Simple Resistive Circuits

Assessment Problems

AP 3.1

Start from the right hand side of the circuit and make series and parallel combinations of the resistors until one equivalent resistor remains. Begin by combining the 6Ω resistor and the 10Ω resistor in series:
$6 \Omega+10 \Omega=16 \Omega$
Now combine this 16Ω resistor in parallel with the 64Ω resistor:

$$
16 \Omega \| 64 \Omega=\frac{(16)(64)}{16+64}=\frac{1024}{80}=12.8 \Omega
$$

This equivalent 12.8Ω resistor is in series with the 7.2Ω resistor:
$12.8 \Omega+7.2 \Omega=20 \Omega$
Finally, this equivalent 20Ω resistor is in parallel with the 30Ω resistor:
$20 \Omega \| 30 \Omega=\frac{(20)(30)}{20+30}=\frac{600}{50}=12 \Omega$
Thus, the simplified circuit is as shown:

[a] With the simplified circuit we can use Ohm's law to find the voltage across both the current source and the 12Ω equivalent resistor:

$$
v=(12 \Omega)(5 \mathrm{~A})=60 \mathrm{~V}
$$

[b] Now that we know the value of the voltage drop across the current source, we can use the formula $p=-v i$ to find the power associated with the source:
$p=-(60 \mathrm{~V})(5 \mathrm{~A})=-300 \mathrm{~W}$
Thus, the source delivers 300 W of power to the circuit.
[c] We now can return to the original circuit, shown in the first figure. In this circuit, $v=60 \mathrm{~V}$, as calculated in part (a). This is also the voltage drop across the 30Ω resistor, so we can use Ohm's law to calculate the current through this resistor:
$i_{A}=\frac{60 \mathrm{~V}}{30 \Omega}=2 \mathrm{~A}$
Now write a KCL equation at the upper left node to find the current i_{B} :

$$
-5 \mathrm{~A}+i_{A}+i_{B}=0 \quad \text { so } \quad i_{B}=5 \mathrm{~A}-i_{A}=5 \mathrm{~A}-2 \mathrm{~A}=3 \mathrm{~A}
$$

Next, write a KVL equation around the outer loop of the circuit, using Ohm's law to express the voltage drop across the resistors in terms of the current through the resistors:
$-v+7.2 i_{B}+6 i_{C}+10 i_{C}=0$
So $\quad 16 i_{C}=v-7.2 i_{B}=60 \mathrm{~V}-(7.2)(3)=38.4 \mathrm{~V}$
Thus $\quad i_{C}=\frac{38.4}{16}=2.4 \mathrm{~A}$
Now that we have the current through the 10Ω resistor we can use the formula $p=R i^{2}$ to find the power:

$$
p_{10 \Omega}=(10)(2.4)^{2}=57.6 \mathrm{~W}
$$

AP 3.2

[a] We can use voltage division to calculate the voltage v_{o} across the $75 \mathrm{k} \Omega$ resistor:
$v_{o}($ no load $)=\frac{75,000}{75,000+25,000}(200 \mathrm{~V})=150 \mathrm{~V}$
[b] When we have a load resistance of $150 \mathrm{k} \Omega$ then the voltage v_{o} is across the parallel combination of the $75 \mathrm{k} \Omega$ resistor and the $150 \mathrm{k} \Omega$ resistor. First, calculate the equivalent resistance of the parallel combination:
$75 \mathrm{k} \Omega \| 150 \mathrm{k} \Omega=\frac{(75,000)(150,000)}{75,000+150,000}=50,000 \Omega=50 \mathrm{k} \Omega$
Now use voltage division to find v_{o} across this equivalent resistance:
$v_{o}=\frac{50,000}{50,000+25,000}(200 \mathrm{~V})=133.3 \mathrm{~V}$
[c] If the load terminals are short-circuited, the $75 \mathrm{k} \Omega$ resistor is effectively removed from the circuit, leaving only the voltage source and the $25 \mathrm{k} \Omega$ resistor. We can calculate the current in the resistor using Ohm's law:
$i=\frac{200 \mathrm{~V}}{25 \mathrm{k} \Omega}=8 \mathrm{~mA}$
Now we can use the formula $p=R i^{2}$ to find the power dissipated in the $25 \mathrm{k} \Omega$ resistor:
$p_{25 k}=(25,000)(0.008)^{2}=1.6 \mathrm{~W}$
[d] The power dissipated in the $75 \mathrm{k} \Omega$ resistor will be maximum at no load since v_{o} is maximum. In part (a) we determined that the no-load voltage is 150 V , so be can use the formula $p=v^{2} / R$ to calculate the power:
$p_{75 k}(\max)=\frac{(150)^{2}}{75,000}=0.3 \mathrm{~W}$
AP 3.3

