequence is convergent for all y_{0}, and in fact $y_{n} \rightarrow 4$.
8. Let y_{n} be the balance at the end of the nth month. Then $y_{n+1}=(1+r / 12) y_{n}+$ 25. We have $y_{n}=\rho^{n}\left[y_{0}-25 /(1-\rho)\right]+25 /(1-\rho)$, in which $\rho=(1+r / 12)$. Here r is the annual interest rate, given as 8%. Thus $y_{36}=(1.0066)^{36}[1000+12 \cdot 25 / r]-$ $12 \cdot 25 / r=\$ 2,283.63$.
9. Let y_{n} be the balance due at the end of the nth month. The appropriate difference equation is $y_{n+1}=(1+r / 12) y_{n}-P$. Here r is the annual interest rate
and P is the monthly payment. The solution, in terms of the amount borrowed, is given by $y_{n}=\rho^{n}\left[y_{0}+P /(1-\rho)\right]-P /(1-\rho)$, in which $\rho=(1+r / 12)$ and $y_{0}=$ 8,000 . To figure out the monthly payment P, we require that $y_{36}=0$. That is, $\rho^{36}\left[y_{0}+P /(1-\rho)\right]=P /(1-\rho)$. After the specified amounts are substituted, we find that $P=\$ 258.14$.
11. Let y_{n} be the balance due at the end of the nth month. The appropriate difference equation is $y_{n+1}=(1+r / 12) y_{n}-P$, in which $r=.09$ and P is the monthly payment. The initial value of the mortgage is $y_{0}=\$ 100,000$. Then the balance due at the end of the n-th month is $y_{n}=\rho^{n}\left[y_{0}+P /(1-\rho)\right]-P /(1-\rho)$, where $\rho=(1+r / 12)$. In terms of the specified values, $y_{n}=(1.0075)^{n}\left[10^{5}-12 P / r\right]+$ $12 P / r$. Setting $n=30 \cdot 12=360$, and $y_{360}=0$, we find that $P=\$ 804.62$. For the monthly payment corresponding to a 20 year mortgage, set $n=240$ and $y_{240}=0$ to find that $P=\$ 899.73$. The total amount paid during the term of the loan is $360 \times 804.62=\$ 289,663.20$ for the 30 -year loan and is $240 \times 899.73=\$ 215,935.20$ for the 20-year loan.
12. Let y_{n} be the balance due at the end of the nth month, with y_{0} the initial value of the mortgage. The appropriate difference equation is $y_{n+1}=(1+r / 12) y_{n}-P$, in which $r=0.1$ and $P=\$ 1000$ is the maximum monthly payment. Given that the life of the mortgage is 20 years, we require that $y_{240}=0$. The balance due at the end of the n-th month is $y_{n}=\rho^{n}\left[y_{0}+P /(1-\rho)\right]-P /(1-\rho)$. In terms of the specified values for the parameters, the solution of $(1.00833)^{240}\left[y_{0}-12 \cdot 1000 / 0.1\right]=-12$. $1000 / 0.1$ is $y_{0}=\$ 103,624.62$.
19.(a) $\delta_{2}=\left(\rho_{2}-\rho_{1}\right) /\left(\rho_{3}-\rho_{2}\right)=(3.449-3) /(3.544-3.449)=4.7263$.
(b) $\operatorname{diff}=\left(\left|\delta-\delta_{2}\right| / \delta\right) \cdot 100=(|4.6692-4.7363| / 4.6692) \cdot 100 \approx 1.22 \%$.
(c) Assuming $\left(\rho_{3}-\rho_{2}\right) /\left(\rho_{4}-\rho_{3}\right)=\delta, \rho_{4} \approx 3.5643$
(d) A period 16 solution appears near $\rho \approx 3.565$.

