CHAPTER 3
 OHM'S LAW, ENERGY, AND POWER

BASIC PROBLEMS

SECTION 3-1 Ohm's Law

1. $\quad I$ is directly proportional to V and will change the same percentage as V.
(a) $\quad I=3(1 \mathrm{~A})=3 \mathbf{A}$
(b) $\quad I=1 \mathrm{~A}-(0.8)(1 \mathrm{~A})=1 \mathrm{~A}-0.8 \mathrm{~A}=0.2 \mathrm{~A}$
(c) $\quad I=1 \mathrm{~A}+(0.5)(1 \mathrm{~A})=1 \mathrm{~A}+0.5 \mathrm{~A}=1.5 \mathrm{~A}$
2. (a) When the resistance doubles, the current is halved from 100 mA to $\mathbf{5 0} \mathbf{~ m A}$.
(b) When the resistance is reduced by 30%, the current increases from 100 mA to $I=V / 0.7 R=1.429(V / R)=(1.429)(100 \mathrm{~mA}) \cong \mathbf{1 4 3 ~ \mathbf { ~ m A }}$
(c) When the resistance is quadrupled, the current decreases from 100 mA to $\mathbf{2 5} \mathbf{~ m A}$.
3. Tripling the voltage triples the current from 10 mA to 30 mA , but doubling the resistance halves the current to $\mathbf{1 5} \mathbf{~ m A}$.

SECTION 3-2 Application of Ohm's Law

4.