[a] We will write a current division equation for the current throught the 80Ω resistor and use this equation to solve for R :
$i_{80 \Omega}=\frac{R}{R+40 \Omega+80 \Omega}(20 \mathrm{~A})=4 \mathrm{~A} \quad$ so $\quad 20 R=4(R+120)$
Thus $\quad 16 R=480 \quad$ and $\quad R=\frac{480}{16}=30 \Omega$
[b] With $R=30 \Omega$ we can calculate the current through R using current division, and then use this current to find the power dissipated by R, using the formula $p=R i^{2}$:
$i_{R}=\frac{40+80}{40+80+30}(20 \mathrm{~A})=16 \mathrm{~A} \quad$ so $\quad p_{R}=(30)(16)^{2}=7680 \mathrm{~W}$
[c] Write a KVL equation around the outer loop to solve for the voltage v, and then use the formula $p=-v i$ to calculate the power delivered by the current source:
$-v+(60 \Omega)(20 \mathrm{~A})+(30 \Omega)(16 \mathrm{~A})=0 \quad$ so $\quad v=1200+480=1680 \mathrm{~V}$
Thus, $\quad p_{\text {source }}=-(1680 \mathrm{~V})(20 \mathrm{~A})=-33,600 \mathrm{~W}$
Thus, the current source generates $33,600 \mathrm{~W}$ of power.
AP 3.4

[a] First we need to determine the equivalent resistance to the right of the 40Ω and 70Ω resistors:
$R_{\mathrm{eq}}=20 \Omega\|30 \Omega\|(50 \Omega+10 \Omega) \quad$ so $\quad \frac{1}{R_{\mathrm{eq}}}=\frac{1}{20 \Omega}+\frac{1}{30 \Omega}+\frac{1}{60 \Omega}=\frac{1}{10 \Omega}$
Thus, $\quad R_{\text {eq }}=10 \Omega$
Now we can use voltage division to find the voltage v_{o} :
$v_{o}=\frac{40}{40+10+70}(60 \mathrm{~V})=20 \mathrm{~V}$
[b] The current through the 40Ω resistor can be found using Ohm's law:
$i_{40 \Omega}=\frac{v_{o}}{40}=\frac{20 \mathrm{~V}}{40 \Omega}=0.5 \mathrm{~A}$
This current flows from left to right through the 40Ω resistor. To use current division, we need to find the equivalent resistance of the two parallel branches containing the 20Ω resistor and the 50Ω and 10Ω resistors:
$20 \Omega \|(50 \Omega+10 \Omega)=\frac{(20)(60)}{20+60}=15 \Omega$
Now we use current division to find the current in the 30Ω branch:
$i_{30 \Omega}=\frac{15}{15+30}(0.5 \mathrm{~A})=0.16667 \mathrm{~A}=166.67 \mathrm{~mA}$
[c] We can find the power dissipated by the 50Ω resistor if we can find the current in this resistor. We can use current division to find this current
from the current in the 40Ω resistor, but first we need to calculate the equivalent resistance of the 20Ω branch and the 30Ω branch:
$20 \Omega \| 30 \Omega=\frac{(20)(30)}{20+30}=12 \Omega$
Current division gives:
$i_{50 \Omega}=\frac{12}{12+50+10}(0.5 \mathrm{~A})=0.08333 \mathrm{~A}$
Thus, $\quad p_{50 \Omega}=(50)(0.08333)^{2}=0.34722 \mathrm{~W}=347.22 \mathrm{~mW}$
AP 3.5 [a]

We can find the current i using Ohm's law:
$i=\frac{1 \mathrm{~V}}{100 \Omega}=0.01 \mathrm{~A}=10 \mathrm{~mA}$
[b]

$R_{m}=50 \Omega \| 5.555 \Omega=5 \Omega$
We can use the meter resistance to find the current using Ohm's law:

$$
i_{\mathrm{meas}}=\frac{1 \mathrm{~V}}{100 \Omega+5 \Omega}=0.009524=9.524 \mathrm{~mA}
$$

AP 3.6 [a]

Use voltage division to find the voltage v :
$v=\frac{75,000}{75,000+15,000}(60 \mathrm{~V})=50 \mathrm{~V}$
[b]