(e) Note that $\left(\rho_{n+1}-\rho_{n}\right)=\delta_{n}^{-1}\left(\rho_{n}-\rho_{n-1}\right)$. With the assumption that $\delta_{n}=\delta$, we have $\left(\rho_{n+1}-\rho_{n}\right)=\delta^{-1}\left(\rho_{n}-\rho_{n-1}\right)$, which is of the form $y_{n+1}=\alpha y_{n}, n \geq 3$. It
follows that $\left(\rho_{k}-\rho_{k-1}\right)=\delta^{3-k}\left(\rho_{3}-\rho_{2}\right)$ for $k \geq 4$. Then

$$
\begin{aligned}
\rho_{n} & =\rho_{1}+\left(\rho_{2}-\rho_{1}\right)+\left(\rho_{3}-\rho_{2}\right)+\left(\rho_{4}-\rho_{3}\right)+\ldots+\left(\rho_{n}-\rho_{n-1}\right) \\
& =\rho_{1}+\left(\rho_{2}-\rho_{1}\right)+\left(\rho_{3}-\rho_{2}\right)\left[1+\delta^{-1}+\delta^{-2}+\ldots+\delta^{3-n}\right] \\
& =\rho_{1}+\left(\rho_{2}-\rho_{1}\right)+\left(\rho_{3}-\rho_{2}\right)\left[\frac{1-\delta^{4-n}}{1-\delta^{-1}}\right]
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} \rho_{n}=\rho_{2}+\left(\rho_{3}-\rho_{2}\right)\left[\frac{\delta}{\delta-1}\right]$. Substitution of the appropriate values yields

$$
\lim _{n \rightarrow \infty} \rho_{n}=3.5699
$$

PROBLEMS

1. The equation is linear. It can be written in the form $y^{\prime}+2 y / x=x^{2}$, and the integrating factor is $\mu(x)=e^{\int(2 / x) d x}=e^{2 \ln x}=x^{2}$. Multiplication by $\mu(x)$ yields $x^{2} y^{\prime}+2 y x=\left(y x^{2}\right)^{\prime}=x^{4}$. Integration with respect to x and division by x^{2} gives that $y=x^{3} / 5+c / x^{2}$.
2. The equation is exact. Algebraic manipulations give the symmetric form of the equation, $\left(2 x y+y^{2}+1\right) d x+\left(x^{2}+2 x y\right) d y=0$. We can check that $M_{y}=2 x+$ $2 y=N_{x}$, so the equation is really exact. Integrating M with respect to x gives that $\psi(x, y)=x^{2} y+x y^{2}+x+g(y)$, then $\psi_{y}=x^{2}+2 x y+g^{\prime}(y)=x^{2}+2 x y$, so we get that $g^{\prime}(y)=0$, so we obtain that $g(y)=0$ is acceptable. Therefore the solution is defined implicitly as $x^{2} y+x y^{2}+x=c$.
3. The equation is linear. It can be written in the form $y^{\prime}+(1+(1 / x)) y=1 / x$ and the integrating factor is $\mu(x)=e^{\int 1+(1 / x) d x}=e^{x+\ln x}=x e^{x}$. Multiplication by $\mu(x)$ yields $x e^{x} y^{\prime}+\left(x e^{x}+e^{x}\right) y=\left(x e^{x} y\right)^{\prime}=e^{x}$. Integration with respect to x and division by $x e^{x}$ shows that the general solution of the equation is $y=1 / x+c /\left(x e^{x}\right)$. The initial condition implies that $0=1+c / e$, which means that $c=-e$ and the solution is $y=1 / x-e /\left(x e^{x}\right)=x^{-1}\left(1-e^{1-x}\right)$.
4. The equation is separable. Separation of variables gives the differential equation $y(2+3 y) d y=\left(4 x^{3}+1\right) d x$, and then after integration we obtain that the solution is $x^{4}+x-y^{2}-y^{3}=c$.
5. The equation is linear. It can be written in the form $y^{\prime}+2 y / x=\sin x / x^{2}$ and the integrating factor is $\mu(x)=e^{\int(2 / x) d x}=e^{2 \ln x}=x^{2}$. Multiplication by $\mu(x)$ gives $x^{2} y^{\prime}+2 x y=\left(x^{2} y\right)^{\prime}=\sin x$, and after integration with respect to x and division by x^{2} we obtain the general solution $y=(c-\cos x) / x^{2}$. The initial condition implies that $c=4+\cos 2$ and the solution becomes $y=(4+\cos 2-\cos x) / x^{2}$.
6. The equation is exact. It is easy to check that $M_{y}=1=N_{x}$. Integrating M with respect to x gives that $\psi(x, y)=x^{3} / 3+x y+g(y)$, then $\psi_{y}=x+g^{\prime}(y)=$
$x+e^{y}$, which means that $g^{\prime}(y)=e^{y}$, so we obtain that $g(y)=e^{y}$. Therefore the solution is defined implicitly as $x^{3} / 3+x y+e^{y}=c$.
7. The equation is separable. Factoring the right hand side leads to the equation $y^{\prime}=\left(1+y^{2}\right)(1+2 x)$. We separate the variables to obtain $d y /\left(1+y^{2}\right)=$ $(1+2 x) d x$, then integration gives us $\arctan y=x+x^{2}+c$. The solution is $y=$ $\tan \left(x+x^{2}+c\right)$.
8. The equation is exact. We can check that $M_{y}=1=N_{x}$. Integrating M with respect to x gives that $\psi(x, y)=x^{2} / 2+x y+g(y)$, then $\psi_{y}=x+g^{\prime}(y)=x+2 y$, which means that $g^{\prime}(y)=2 y$, so we obtain that $g(y)=y^{2}$. Therefore the general solution is defined implicitly as $x^{2} / 2+x y+y^{2}=c$. The initial condition gives us $c=17$, so the solution is $x^{2}+2 x y+2 y^{2}=34$.
9. The equation is separable. Separation of variables leads us to the equation