(a) $\quad I=\frac{V}{R}=\frac{5 \mathrm{~V}}{1 \Omega}=\mathbf{5} \mathbf{A}$
(b) $\quad I=\frac{V}{R}=\frac{15 \mathrm{~V}}{10 \Omega}=\mathbf{1 . 5 ~ A}$
(c) $\quad I=\frac{V}{R}=\frac{50 \mathrm{~V}}{100 \Omega}=0.5 \mathrm{~A}$
(d) $\quad I=\frac{V}{R}=\frac{30 \mathrm{~V}}{15 \mathrm{k} \Omega}=2 \mathrm{~mA}$
(e) $\quad I=\frac{V}{R}=\frac{250 \mathrm{~V}}{4.7 \mathrm{M} \Omega}=\mathbf{5 3 . 2} \boldsymbol{\mu \mathrm { A }}$
5.
(a) $\quad I=\frac{V}{R}=\frac{9 \mathrm{~V}}{2.7 \mathrm{k} \Omega}=\mathbf{3 . 3 3} \mathbf{~ m A}$
(b) $\quad I=\frac{V}{R}=\frac{5.5 \mathrm{~V}}{10 \mathrm{k} \Omega}=\mathbf{5 5 0} \boldsymbol{\mu} \mathbf{A}$
(c) $\quad I=\frac{V}{R}=\frac{40 \mathrm{~V}}{68 \mathrm{k} \Omega}=\mathbf{5 8 8} \boldsymbol{\mu} \mathbf{A}$
(d) $\quad I=\frac{V}{R}=\frac{1 \mathrm{kV}}{2 \mathrm{k} \Omega}=\mathbf{5 0 0} \mathbf{~ m A}$
(e) $I=\frac{V}{R}=\frac{66 \mathrm{kV}}{10 \mathrm{M} \Omega}=6.60 \mathrm{~mA}$
6. $I=\frac{V}{R}=\frac{12 \mathrm{~V}}{10 \Omega}=1.2 \mathrm{~A}$
7.
(a) $I=\frac{V}{R}=\frac{25 \mathrm{~V}}{10 \mathrm{k} \Omega}=\mathbf{2 . 5 0} \mathbf{~ m A}$
(b) $\quad I=\frac{V}{R}=\frac{5 \mathrm{~V}}{2.2 \mathrm{M} \Omega}=\mathbf{2 . 2 7} \boldsymbol{\mu \mathrm { A }}$
(c) $\quad I=\frac{V}{R}=\frac{15 \mathrm{~V}}{1.8 \mathrm{k} \Omega}=\mathbf{8 . 3 3} \mathbf{~ m A}$
8. Orange, violet, yellow, gold, brown $\equiv 37.4 \Omega \pm 1 \%$
$I=\frac{V_{\mathrm{S}}}{R}=\frac{12 \mathrm{~V}}{37.4 \Omega}=\mathbf{0 . 3 2 1 ~ A}$
9. $I=\frac{24 \mathrm{~V}}{37.4 \Omega}=0.642 \mathrm{~A}$
0.642 A is greater than 0.5 A , so the fuse will blow.
10. (a) $V=I R=(2 \mathrm{~A})(18 \Omega)=\mathbf{3 6} \mathbf{V}$
(b) $\quad V=I R=(5 \mathrm{~A})(47 \Omega)=\mathbf{2 3 5} \mathrm{V}$
(c) $V=I R=(2.5 \mathrm{~A})(620 \Omega)=\mathbf{1 5 5 0} \mathrm{V}$
(d) $\quad V=I R=(0.6 \mathrm{~A})(47 \Omega)=28.2 \mathrm{~V}$
(e) $\quad V=I R=(0.1 \mathrm{~A})(470 \Omega)=\mathbf{4 7} \mathrm{V}$
11. (a) $V=I R=(1 \mathrm{~mA})(10 \Omega)=\mathbf{1 0} \mathbf{~ m V}$
(b) $\quad V=I R=(50 \mathrm{~mA})(33 \Omega)=\mathbf{1 . 6 5} \mathrm{V}$