The meter resistance is a series combination of resistances:
$R_{m}=149,950+50=150,000 \Omega$
We can use voltage division to find v, but first we must calculate the equivalent resistance of the parallel combination of the $75 \mathrm{k} \Omega$ resistor and the voltmeter:
$75,000 \Omega \| 150,000 \Omega=\frac{(75,000)(150,000)}{75,000+150,000}=50 \mathrm{k} \Omega$
Thus, $\quad v_{\text {meas }}=\frac{50,000}{50,000+15,000}(60 \mathrm{~V})=46.15 \mathrm{~V}$
AP 3.7 [a] Using the condition for a balanced bridge, the products of the opposite resistors must be equal. Therefore,
$100 R_{x}=(1000)(150) \quad$ so $\quad R_{x}=\frac{(1000)(150)}{100}=1500 \Omega=1.5 \mathrm{k} \Omega$
[b] When the bridge is balanced, there is no current flowing through the meter, so the meter acts like an open circuit. This places the following branches in parallel: The branch with the voltage source, the branch with the series combination R_{1} and R_{3} and the branch with the series combination of R_{2} and R_{x}. We can find the current in the latter two branches using Ohm's law:
$i_{R_{1}, R_{3}}=\frac{5 \mathrm{~V}}{100 \Omega+150 \Omega}=20 \mathrm{~mA} ; \quad i_{R_{2}, R_{x}}=\frac{5 \mathrm{~V}}{1000+1500}=2 \mathrm{~mA}$
We can calculate the power dissipated by each resistor using the formula $p=R i^{2}$:
$p_{100 \Omega}=(100 \Omega)(0.02 \mathrm{~A})^{2}=40 \mathrm{~mW}$
$p_{150 \Omega}=(150 \Omega)(0.02 \mathrm{~A})^{2}=60 \mathrm{~mW}$
$p_{1000 \Omega}=(1000 \Omega)(0.002 \mathrm{~A})^{2}=4 \mathrm{~mW}$
$p_{1500 \Omega}=(1500 \Omega)(0.002 \mathrm{~A})^{2}=6 \mathrm{~mW}$
Since none of the power dissipation values exceeds 250 mW , the bridge can be left in the balanced state without exceeding the power-dissipating capacity of the resistors.

AP 3.8 Convert the three Y-connected resistors, $20 \Omega, 10 \Omega$, and 5Ω to three Δ-connected resistors $R_{\mathrm{a}}, R_{\mathrm{b}}$, and R_{c}. To assist you the figure below has both the Y-connected resistors and the Δ-connected resistors

$$
\begin{aligned}
& R_{\mathrm{a}}=\frac{(5)(10)+(5)(20)+(10)(20)}{20}=17.5 \Omega \\
& R_{\mathrm{b}}=\frac{(5)(10)+(5)(20)+(10)(20)}{10}=35 \Omega \\
& R_{\mathrm{c}}=\frac{(5)(10)+(5)(20)+(10)(20)}{5}=70 \Omega
\end{aligned}
$$

The circuit with these new Δ-connected resistors is shown below:

From this circuit we see that the 70Ω resistor is parallel to the 28Ω resistor:
$70 \Omega \| 28 \Omega=\frac{(70)(28)}{70+28}=20 \Omega$
Also, the 17.5Ω resistor is parallel to the 105Ω resistor:
$17.5 \Omega \| 105 \Omega=\frac{(17.5)(105)}{17.5+105}=15 \Omega$
Once the parallel combinations are made, we can see that the equivalent 20Ω resistor is in series with the equivalent 15Ω resistor, giving an equivalent resistance of $20 \Omega+15 \Omega=35 \Omega$. Finally, this equivalent 35Ω resistor is in parallel with the other 35Ω resistor:

$$
35 \Omega \| 35 \Omega=\frac{(35)(35)}{35+35}=17.5 \Omega
$$

Thus, the resistance seen by the 2 A source is 17.5Ω, and the voltage can be calculated using Ohm's law:

$$
v=(17.5 \Omega)(2 \mathrm{~A})=35 \mathrm{~V}
$$

Problems

P 3.1 [a] The $6 \mathrm{k} \Omega$ and $12 \mathrm{k} \Omega$ resistors are in series, as are the $9 \mathrm{k} \Omega$ and $7 \mathrm{k} \Omega$ resistors. The simplified circuit is shown below:

[b] The $3 \mathrm{k} \Omega, 5 \mathrm{k} \Omega$, and $7 \mathrm{k} \Omega$ resistors are in series. The simplified circuit is shown below:

[c] The $300 \Omega, 400 \Omega$, and 500Ω resistors are in series. The simplified circuit is shown below:

P 3.2 [a] The 10Ω and 40Ω resistors are in parallel, as are the 100Ω and 25Ω resistors. The simplified circuit is shown below:

[b] The $9 \mathrm{k} \Omega, 18 \mathrm{k} \Omega$, and $6 \mathrm{k} \Omega$ resistors are in parallel. The simplified circuit is shown below:

[c] The $600 \Omega, 200 \Omega$, and 300Ω resistors are in parallel. The simplified circuit is shown below:

P 3.3 Always work from the side of the circuit furthest from the source. Remember that the current in all series-connected circuits is the same, and that the voltage drop across all parallel-connected resistors is the same.
[a] $R_{\text {eq }}=6+12+[4 \|(9+7)]=6+12+4 \| 16=6+12+3.2=21.2 \Omega$
$[\mathrm{b}] R_{\text {eq }}=4 \mathrm{k}+[10 \mathrm{k} \|(3 \mathrm{k}+5 \mathrm{k}+7 \mathrm{k})]=4 \mathrm{k}+10 \mathrm{k} \| 15 \mathrm{k}=4 \mathrm{k}+6 \mathrm{k}=10 \mathrm{k} \Omega$
$\left[\right.$ c] $R_{\text {eq }}=300+400+500+(600 \| 1200)=300+400+500+400=1600 \Omega$
P 3.4 Always work from the side of the circuit furthest from the source. Remember that the current in all series-connected circuits is the same, and that the voltage drop across all parallel-connected resistors is the same.
[a] $R_{\text {eq }}=18+[100\|25\|(10 \| 40+22)]=18+[100\|25\|(8+22)]$