$$
\frac{d y}{y}=\frac{1-e^{x}}{1+e^{x}} d x
$$

Note that $1+e^{x}-2 e^{x}=1-e^{x}$. We obtain that

$$
\ln |y|=\int \frac{1-e^{x}}{1+e^{x}} d x=\int 1-\frac{2 e^{x}}{1+e^{x}} d x=x-2 \ln \left(1+e^{x}\right)+\tilde{c}
$$

This means that $y=c e^{x}\left(1+e^{x}\right)^{-2}$, which also can be written as $y=c / \cosh ^{2}(x / 2)$ after some algebraic manipulations.
16. The equation is exact. The symmetric form is $\left(-e^{-x} \cos y+e^{2 y} \cos x\right) d x+$ $\left(-e^{-x} \sin y+2 e^{2 y} \sin x\right) d y=0$. We can check that $M_{y}=e^{-x} \sin y+2 e^{2 y} \cos x=$ N_{x}. Integrating M with respect to x gives that $\psi(x, y)=e^{-x} \cos y+e^{2 y} \sin x+$ $g(y)$, then $\psi_{y}=-e^{-x} \sin y+2 e^{2 y} \sin x+g^{\prime}(y)=-e^{-x} \sin y+2 e^{2 y} \sin x$, so we get that $g^{\prime}(y)=0$, so we obtain that $g(y)=0$ is acceptable. Therefore the solution is defined implicitly as $e^{-x} \cos y+e^{2 y} \sin x=c$.
17. The equation is linear. The integrating factor is $\mu(x)=e^{-\int 3 d x}=e^{-3 x}$, which turns the equation into $e^{-3 x} y^{\prime}-3 e^{-3 x} y=\left(e^{-3 x} y\right)^{\prime}=e^{-x}$. We integrate with respect to x to obtain $e^{-3 x} y=-e^{-x}+c$, and the solution is $y=c e^{3 x}-e^{2 x}$ after multiplication by $e^{3 x}$.
18. The equation is linear. The integrating factor is $\mu(x)=e^{\int 2 d x}=e^{2 x}$, which gives us $e^{2 x} y^{\prime}+2 e^{2 x} y=\left(e^{2 x} y\right)^{\prime}=e^{-x^{2}}$. The antiderivative of the function on the right hand side can not be expressed in a closed form using elementary functions, so we have to express the solution using integrals. Let us integrate both sides of this equation from 0 to x. We obtain that the left hand side turns into

$$
\int_{0}^{x}\left(e^{2 s} y(s)\right)^{\prime} d s=e^{2 x} y(x)-e^{0} y(0)=e^{2 x} y-3
$$