(c) $\quad V=I R=(3 \mathrm{~A})(4.7 \mathrm{k} \Omega)=\mathbf{1 4 . 1} \mathbf{~ k V}$
(d) $V=I R=(1.6 \mathrm{~mA})(2.2 \mathrm{k} \Omega)=\mathbf{3 . 5 2 ~ V}$
(e) $V=I R=(250 \mu \mathrm{~A})(1 \mathrm{k} \Omega)=\mathbf{2 5 0} \mathbf{~ m V}$
(f) $V=I R=(500 \mathrm{~mA})(1.5 \mathrm{M} \Omega)=750 \mathrm{kV}$
(g) $V=I R=(850 \mu \mathrm{~A})(10 \mathrm{M} \Omega)=8.5 \mathrm{kV}$
(h) $V=I R=(75 \mu \mathrm{~A})(47 \Omega)=\mathbf{3 . 5 3} \mathbf{~ m V}$
12. $V=I R=(3 \mathrm{~A})(20 \mathrm{~m} \Omega)=\mathbf{6 0} \mathbf{~ m V}$
13.
(a) $V=I R=(3 \mathrm{~mA})(27 \mathrm{k} \Omega)=\mathbf{8 1} \mathrm{V}$
(b) $\quad V=I R=(5 \mu \mathrm{~A})(100 \mathrm{M} \Omega)=\mathbf{5 0 0} \mathrm{V}$
(c) $\quad V=I R=(2.5 \mathrm{~A})(47 \Omega)=117.5 \mathrm{~V}$
14.
(a) $\quad R=\frac{V}{I}=\frac{10 \mathrm{~V}}{2 \mathrm{~A}}=\mathbf{5} \boldsymbol{\Omega}$
(b) $R=\frac{V}{I}=\frac{90 \mathrm{~V}}{45 \mathrm{~A}}=\mathbf{2} \boldsymbol{\Omega}$
(c) $R=\frac{V}{I}=\frac{50 \mathrm{~V}}{5 \mathrm{~A}}=10 \Omega$
(d) $R=\frac{V}{I}=\frac{5.5 \mathrm{~V}}{10 \mathrm{~A}}=\mathbf{0 . 5 5} \Omega$
(e) $\quad R=\frac{V}{I}=\frac{150 \mathrm{~V}}{0.5 \mathrm{~A}}=\mathbf{3 0 0} \Omega$
15. (a) $R=\frac{V}{I}=\frac{10 \mathrm{kV}}{5 \mathrm{~A}}=\mathbf{2} \mathbf{k} \Omega$
(b) $\quad R=\frac{V}{I}=\frac{7 \mathrm{~V}}{2 \mathrm{~mA}}=\mathbf{3 . 5} \mathbf{~ k} \boldsymbol{\Omega}$
(c) $\quad R=\frac{V}{I}=\frac{500 \mathrm{~V}}{250 \mathrm{~mA}}=\mathbf{2} \mathbf{k} \Omega$
(d) $\quad R=\frac{V}{I}=\frac{50 \mathrm{~V}}{500 \mu \mathrm{~A}}=100 \mathrm{k} \Omega$
(e) $R=\frac{V}{I}=\frac{1 \mathrm{kV}}{1 \mathrm{~mA}}=1 \mathbf{M} \Omega$
16. $R=\frac{V}{I}=\frac{6 \mathrm{~V}}{2 \mathrm{~mA}}=\mathbf{3} \mathbf{k} \boldsymbol{\Omega}$
17.
(a) $\quad R=\frac{V}{I}=\frac{8 \mathrm{~V}}{2 \mathrm{~A}}=\mathbf{4 \Omega}$
(b) $\quad R=\frac{V}{I}=\frac{12 \mathrm{~V}}{4 \mathrm{~mA}}=\mathbf{3} \mathbf{k} \boldsymbol{\Omega}$
(c) $\quad R=\frac{V}{I}=\frac{30 \mathrm{~V}}{150 \mu \mathrm{~A}}=0.2 \mathrm{M} \Omega=200 \mathbf{k} \Omega$
18. $I=\frac{V}{R}=\frac{3.2 \mathrm{~V}}{3.9 \Omega}=\mathbf{0 . 8 2} \mathrm{A}$