$$
=18+[100\|25\| 30]=18+12=30 \Omega
$$

[b] $R_{\text {eq }}=10 \mathrm{k}\|[5 \mathrm{k}+2 \mathrm{k}+(9 \mathrm{k}\|18 \mathrm{k}\| 6 \mathrm{k})]=10 \mathrm{k}\|[5 \mathrm{k}+2 \mathrm{k}+3 \mathrm{k}]$

$$
=10 \mathrm{k} \| 10 \mathrm{k}=5 \mathrm{k} \Omega
$$

[c] $R_{\text {eq }}=600\|200\||300\|(250+150)=600\| 200\|\mid 300\| 400=80 \Omega$
P $3.5 \quad[\mathrm{a}] R_{\mathrm{ab}}=10+(5 \| 20)+6=10+4+6=20 \Omega$
[b] $R_{\mathrm{ab}}=30 \mathrm{k}\|60 \mathrm{k}\|[20 \mathrm{k}+(200 \mathrm{k} \| 50 \mathrm{k})]=30 \mathrm{k}\|60 \mathrm{k}\|(20 \mathrm{k}+40 \mathrm{k})$
$=30 \mathrm{k}\|60 \mathrm{k}\| 60 \mathrm{k}=15 \mathrm{k} \Omega$

P 3.6
[a] $60 \| 20=1200 / 80=15 \Omega$ $12 \| 24=288 / 36=8 \Omega$
$15+8+7=30 \Omega$
$30 \| 120=3600 / 150=24 \Omega$
$R_{\mathrm{ab}}=15+24+25=64 \Omega$
[b] $35+40=75 \Omega$
$75 \| 50=3750 / 125=30 \Omega$
$30+20=50 \Omega \quad 50 \| 75=3750 / 125=30 \Omega$
$30+10=40 \Omega \quad 40\|60+9\| 18=24+6=30 \Omega$
$30 \| 30=15 \Omega \quad R_{\mathrm{ab}}=10+15+5=30 \Omega$
[c] $50+30=80 \Omega$
$80 \| 20=16 \Omega$
$16+14=30 \Omega \quad 30+24=54 \Omega$
$54 \| 27=18 \Omega \quad 18+12=30 \Omega$
$30 \| 30=15 \Omega$
$R_{\mathrm{ab}}=3+15+2=20 \Omega$

P $3.7 \quad$ [a] For circuit (a)

$$
R_{\mathrm{ab}}=4\|(3+7+2)=4\| 12=3 \Omega
$$

For circuit (b)

$$
\begin{aligned}
R_{\mathrm{ab}} & =6+2+[8 \|(7+5\|2.5\| 7.5\|5\|(9+6))]=6+2+8 \|(7+1) \\
& =6+2+4=12 \Omega
\end{aligned}
$$

For circuit (c)
$144 \|(4+12)=14.4 \Omega$
$14.4+5.6=20 \Omega$
$20 \| 12=7.5 \Omega$
$7.5+2.5=10 \Omega$
$10 \| 15=6 \Omega$
$14+6+10=30 \Omega$
$R_{\mathrm{ab}}=30 \| 60=20 \Omega$
[b] $P_{a}=\frac{15^{2}}{3}=75 \mathrm{~W}$
$P_{b}=\frac{48^{2}}{12}=192 \mathrm{~W}$
$P_{c}=5^{2}(20)=500 \mathrm{~W}$

P $3.8 \quad[\mathbf{a}] \quad p_{4 \Omega}=i_{s}^{2} 4=(12)^{2} 4=576 \mathrm{~W} \quad p_{18 \Omega}=(4)^{2} 18=288 \mathrm{~W}$

$$
p_{3 \Omega}=(8)^{2} 3=192 \mathrm{~W} \quad p_{6 \Omega}=(8)^{2} 6=384 \mathrm{~W}
$$

[b] $p_{120 \mathrm{~V}}($ delivered $)=120 i_{s}=120(12)=1440 \mathrm{~W}$
[c] $p_{\text {diss }}=576+288+192+384=1440 \mathrm{~W}$
P $3.9 \quad[\mathbf{a}]$ From Ex. 3-1: $\quad i_{1}=4 \mathrm{~A}, \quad i_{2}=8 \mathrm{~A}, \quad i_{s}=12 \mathrm{~A}$
at node b: $\quad-12+4+8=0, \quad$ at node $\mathrm{d}: \quad 12-4-8=0$