The right hand side gives us $\int_{0}^{x} e^{-s^{2}} d s$. So we found that

$$
y=e^{-2 x} \int_{0}^{x} e^{-s^{2}} d s+3 e^{-2 x}
$$

19. The equation is exact. Algebraic manipulations give us the symmetric form $\left(y^{3}+2 y-3 x^{2}\right) d x+\left(2 x+3 x y^{2}\right) d y=0$. We can check that $M_{y}=3 y^{2}+2=N_{x}$. Integrating M with respect to x gives that $\psi(x, y)=x y^{3}+2 x y-x^{3}+g(y)$, then $\psi_{y}=3 x y^{2}+2 x+g^{\prime}(y)=2 x+3 x y^{2}$, which means that $g^{\prime}(y)=0$, so we obtain that $g(y)=0$ is acceptable. Therefore the solution is $x y^{3}+2 x y-x^{3}=c$.
20. The equation is separable, because $y^{\prime}=e^{x+y}=e^{x} e^{y}$. Separation of variables yields the equation $e^{-y} d y=e^{x} d x$, which turns into $-e^{-y}=e^{x}+c$ after integration and we obtain the implicitly defined solution $e^{x}+e^{-y}=c$.
21. The equation is separable. Separation of variables turns the equation into $\left(y^{2}+1\right) d y=\left(x^{2}-1\right) d x$, which, after integration, gives $y^{3} / 3+y=x^{3} / 3-x+c$. The initial condition yields $c=2 / 3$, and the solution is $y^{3}+3 y-x^{3}+3 x=2$.
22. The equation is linear. Division by t gives $y^{\prime}+(1+(1 / t)) y=e^{2 t} / t$, so the integrating factor is $\mu(t)=e^{\int(1+(1 / t)) d t}=e^{t+\ln t}=t e^{t}$. The equation turns into $t e^{t} y^{\prime}+\left(t e^{t}+e^{t}\right) y=\left(t e^{t} y\right)^{\prime}=e^{3 t}$. Integration therefore leads to $t e^{t} y=e^{3 t} / 3+c$ and the solution is $y=e^{2 t} /(3 t)+c e^{-t} / t$.
23. The equation is exact. We can check that $M_{y}=2 \cos y \sin x \cos x=N_{x}$. Integrating M with respect to x gives that $\psi(x, y)=\sin y \sin ^{2} x+g(y)$, then $\psi_{y}=$ $\cos y \sin ^{2} x+g^{\prime}(y)=\cos y \sin ^{2} x$, which means that $g^{\prime}(y)=0$, so we obtain that $g(y)=0$ is acceptable. Therefore the solution is defined implicitly as $\sin y \sin ^{2} x=c$.
24. The equation is exact. We can check that

$$
M_{y}=-\frac{2 x}{y^{2}}-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=N_{x}
$$

Integrating M with respect to x gives that $\psi(x, y)=x^{2} / y+\arctan (y / x)+g(y)$, then $\psi_{y}=-x^{2} / y^{2}+x /\left(x^{2}+y^{2}\right)+g^{\prime}(y)=x /\left(x^{2}+y^{2}\right)-x^{2} / y^{2}$, which means that $g^{\prime}(y)=0$, so we obtain that $g(y)=0$ is acceptable. Therefore the solution is defined implicitly as $x^{2} / y+\arctan (y / x)=c$.
28. The equation can be made exact by choosing an appropriate integrating factor. We can check that $\left(M_{y}-N_{x}\right) / N=(2-1) / x=1 / x$ depends only on x, so $\mu(x)=$ $e^{\int(1 / x) d x}=e^{\ln x}=x$ is an integrating factor. After multiplication, the equation becomes $\left(2 y x+3 x^{2}\right) d x+x^{2} d y=0$. This equation is exact now, because $M_{y}=$ $2 x=N_{x}$. Integrating M with respect to x gives that $\psi(x, y)=y x^{2}+x^{3}+g(y)$, then $\psi_{y}=x^{2}+g^{\prime}(y)=x^{2}$, which means that $g^{\prime}(y)=0$, so we obtain that $g(y)=0$ is acceptable. Therefore the solution is defined implicitly as $x^{3}+x^{2} y=c$.
29. The equation is homogeneous. (See Section 2.2, Problem 30) We can see that

$$
y^{\prime}=\frac{x+y}{x-y}=\frac{1+(y / x)}{1-(y / x)}
$$

We substitute $u=y / x$, which means also that $y=u x$ and then $y^{\prime}=u^{\prime} x+u=$
$(1+u) /(1-u)$, which implies that

$$
u^{\prime} x=\frac{1+u}{1-u}-u=\frac{1+u^{2}}{1-u}
$$

a separable equation. Separating the variables yields

$$
\frac{1-u}{1+u^{2}} d u=\frac{d x}{x}
$$

and then integration gives $\arctan u-\ln \left(1+u^{2}\right) / 2=\ln |x|+c$. Substituting $u=$ y / x back into this expression and using that