SECTION 3-3 Energy and Power

19. $P=\frac{W}{t}=\frac{26 \mathrm{~J}}{10 \mathrm{~s}}=2.6 \mathrm{~W}$
20. Since 1 watt $=1$ joule, $P=350 \mathrm{~J} / \mathrm{s}=\mathbf{3 5 0} \mathbf{~ W}$
21. $P=\frac{W}{t}=\frac{7500 \mathrm{~J}}{5 \mathrm{~h}}$

$$
\left(\frac{7500 \mathrm{~J}}{5 \mathrm{~h}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=\frac{7500 \mathrm{~J}}{18,000 \mathrm{~s}}=0.417 \mathrm{~J} / \mathrm{s}=\mathbf{4 1 7} \mathbf{~ m W}
$$

22.

(a) $1000 \mathrm{~W}=1 \times 10^{3} \mathrm{~W}=\mathbf{1} \mathbf{k W}$
(b) $3750 \mathrm{~W}=3.750 \times 10^{3} \mathrm{~W}=\mathbf{3 . 7 5} \mathbf{~ k W}$
(c) $160 \mathrm{~W}=0.160 \times 10^{3} \mathrm{~W}=\mathbf{0 . 1 6 0} \mathbf{~ k W}$
(d) $50,000 \mathrm{~W}=50 \times 10^{3} \mathrm{~W}=\mathbf{5 0} \mathbf{~ k W}$
23.
(a) $1,000,000 \mathrm{~W}=1 \times 10^{6} \mathrm{~W}=\mathbf{1} \mathbf{~ M W}$
(b) $3 \times 10^{6} \mathrm{~W}=\mathbf{3} \mathbf{~ M W}$
(c) $15 \times 10^{7} \mathrm{~W}=150 \times 10^{6} \mathrm{~W}=\mathbf{1 5 0} \mathbf{M W}$
(d) $8700 \mathrm{~kW}=8.7 \times 10^{6} \mathrm{~W}=8.7 \mathbf{~ M W}$
24.
(a) $1 \mathrm{~W}=1000 \times 10^{-3} \mathrm{~W}=\mathbf{1 0 0 0} \mathbf{~ m W}$
(b) $\quad 0.4 \mathrm{~W}=400 \times 10^{-3} \mathrm{~W}=\mathbf{4 0 0} \mathbf{~ m W}$
(c) $0.002 \mathrm{~W}=2 \times 10^{-3} \mathrm{~W}=\mathbf{2} \mathbf{~ m W}$
(d) $0.0125 \mathrm{~W}=12.5 \times 10^{-3} \mathrm{~W}=\mathbf{1 2 . 5} \mathbf{~ m W}$
25. (a) $2 \mathrm{~W}=\mathbf{2 , 0 0 0 , 0 0 0} \boldsymbol{\mu} \mathbf{W}$
(b) $0.0005 \mathrm{~W}=\mathbf{5 0 0} \boldsymbol{\mu} \mathbf{W}$
(c) $0.25 \mathrm{~mW}=\mathbf{2 5 0} \boldsymbol{\mu} \mathbf{W}$
(d) $0.00667 \mathrm{~mW}=\mathbf{6 . 6 7} \boldsymbol{\mu} \mathbf{W}$
26.
(a) $1.5 \mathrm{~kW}=1.5 \times 10^{3} \mathrm{~W}=1500 \mathrm{~W}$
(b) $0.5 \mathrm{MW}=0.5 \times 10^{6} \mathrm{~W}=\mathbf{5 0 0 , 0 0 0} \mathbf{~ W}$
(c) $350 \mathrm{~mW}=350 \times 10^{-3} \mathrm{~W}=\mathbf{0 . 3 5 0} \mathbf{~ W}$
(d) $9000 \mu \mathrm{~W}=9000 \times 10^{-6} \mathrm{~W}=0.009 \mathrm{~W}$
27. $P=\frac{W}{t}$ in watts
$V=\frac{W}{Q}$
$I=\frac{Q}{t}$
$P=V I=\frac{W}{t}$
So, $(1 \mathrm{~V})(1 \mathrm{~A})=1 \mathrm{~W}$
28. $P=\frac{W}{t}=\frac{1 \mathrm{~J}}{1 \mathrm{~s}}=1 \mathrm{~W}$
$1 \mathrm{~kW}=1000 \mathrm{~W}=\frac{1000 \mathrm{~J}}{1 \mathrm{~s}}$
1 kW -second $=1000 \mathrm{~J}$
$1 \mathrm{kWh}=3600 \times 1000 \mathrm{~J}$
$1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J}$

SECTION 3-4 Power in an Electric Circuit

29. $P=V I=(5.5 \mathrm{~V})(3 \mathrm{~mA})=\mathbf{1 6 . 5} \mathbf{~ m W}$
30. $P=V I=(115 \mathrm{~V})(3 \mathrm{~A})=\mathbf{3 4 5} \mathbf{W}$
31. $P=I^{2} R=(500 \mathrm{~mA})^{2}(4.7 \mathrm{k} \Omega)=\mathbf{1 . 1 8} \mathbf{~ k W}$
32. $P=I^{2} R=(5.0 \mathrm{~A})^{2}\left(20 \times 10^{-3} \Omega\right)=\mathbf{5 0 0} \mathbf{~ m W}$
33. $P=\frac{V^{2}}{R}=\frac{(60 \mathrm{~V})^{2}}{620 \Omega}=5.81 \mathrm{~W}$
34. $P=\frac{V^{2}}{R}=\frac{(1.5 \mathrm{~V})^{2}}{56 \Omega}=0.0402 \mathrm{~W}=40.2 \mathrm{~mW}$
35. $P=I^{2} R$
$R=\frac{P}{I^{2}}=\frac{100 \mathrm{~W}}{(2 \mathrm{~A})^{2}}=\mathbf{2 5} \boldsymbol{\Omega}$
36. 5×10^{6} watts for 1 minute $=5 \times 10^{3} \mathrm{kWmin}$
$\frac{5 \times 10^{3} \mathrm{~kW} \min }{60 \mathrm{~min} / 1 \mathrm{hr}}=\mathbf{8 3 . 3} \mathbf{k W h}$
37. $\frac{6700 \mathrm{~W} / \mathrm{s}}{(1000 \mathrm{~W} / \mathrm{kW})(3600 \mathrm{~s} / \mathrm{h})}=\mathbf{0 . 0 0 1 8 6} \mathbf{k W h}$
38. $(50 \mathrm{~W})(12 \mathrm{~h})=\mathbf{6 0 0} \mathbf{~ W h}$
$50 \mathrm{~W}=0.05 \mathrm{~kW}$
$(0.05 \mathrm{~kW})(12 \mathrm{~h})=\mathbf{0 . 6} \mathbf{~ k W h}$
39. $I=\frac{V}{R_{L}}=\frac{1.25 \mathrm{~V}}{10 \Omega}=0.125 \mathrm{~A}$
$P=V I=(1.25 \mathrm{~V})(0.125 \mathrm{~A})=0.156 \mathrm{~W}=156 \mathbf{~ m W}$
40. $P=\frac{W}{t}$
$156 \mathrm{~mW}=\frac{156 \mathrm{~mJ}}{1 \mathrm{~s}}$
$W_{\text {tot }}=(156 \mathrm{~mJ} / \mathrm{s})(90 \mathrm{~h})(3600 \mathrm{~s} / \mathrm{h})=\mathbf{5 0 , 5 4 4} \mathbf{~ J}$