[b] $\quad v_{1}=4 i_{s}=48 \mathrm{~V} \quad v_{3}=3 i_{2}=24 \mathrm{~V}$
$v_{2}=18 i_{1}=72 \mathrm{~V} \quad v_{4}=6 i_{2}=48 \mathrm{~V}$
loop abda: $-120+48+72=0$,
loop bcdb: $\quad-72+24+48=0$,
loop abcda: $\quad-120+48+24+48=0$
P 3.10
$R_{\text {eq }}=10\|[6+5 \|(8+12)]=10\|(6+5 \| 20)=10 \|(6+4)=5 \Omega$
$v_{10 \mathrm{~A}}=v_{10 \Omega}=(10 \mathrm{~A})(5 \Omega)=50 \mathrm{~V}$
Using voltage division:
$v_{5 \Omega}=\frac{5 \|(8+12)}{6+5 \|(8+12)}(50)=\frac{4}{6+4}(50)=20 \mathrm{~V}$
Thus, $p_{5 \Omega}=\frac{v_{5 \Omega}^{2}}{5}=\frac{20^{2}}{5}=80 \mathrm{~W}$
P $3.11 \quad[\mathbf{a}]$

$$
\begin{aligned}
& R_{\mathrm{eq}}=(10+20)\|[12+(90 \| 10)]=30\| 15=10 \Omega \\
& v_{2.4 \mathrm{~A}}=10(2.4)=24 \mathrm{~V}
\end{aligned}
$$

$v_{o}=v_{20 \Omega}=\frac{20}{10+20}(24)=16 \mathrm{~V}$
$v_{90 \Omega}=\frac{90 \| 10}{6+(90 \| 10)}(24)=\frac{9}{15}(24)=14.4 \mathrm{~V}$
$i_{o}=\frac{14.4}{90}=0.16 \mathrm{~A}$
[b] $p_{6 \Omega}=\frac{\left(v_{2.4 \mathrm{~A}}-v_{90 \Omega}\right)^{2}}{6}=\frac{(24-14.4)^{2}}{6}=15.36 \mathrm{~W}$
$[\mathbf{c}] p_{2.4 \mathrm{~A}}=-(2.4)(24)=-57.6 \mathrm{~W}$
Thus the power developed by the current source is 57.6 W .
P $3.12[\mathrm{a}] \quad R+R=2 R$
[b] $R+R+R+\cdots+R=n R$
[c] $R+R=2 R=3000 \quad$ so $\quad R=1500=1.5 \mathrm{k} \Omega$
This is a resistor from Appendix H.
[d] $n R=4000 ; \quad$ so if $n=4, \quad R=1 \mathrm{k} \Omega$
This is a resistor from Appendix H.
P $3.13 \quad[\mathrm{a}] \quad R_{\mathrm{eq}}=R \| R=\frac{R^{2}}{2 R}=\frac{R}{2}$
[b] $\quad R_{\mathrm{eq}}=R\|R\| R\|\cdots\| R \quad$ ($n R$'s)

$$
=\quad R \| \frac{R}{n-1}
$$

$$
=\frac{R^{2} /(n-1)}{R+R /(n-1)}=\frac{R^{2}}{n R}=\frac{R}{n}
$$

$[\mathrm{c}] \frac{R}{2}=5000 \quad$ so $\quad R=10 \mathrm{k} \Omega$
This is a resistor from Appendix H.
[d] $\frac{R}{n}=4000 \quad$ so $\quad R=4000 n$
If $n=3 \quad r=4000(3)=12 \mathrm{k} \Omega$
This is a resistor from Appendix H. So put three 12k resistors in parallel to get $4 \mathrm{k} \Omega$.
P $3.14 \quad 4=\frac{20 R_{2}}{R_{2}+40} \quad$ so $\quad R_{2}=10 \Omega$
$3=\frac{20 R_{\mathrm{e}}}{40+R_{\mathrm{e}}} \quad$ so $\quad R_{\mathrm{e}}=\frac{120}{17} \Omega$
Thus, $\quad \frac{120}{17}=\frac{10 R_{\mathrm{L}}}{10+R_{\mathrm{L}}} \quad$ so $\quad R_{\mathrm{L}}=24 \Omega$

P 3.15 [a] $v_{o}=\frac{160(3300)}{(4700+3300)}=66 \mathrm{~V}$
[b] $i=160 / 8000=20 \mathrm{~mA}$

$$
\begin{aligned}
& P_{R_{1}}=\left(400 \times 10^{-6}\right)\left(4.7 \times 10^{3}\right)=1.88 \mathrm{~W} \\
& P_{R_{2}}=\left(400 \times 10^{-6}\right)\left(3.3 \times 10^{3}\right)=1.32 \mathrm{~W}
\end{aligned}
$$