$$
-\ln \left(1+(y / x)^{2}\right) / 2-\ln |x|=-\ln \left(|x| \sqrt{1+(y / x)^{2}}\right)=-\ln \left(\sqrt{x^{2}+y^{2}}\right)
$$

we obtain that the solution is $\arctan (y / x)-\ln \left(\sqrt{x^{2}+y^{2}}\right)=c$.
30. The equation is homogeneous. (See Section 2.2, Problem 30) Algebraic manipulations show that it can be written in the form

$$
y^{\prime}=\frac{3 y^{2}+2 x y}{2 x y+x^{2}}=\frac{3(y / x)^{2}+2(y / x)}{2(y / x)+1}
$$

Substituting $u=y / x$ gives that $y=u x$ and then

$$
y^{\prime}=u^{\prime} x+u=\frac{3 u^{2}+2 u}{2 u+1}
$$

which implies that

$$
u^{\prime} x=\frac{3 u^{2}+2 u}{2 u+1}-u=\frac{u^{2}+u}{2 u+1}
$$

a separable equation. We obtain that $(2 u+1) d u /\left(u^{2}+u\right)=d x / x$, which in turn means that $\ln \left(u^{2}+u\right)=\ln |x|+\tilde{c}$. Therefore, $u^{2}+u=c x$ and then substituting $u=y / x$ gives us the solution $\left(y^{2} / x^{3}\right)+\left(y / x^{2}\right)=c$.
31. The equation can be made exact by choosing an appropriate integrating factor. We can check that $\left(M_{y}-N_{x}\right) / M=-\left(3 x^{2}+y\right) /\left(y\left(3 x^{2}+y\right)\right)=-1 / y$ depends only on y, so $\mu(y)=e^{f(1 / y) d y}=e^{\ln y}=y$ is an integrating factor. After multiplication, the equation becomes $\left(3 x^{2} y^{2}+y^{3}\right) d x+\left(2 x^{3} y+3 x y^{2}\right) d y=0$. This equation is exact now, because $M_{y}=6 x^{2} y+3 y^{2}=N_{x}$. Integrating M with respect to x gives that $\psi(x, y)=x^{3} y^{2}+y^{3} x+g(y)$, then $\psi_{y}=2 x^{3} y+3 y^{2} x+g^{\prime}(y)=$ $2 x^{3} y+3 x y^{2}$, which means that $g^{\prime}(y)=0$, so we obtain that $g(y)=0$ is acceptable. Therefore the general solution is defined implicitly as $x^{3} y^{2}+x y^{3}=c$. The initial condition gives us $4-8=c=-4$, and the solution is $x^{3} y^{2}+x y^{3}=-4$.
33. Let y_{1} be a solution, i.e. $y_{1}^{\prime}=q_{1}+q_{2} y_{1}+q_{3} y_{1}^{2}$. Now let $y=y_{1}+(1 / v)$ also be a solution. Differentiating this expression with respect to t and using that y is also a solution we obtain $y^{\prime}=y_{1}^{\prime}-\left(1 / v^{2}\right) v^{\prime}=q_{1}+q_{2} y+q_{3} y^{2}=q_{1}+q_{2}\left(y_{1}+(1 / v)\right)+$ $q_{3}\left(y_{1}+(1 / v)\right)^{2}$. Now using that y_{1} was also a solution we get that $-\left(1 / v^{2}\right) v^{\prime}=$ $q_{2}(1 / v)+2 q_{3}\left(y_{1} / v\right)+q_{3}\left(1 / v^{2}\right)$, which, after some simple algebraic manipulations turns into $v^{\prime}=-\left(q_{2}+2 q_{3} y_{1}\right) v-q_{3}$.
35.(a) The equation is $y^{\prime}=(1-y)(x+b y)=x+(b-x) y-b y^{2}$. We set $y=1+$ $(1 / v)$ and differentiate: $y^{\prime}=-v^{-2} v^{\prime}=x+(b-x)(1+(1 / v))-b(1+(1 / v))^{2}$, which, after simplification, turns into $v^{\prime}=(b+x) v+b$.
(b) When $x=a t$, the equation is $v^{\prime}-(b+a t) v=b$, so the integrating factor is $\mu(t)=e^{-b t-a t^{2} / 2}$. This turns the equation into $(v \mu(t))^{\prime}=b \mu(t)$, so $v \mu(t)=\int b \mu(t) d t$, and then $v=\left(b \int \mu(t) d t\right) / \mu(t)$.
36. Substitute $v=y^{\prime}$, then $v^{\prime}=y^{\prime \prime}$. The equation turns into $t^{2} v^{\prime}+2 t v=\left(t^{2} v\right)^{\prime}=$ 1 , which yields $t^{2} v=t+c_{1}$, so $y^{\prime}=v=(1 / t)+\left(c_{1} / t^{2}\right)$. Integrating this expression gives us the solution $y=\ln t-\left(c_{1} / t\right)+c_{2}$.
37. Set $v=y^{\prime}$, then $v^{\prime}=y^{\prime \prime}$. The equation with this substitution is $t v^{\prime}+v=$ $(t v)^{\prime}=1$, which gives $t v=t+c_{1}$, so $y^{\prime}=v=1+\left(c_{1} / t\right)$. Integrating this expression yields the solution $y=t+c_{1} \ln t+c_{2}$.
38. Set $v=y^{\prime}$, so $v^{\prime}=y^{\prime \prime}$. The equation is $v^{\prime}+t v^{2}=0$, which is a separable equation. Separating the variables we obtain $d v / v^{2}=-t d t$, so $-1 / v=-t^{2} / 2+c$, and then $y^{\prime}=v=2 /\left(t^{2}+c_{1}\right)$. Now depending on the value of c_{1}, we have the following possibilities: when $c_{1}=0$, then $y=-2 / t+c_{2}$, when $0<c_{1}=k^{2}$, then $y=(2 / k) \arctan (t / k)+c_{2}$, and when $0>c_{1}=-k^{2}$ then