SECTION 3-5 The Power Rating of Resistors

41. $P=I^{2} R=(10 \mathrm{~mA})^{2}(6.8 \mathrm{k} \Omega)=0.68 \mathrm{~W}$

Use the next highest standard power rating of $\mathbf{1} \mathbf{W}$.
42. If the 8 W resistor is used, it will be operating in a marginal condition.

To allow for a safety margin of $\mathbf{2 0 \%}$, use a $\mathbf{1 2} \mathbf{W}$ resistor.

SECTION 3-6 Energy Conversion and Voltage Drop in a Resistance

43. (a) + at top, - at bottom of resistor
(b) + at bottom, - at top of resistor
(c) + on right, - on left of resistor

SECTION 3-7 Power Supplies and Batteries

44. $V_{\text {OUT }}=\sqrt{P_{L} R_{L}}=\sqrt{(1 \mathrm{~W})(50 \Omega)}=7.07 \mathrm{~V}$
45. Ampere-hour rating $=(1.5 \mathrm{~A})(24 \mathrm{~h})=\mathbf{3 6} \mathbf{A h}$
46. $I=\frac{80 \mathrm{Ah}}{10 \mathrm{~h}}=\mathbf{8} \mathbf{~ A}$
47. $I=\frac{650 \mathrm{mAh}}{48 \mathrm{~h}}=\mathbf{1 3 . 5} \mathbf{~ m A}$
48. $\quad P_{\text {LOST }}=P_{\text {IN }}-P_{\text {OUT }}=500 \mathrm{~mW}-400 \mathrm{~mW}=\mathbf{1 0 0} \mathbf{~ m W}$
$\%$ efficiency $=\left(\frac{P_{\text {OUT }}}{P_{\text {IN }}}\right) 100 \%=\left(\frac{400 \mathrm{~mW}}{500 \mathrm{~mW}}\right) 100 \%=\mathbf{8 0 \%}$
49. $\quad P_{\text {out }}=($ efficiency $) P_{\text {IN }}=(0.85)(5 \mathrm{~W})=\mathbf{4 . 2 5} \mathbf{~ W}$

SECTION 3-8 Introduction to Troubleshooting

50. The 4th bulb from the left is open.
51. If should take five (maximum) resistance measurements.

ADVANCED PROBLEMS

52. Assume that the total consumption of the power supply is the input power plus the power lost.
$P_{\text {OUT }}=2 \mathrm{~W}$
$\%$ efficiency $=\left(\frac{P_{\text {OUT }}}{P_{\mathrm{IN}}}\right) 100 \%$
$P_{\text {IN }}=\left(\frac{P_{\text {OUT }}}{\% \text { efficiency }}\right) 100 \%=\left(\frac{2 \mathrm{~W}}{60 \%}\right) 100 \%=3.33 \mathrm{~W}$
The power supply itself uses
$P_{\text {IN }}-P_{\text {out }}=3.33 \mathrm{~W}-2 \mathrm{~W}=1.33 \mathrm{~W}$
Energy $=W=P t=(1.33 \mathrm{~W})(24 \mathrm{~h})=31.9 \mathrm{~Wh} \cong \mathbf{0 . 0 3 2} \mathbf{~ k W h}$
53. $R_{f}=\frac{V}{I}=\frac{120 \mathrm{~V}}{0.8 \mathrm{~A}}=\mathbf{1 5 0} \Omega$
54. Measure the current with an ammeter connected as shown in Figure 3-1. Then calculate the unknown resistance with the formula, $\boldsymbol{R}=\mathbf{1 2} \mathbf{V} / \mathbf{I}$.