[c] Since R_{1} and R_{2} carry the same current and $R_{1}>R_{2}$ to satisfy the voltage requirement, first pick R_{1} to meet the 0.5 W specification
$i_{R_{1}}=\frac{160-66}{R_{1}}, \quad$ Therefore, $\left(\frac{94}{R_{1}}\right)^{2} R_{1} \leq 0.5$
Thus, $R_{1} \geq \frac{94^{2}}{0.5} \quad$ or $\quad R_{1} \geq 17,672 \Omega$
Now use the voltage specification:

$$
\frac{R_{2}}{R_{2}+17,672}(160)=66
$$

Thus, $R_{2}=12,408 \Omega$
P $3.16 \quad[\mathbf{a}] \quad v_{o}=\frac{40 R_{2}}{R_{1}+R_{2}}=8 \quad$ so $\quad R_{1}=4 R_{2}$
Let $R_{\mathrm{e}}=R_{2} \| R_{\mathrm{L}}=\frac{R_{2} R_{\mathrm{L}}}{R_{2}+R_{\mathrm{L}}}$
$v_{o}=\frac{40 R_{\mathrm{e}}}{R_{1}+R_{\mathrm{e}}}=7.5 \quad$ so $\quad R_{1}=4.33 R_{\mathrm{e}}$
Then, $4 R_{2}=4.33 R_{\mathrm{e}}=\frac{4.33\left(3600 R_{2}\right)}{3600+R_{2}}$
Thus, $R_{2}=300 \Omega \quad$ and $\quad R_{1}=4(300)=1200 \Omega$
[b] The resistor that must dissipate the most power is R_{1}, as it has the largest resistance and carries the same current as the parallel combination of R_{2} and the load resistor. The power dissipated in R_{1} will be maximum when the voltage across R_{1} is maximum. This will occur when the voltage divider has a resistive load. Thus,
$v_{R_{1}}=40-7.5=32.5 \mathrm{~V}$
$p_{R_{1}}=\frac{32.5^{2}}{1200}=880.2 \mathrm{~mW}$
Thus the minimum power rating for all resistors should be 1 W .

P 3.17 Refer to the solution to Problem 3.16. The voltage divider will reach the maximum power it can safely dissipate when the power dissipated in R_{1} equals 1 W . Thus,
$\frac{v_{R_{1}}^{2}}{1200}=1 \quad$ so $\quad v_{R_{1}}=34.64 \mathrm{~V}$
$v_{o}=40-34.64=5.36 \mathrm{~V}$
So, $\frac{40 R_{\mathrm{e}}}{1200+R_{\mathrm{e}}}=5.36 \quad$ and $\quad R_{\mathrm{e}}=185.68 \Omega$
Thus, $\frac{(300) R_{\mathrm{L}}}{300+R_{\mathrm{L}}}=185.68 \quad$ and $\quad R_{\mathrm{L}}=487.26 \Omega$
The minimum value for R_{L} from Appendix H is 560Ω.
P 3.18 Begin by using the relationships among the branch currents to express all branch currents in terms of i_{4} :
$i_{1}=2 i_{2}=2\left(2 i_{3}\right)=4\left(2 i_{4}\right)$
$i_{2}=2 i_{3}=2\left(2 i_{4}\right)$
$i_{3}=2 i_{4}$
Now use KCL at the top node to relate the branch currents to the current supplied by the source.
$i_{1}+i_{2}+i_{3}+i_{4}=1 \mathrm{~mA}$
Express the branch currents in terms of i_{4} and solve for i_{4} :
$1 \mathrm{~mA}=8 i_{4}+4 i_{4}+2 i_{4}+i_{4}=15 i_{4} \quad$ so $\quad i_{4}=\frac{0.001}{15} \mathrm{~A}$
Since the resistors are in parallel, the same voltage, 1 V appears across each of them. We know the current and the voltage for R_{4} so we can use Ohm's law to calculate R_{4} :
$R_{4}=\frac{v_{g}}{i_{4}}=\frac{1 \mathrm{~V}}{(1 / 15) \mathrm{mA}}=15 \mathrm{k} \Omega$
Calculate i_{3} from i_{4} and use Ohm's law as above to find R_{3} :
$i_{3}=2 i_{4}=\frac{0.002}{15} \mathrm{~A} \quad \therefore \quad R_{3}=\frac{v_{g}}{i_{3}}=\frac{1 \mathrm{~V}}{(2 / 15) \mathrm{mA}}=7.5 \mathrm{k} \Omega$

Calculate i_{2} from i_{4} and use Ohm's law as above to find R_{2} :
$i_{2}=4 i_{4}=\frac{0.004}{15} \mathrm{~A} \quad \therefore \quad R_{2}=\frac{v_{g}}{i_{2}}=\frac{1 \mathrm{~V}}{(4 / 15) \mathrm{mA}}=3750 \Omega$
Calculate i_{1} from i_{4} and use Ohm's law as above to find R_{1} :
$i_{1}=8 i_{4}=\frac{0.008}{15} \mathrm{~A} \quad \therefore \quad R_{1}=\frac{v_{g}}{i_{1}}=\frac{1 \mathrm{~V}}{(8 / 15) \mathrm{mA}}=1875 \Omega$
The resulting circuit is shown below:

P $3.19 \quad[\mathrm{a}]$

$40 \mathrm{k} \Omega+60 \mathrm{k} \Omega=100 \mathrm{k} \Omega$

$$
25 \mathrm{k} \Omega \| 100 \mathrm{k} \Omega=20 \mathrm{k} \Omega
$$

$$
\begin{aligned}
& v_{o 1}=\frac{20,000}{(75,000+20,000)}(380)=80 \mathrm{~V} \\
& v_{o}=\frac{60,000}{(100,000)}\left(v_{o 1}\right)=48 \mathrm{~V}
\end{aligned}
$$

[b]

$$
\begin{aligned}
& i=\frac{380}{100,000}=3.8 \mathrm{~mA} \\
& 25,000 i=95 \mathrm{~V} \\
& v_{o}=\frac{60,000}{100,000}(95)=57 \mathrm{~V}
\end{aligned}
$$

[c] It removes loading effect of second voltage divider on the first voltage divider. Observe that the open circuit voltage of the first divider is

$$
v_{o 1}^{\prime}=\frac{25,000}{(100,000)}(380)=95 \mathrm{~V}
$$

Now note this is the input voltage to the second voltage divider when the current controlled voltage source is used.

P $3.20 \frac{(24)^{2}}{R_{1}+R_{2}+R_{3}}=80, \quad$ Therefore, $R_{1}+R_{2}+R_{3}=7.2 \Omega$
$\frac{\left(R_{1}+R_{2}\right) 24}{\left(R_{1}+R_{2}+R_{3}\right)}=12$

Therefore, $2\left(R_{1}+R_{2}\right)=R_{1}+R_{2}+R_{3}$

Thus, $R_{1}+R_{2}=R_{3} ; \quad 2 R_{3}=7.2 ; \quad R_{3}=3.6 \Omega$
$\frac{R_{2}(24)}{R_{1}+R_{2}+R_{3}}=5$
$4.8 R_{2}=R_{1}+R_{2}+3.6=7.2$

Thus, $R_{2}=1.5 \Omega ; \quad R_{1}=7.2-R_{2}-R_{3}=2.1 \Omega$

P 3.21 [a] Let v_{o} be the voltage across the parallel branches, positive at the upper terminal, then

$$
i_{g}=v_{o} G_{1}+v_{o} G_{2}+\cdots+v_{o} G_{N}=v_{o}\left(G_{1}+G_{2}+\cdots+G_{N}\right)
$$

$$
\text { It follows that } \quad v_{o}=\frac{i_{g}}{\left(G_{1}+G_{2}+\cdots+G_{N}\right)}
$$

The current in the $k^{\text {th }}$ branch is $i_{k}=v_{o} G_{k}$; Thus,

$$
\begin{aligned}
i_{k} & =\frac{i_{g} G_{k}}{\left[G_{1}+G_{2}+\cdots+G_{N}\right]} \\
{\left[\text { b] } i_{5}\right.} & =\frac{40(0.2)}{2+0.2+0.125+0.1+0.05+0.025}=3.2 \mathrm{~A}
\end{aligned}
$$

P 3.22 [a] At no load: $v_{o}=k v_{s}=\frac{R_{2}}{R_{1}+R_{2}} v_{s}$.

$$
\text { At full load: } \quad v_{o}=\alpha v_{s}=\frac{R_{\mathrm{e}}}{R_{1}+R_{\mathrm{e}}} v_{s}, \quad \text { where } R_{\mathrm{e}}=\frac{R_{o} R_{2}}{R_{o}+R_{2}}
$$

$$
\begin{aligned}
\text { Therefore } k & =\frac{R_{2}}{R_{1}+R_{2}} \quad \text { and } \quad R_{1}=\frac{(1-k)}{k} R_{2} \\
\alpha & =\frac{R_{\mathrm{e}}}{R_{1}+R_{\mathrm{e}}} \quad \text { and } \quad R_{1}=\frac{(1-\alpha)}{\alpha} R_{\mathrm{e}} \\
\text { Thus }\left(\frac{1-\alpha}{\alpha}\right) & {\left[\frac{R_{2} R_{o}}{R_{o}+R_{2}}\right]=\frac{(1-k)}{k} R_{2} }
\end{aligned}
$$

Solving for R_{2} yields $\quad R_{2}=\frac{(k-\alpha)}{\alpha(1-k)} R_{o}$
Also, $\quad R_{1}=\frac{(1-k)}{k} R_{2} \quad \therefore \quad R_{1}=\frac{(k-\alpha)}{\alpha k} R_{o}$
[b] $\quad R_{1}=\left(\frac{0.05}{0.68}\right) R_{o}=2.5 \mathrm{k} \Omega$
$R_{2}=\left(\frac{0.05}{0.12}\right) R_{o}=14.167 \mathrm{k} \Omega$
[c]

Maximum dissipation in R_{2} occurs at no load, therefore,

$$
P_{R_{2}(\max)}=\frac{[(60)(0.85)]^{2}}{14,167}=183.6 \mathrm{~mW}
$$

Maximum dissipation in R_{1} occurs at full load.

$$
P_{R_{1}(\max)}=\frac{[60-0.80(60)]^{2}}{2500}=57.60 \mathrm{~mW}
$$

[d]