$$
y=(1 / k) \ln |(t-k) /(t+k)|+c_{2}
$$

We also divided by $v=y^{\prime}$ when we separated the variables, and $v=0$ (which is $y=c$) is also a solution.
39. Substitute $v=y^{\prime}$ and $v^{\prime}=y^{\prime \prime}$. The equation is $2 t^{2} v^{\prime}+v^{3}=2 t v$. This is a Bernoulli equation (See Section 2.4, Problem 27), so the substitution $z=v^{-2}$ yields $z^{\prime}=-2 v^{-3} v^{\prime}$, and the equation turns into $2 t^{2} v^{\prime} v^{3}+1=2 t / v^{2}$, i.e. into $-2 t^{2} z^{\prime} / 2+$ $1=2 t z$, which in turn simplifies to $t^{2} z^{\prime}+2 t z=\left(t^{2} z\right)^{\prime}=1$. Integration yields $t^{2} z=$ $t+c$, which means that $z=(1 / t)+\left(c / t^{2}\right)$. Now $y^{\prime}=v= \pm \sqrt{1 / z}= \pm t / \sqrt{t+c_{1}}$ and another integration gives

$$
y= \pm \frac{2}{3}\left(t-2 c_{1}\right) \sqrt{t+c_{1}}+c_{2}
$$

The substitution also loses the solution $v=0$, i.e. $y=c$.
40. Set $v=y^{\prime}$, then $v^{\prime}=y^{\prime \prime}$. The equation reads $v^{\prime}+v=e^{-t}$, which is a linear equation with integrating factor $\mu(t)=e^{t}$. This turns the equation into $e^{t} v^{\prime}+e^{t} v=$ $\left(e^{t} v\right)^{\prime}=1$, which means that $e^{t} v=t+c$ and then $y^{\prime}=v=t e^{-t}+c e^{-t}$. Another integration yields the solution $y=-t e^{-t}+c_{1} e^{-t}+c_{2}$.
41. Let $v=y^{\prime}$ and $v^{\prime}=y^{\prime \prime}$. The equation is $t^{2} v^{\prime}=v^{2}$, which is a separable equation. Separating the variables we obtain $d v / v^{2}=d t / t^{2}$, which gives us $-1 / v=-(1 / t)+$ c_{1}, and then $y^{\prime}=v=t /\left(1+c_{1} t\right)$. Now when $c_{1}=0$, then $y=t^{2} / 2+c_{2}$, and when $c_{1} \neq 0$, then $y=t / c_{1}-\left(\ln \left|1+c_{1} t\right|\right) / c_{1}^{2}+c_{2}$. Also, at the separation we divided by $v=0$, which also gives us the solution $y=c$.
43. Set $y^{\prime}=v(y)$. Then $y^{\prime \prime}=v^{\prime}(y)(d y / d t)=v^{\prime}(y) v(y)$. We obtain the equation $v^{\prime} v+y=0$, where the differentiation is with respect to y. This is a separable equation which simplifies to $v d v=-y d y$. We obtain that $v^{2} / 2=-y^{2} / 2+c$, so $y^{\prime}=v(y)= \pm \sqrt{c-y^{2}}$. We separate the variables again to get $d y / \sqrt{c-y^{2}}= \pm d t$, so $\arcsin (y / \sqrt{c})=t+d$, which means that $y=\sqrt{c} \sin (\pm t+d)=c_{1} \sin \left(t+c_{2}\right)$.