Figure 3-1
55. Calculate I for each value of V :
$I_{1}=\frac{0 \mathrm{~V}}{100 \Omega}=\mathbf{0} \mathbf{A} \quad I_{2}=\frac{10 \mathrm{~V}}{100 \Omega}=\mathbf{1 0 0} \mathbf{m A}$
$I_{3}=\frac{20 \mathrm{~V}}{100 \Omega}=\mathbf{2 0 0} \mathbf{m A} \quad I_{4}=\frac{30 \mathrm{~V}}{100 \Omega}=\mathbf{3 0 0} \mathbf{~ m A}$
$I_{5}=\frac{40 \mathrm{~V}}{100 \Omega}=\mathbf{4 0 0} \mathbf{~ m A} \quad I_{6}=\frac{50 \mathrm{~V}}{100 \Omega}=\mathbf{5 0 0} \mathbf{~ m A}$
$I_{7}=\frac{60 \mathrm{~V}}{100 \Omega}=600 \mathrm{~mA} \quad I_{8}=\frac{70 \mathrm{~V}}{100 \Omega}=\mathbf{7 0 0} \mathrm{mA}$
$I_{9}=\frac{80 \mathrm{~V}}{100 \Omega}=\mathbf{8 0 0} \mathbf{~ m A} \quad I_{10}=\frac{90 \mathrm{~V}}{100 \Omega}=\mathbf{9 0 0} \mathbf{~ m A}$
$I_{11}=\frac{100 \mathrm{~V}}{100 \Omega}=\mathbf{1} \mathbf{A}$

The graph is a straight line as shown in Figure 3-2. This indicates a linear relationship between I and V.

Figure 3-2
56. $R=\frac{V_{\mathrm{S}}}{I}=\frac{1 \mathrm{~V}}{5 \mathrm{~mA}}=\mathbf{2 0 0} \Omega$
(a) $\quad I=\frac{V_{\mathrm{S}}}{R}=\frac{1.5 \mathrm{~V}}{200 \Omega}=7.5 \mathrm{~mA}$
(b) $\quad I=\frac{V_{\mathrm{S}}}{R}=\frac{2 \mathrm{~V}}{200 \Omega}=\mathbf{1 0} \mathbf{m A}$
(c) $\quad I=\frac{V_{\mathrm{S}}}{R}=\frac{3 \mathrm{~V}}{200 \Omega}=\mathbf{1 5} \mathbf{~ m A}$
(d) $\quad I=\frac{V_{\mathrm{S}}}{R}=\frac{4 \mathrm{~V}}{200 \Omega}=\mathbf{2 0} \mathbf{~ m A}$
(e) $I=\frac{V_{\mathrm{S}}}{R}=\frac{10 \mathrm{~V}}{200 \Omega}=\mathbf{5 0} \mathbf{~ m A}$
57. $R_{1}=\frac{V}{I}=\frac{1 \mathrm{~V}}{2 \mathrm{~A}}=\mathbf{0 . 5 \Omega} \quad R_{2}=\frac{V}{I}=\frac{1 \mathrm{~V}}{1 \mathrm{~A}}=\mathbf{1} \Omega \quad R_{3}=\frac{V}{I}=\frac{1 \mathrm{~V}}{0.5 \mathrm{~A}}=\mathbf{2} \Omega$
58. $\frac{V_{2}}{30 \mathrm{~mA}}=\frac{10 \mathrm{~V}}{50 \mathrm{~mA}}$
$V_{2}=\frac{(10 \mathrm{~V})(30 \mathrm{~mA})}{50 \mathrm{~mA}}=6 \mathrm{~V}$ new value
The voltage decreased by 4 V , from 10 V to 6 V .
59. The current increase is 50%, so the voltage increase must be the same; that is, the voltage must be increased by $(0.5)(20 \mathrm{~V})=\mathbf{1 0} \mathrm{V}$.

The new value of voltage is $V_{2}=20 \mathrm{~V}+(0.5)(20 \mathrm{~V})=20 \mathrm{~V}+10 \mathrm{~V}=\mathbf{3 0} \mathbf{~ V}$
60. Wire resistance: $R_{\mathrm{W}}=\frac{(10.4 \mathrm{CM} \cdot \Omega / \mathrm{ft})(24 \mathrm{ft})}{1624.3 \mathrm{CM}}=0.154 \Omega$
(a) $\quad I=\frac{V}{R+R_{\mathrm{W}}}=\frac{6 \mathrm{~V}}{100.154 \Omega}=\mathbf{5 9 . 9} \mathbf{~ m A}$
(b) $\quad V_{R}=(59.9 \mathrm{~mA})(100 \Omega)=\mathbf{5 . 9 9} \mathbf{~ V}$
(c) $\quad V_{R_{\mathrm{W}}}=6 \mathrm{~V}-5.99 \mathrm{~V}=0.01 \mathrm{~V}$

For one length of wire, $V=\frac{0.01 \mathrm{~V}}{2}=\mathbf{0 . 0 0 5} \mathbf{V}$
61. $300 \mathrm{~W}=0.3 \mathrm{~kW}$

30 days $=(30$ days $)(24 \mathrm{~h} /$ day $)=720 \mathrm{~h}$
Energy $=(0.3 \mathrm{~kW})(720 \mathrm{~h})=\mathbf{2 1 6} \mathbf{~ k W h}$
62. $\frac{1500 \mathrm{kWh}}{31 \text { days }}=48.39 \mathrm{kWh} /$ day
$P=\frac{48.39 \mathrm{kWh} / \text { day }}{24 \mathrm{~h} / \text { day }}=\mathbf{2 . 0 2} \mathbf{~ k W}$
63. The minimum power rating you should use is $\mathbf{1 2} \mathbf{W}$ so that the power dissipation does not exceed the rating.
64. (a) $P=\frac{V^{2}}{R}=\frac{(12 \mathrm{~V})^{2}}{10 \Omega}=\mathbf{1 4 . 4} \mathbf{~ W}$
(b) $\quad W=P t=(14.4 \mathrm{~W})(2 \mathrm{~min})(1 / 60 \mathrm{~h} / \mathrm{min})=\mathbf{0 . 4 8} \mathbf{~ W h}$
(c) Neither, the power is the same because it is not time dependent.
65. $V_{R(\max)}=120 \mathrm{~V}-100 \mathrm{~V}=20 \mathrm{~V}$
$I_{\text {max }}=\frac{V_{R(\text { max })}}{R_{\text {min }}}=\frac{20 \mathrm{~V}}{8 \Omega}=2.5 \mathrm{~A}$
A fuse with a rating of less than 2.5 A must be used. A 2 A fuse is recommended.
66. $I=\sqrt{\frac{P}{R}}=\sqrt{\frac{0.5 \mathrm{~W}}{0.030 \Omega}}=\mathbf{4 . 0 8} \mathrm{A}$
67. Power will increase by four times.
66. The materials required for the Load Test Box are as follows:

Item	Component	Qty
1	Resistor: $5.0 \Omega, 10 \mathrm{~W}$	1
2	Resistor: $16 \Omega, 5 \mathrm{~W}$	1
3	Resistor: $100 \Omega, 2.0 \mathrm{~W}$	1
4	Resistor: $150 \Omega, 3.0 \mathrm{~W}$	1
5	1 pole, 4 position rotary switch	1
6	Knob	1
7	Enclosure (4" x 4" $\times 2^{\prime \prime}$ Al)	1
8	Banana plug terminals	2
9	Fuse (1.5 A) and fuse holder	1
10	PC board (etched with pattern)	1
11	Screws, washers, nuts	4
12	Standoffs	4

69. See Figure 3-3.

Figure 3-3

Multisim Troubleshooting Problems

70. R is open.
71. No fault
72. $\quad R_{1}$ is shorted.
73. Lamp 4 is shorted.
74. Lamp 6 is open.