44. Set $y^{\prime}=v(y)$. Then $y^{\prime \prime}=v^{\prime}(y)(d y / d t)=v^{\prime}(y) v(y)$. We obtain the equation $v^{\prime} v+y v^{3}=0$, where the differentiation is with respect to y. Separation of variables turns this into $d v / v^{2}=-y d y$, which gives us $y^{\prime}=v=2 /\left(c_{1}+y^{2}\right)$. This implies that $\left(c_{1}+y^{2}\right) d y=2 d t$ and then the solution is defined implicitly as $c_{1} y+y^{3} / 3=$ $2 t+c_{2}$. Also, $y=c$ is a solution which we lost when divided by $y^{\prime}=v=0$.
46. Set $y^{\prime}=v(y)$. Then $y^{\prime \prime}=v^{\prime}(y)(d y / d t)=v^{\prime}(y) v(y)$. We obtain the equation $y v^{\prime} v-v^{3}=0$, where the differentiation is with respect to y. This separable equation gives us $d v / v^{2}=d y / y$, which means that $-1 / v=\ln |y|+c$, and then $y^{\prime}=v=1 /(c-\ln |y|)$. We separate variables again to obtain $(c-\ln |y|) d y=d t$, and then integration yields the implicitly defined solution $c y-(y \ln |y|-y)=t+d$. Also, $y=c$ is a solution which we lost when we divided by $v=0$.
49. Set $y^{\prime}=v(y)$. Then $y^{\prime \prime}=v^{\prime}(y)(d y / d t)=v^{\prime}(y) v(y)$. We obtain the equation $v^{\prime} v-3 y^{2}=0$, where the differentiation is with respect to y. Separation of variables gives $v d v=3 y^{2} d y$, and after integration this turns into $v^{2} / 2=y^{3}+c$. The initial conditions imply that $c=0$ here, so $\left(y^{\prime}\right)^{2}=v^{2}=2 y^{3}$. This implies that $y^{\prime}=\sqrt{2} y^{3 / 2}$ (the sign is determined by the initial conditions again), and this separable equation now turns into $y^{-3 / 2} d y=\sqrt{2} d t$. Integration yields $-2 y^{-1 / 2}=\sqrt{2} t+d$, and the initial conditions at this point give that $d=-\sqrt{2}$. Algebraic manipulations find that $y=2(1-t)^{-2}$.
50. Set $v=y^{\prime}$, then $v^{\prime}=y^{\prime \prime}$. The equation with this substitution turns into the equation $\left(1+t^{2}\right) v^{\prime}+2 t v=\left(\left(1+t^{2}\right) v\right)^{\prime}=-3 t^{-2}$. Integrating this we get that $\left(1+t^{2}\right) v=3 t^{-1}+c$, and $c=-5$ from the initial conditions. This means that $y^{\prime}=v=3 /\left(t\left(1+t^{2}\right)\right)-5 /\left(1+t^{2}\right)$. The partial fraction decomposition of the first expression shows that $y^{\prime}=3 / t-3 t /\left(1+t^{2}\right)-5 /\left(1+t^{2}\right)$ and then another integration here gives us that $y=3 \ln t-(3 / 2) \ln \left(1+t^{2}\right)-5 \arctan t+d$. The initial conditions identify $d=2+(3 / 2) \ln 2+5 \pi / 4$, and we obtained the solution.