P 3.23 [a] The equivalent resistance of the circuit to the right of the 18Ω resistor is $100\|25\|[(40 \| 10)+22]=100\|25\| 30=12 \Omega$

Thus by voltage division,
$v_{18}=\frac{18}{18+12}(60)=36 \mathrm{~V}$
[b] The current in the 18Ω resistor can be found from its voltage using Ohm's law:
$i_{18}=\frac{36}{18}=2 \mathrm{~A}$
[c] The current in the 18Ω resistor divides among three branches - one containing 100Ω, one containing 25Ω and one containing $(22+40 \| 10)=30 \Omega$. Using current division,
$i_{25}=\frac{100\|25\| 30}{25}\left(i_{18}\right)=\frac{12}{25}(2)=0.96 \mathrm{~A}$
[d] The voltage drop across the 25Ω resistor can be found using Ohm's law:
$v_{25}=25 i_{25}=25(0.96)=24 \mathrm{~V}$
[e] The voltage v_{25} divides across the 22Ω resistor and the equivalent resistance $40 \| 10=8 \Omega$. Using voltage division,
$v_{10}=\frac{8}{8+22}(24)=6.4 \mathrm{~V}$
P 3.24 [a] The equivalent resistance to the right of the $10 \mathrm{k} \Omega$ resistor is
$5 \mathrm{k}+2 \mathrm{k}+[9 \mathrm{k}\|18 \mathrm{k}\| 6 \mathrm{k})]=10 \mathrm{k} \Omega$. Therefore,
$i_{10 \mathrm{k}}=\frac{10 \mathrm{k} \| 10 \mathrm{k}}{10 \mathrm{k}}(0.050)=25 \mathrm{~mA}$
[b] The voltage drop across the $10 \mathrm{k} \Omega$ resistor can be found using Ohm's law:
$v_{10 \mathrm{k}}=(10,000) i_{10 \mathrm{k}}=(10,000)(0.025)=250 \mathrm{~V}$
[c] The voltage $v_{10 \mathrm{k}}$ drops across the $5 \mathrm{k} \Omega$ resistor, the $2 \mathrm{k} \Omega$ resistor and the equivalent resistance of the $9 \mathrm{k} \Omega, 18 \mathrm{k} \Omega$ and $6 \mathrm{k} \Omega$ resistors in parallel. Thus, using voltage division,

$$
v_{6 \mathrm{k}}=\frac{2 \mathrm{k}}{5 \mathrm{k}+2 \mathrm{k}+[9 \mathrm{k}\|18 \mathrm{k}\| 6 \mathrm{k}]}(250)=\frac{2}{10}(250)=50 \mathrm{~V}
$$

[d] The current through the $2 \mathrm{k} \Omega$ resistor can be found from its voltage using Ohm's law:

$$
i_{2 \mathrm{k}}=\frac{v_{2 \mathrm{k}}}{2000}=\frac{50}{2000}=25 \mathrm{~mA}
$$

[e] The current through the $2 \mathrm{k} \Omega$ resistor divides among the $9 \mathrm{k} \Omega, 18 \mathrm{k} \Omega$, and $6 \mathrm{k} \Omega$. Using current division,

$$
i_{18 \mathrm{k}}=\frac{9 \mathrm{k}\|18 \mathrm{k}\| 6 \mathrm{k}}{18 \mathrm{k}}(0.025)=\frac{3}{18}(0.025)=4.167 \mathrm{~mA}
$$

P 3.25 The equivalent resistance of the circuit to the right of the 90Ω resistor is
$R_{\text {eq }}=[(150 \| 75)+40]\|(30+60)=90\| 90=45 \Omega$

Use voltage division to find the voltage drop between the top and bottom nodes:
$v_{\text {Req }}=\frac{45}{45+90}(3)=1 \mathrm{~V}$
Use voltage division again to find v_{1} from $v_{\text {Req }}$:
$v_{1}=\frac{150 \| 75}{150 \| 75+40}(1)=\frac{50}{90}(1)=\frac{5}{9} \mathrm{~V}$
Use voltage division one more time to find v_{2} from $v_{\text {Req }}$:
$v_{2}=\frac{30}{30+60}(1)=\frac{1}{3} \mathrm{~V}$
P $3.26 \quad i_{10 \mathrm{k}}=\frac{(18)(15 \mathrm{k})}{40 \mathrm{k}}=6.75 \mathrm{~mA}$
$v_{15 \mathrm{k}}=-(6.75 \mathrm{~m})(15 \mathrm{k})=-101.25 \mathrm{~V}$
$i_{3 \mathrm{k}}=18 \mathrm{~m}-6.75 \mathrm{~m}=11.25 \mathrm{~mA}$
$v_{12 \mathrm{k}}=-(12 \mathrm{k})(11.25 \mathrm{~m})=-135 \mathrm{~V}$
$v_{o}=-101.25-(-135)=33.75 \mathrm{~V}$
P $3.27 \quad[\mathrm{a}] v_{6 \mathrm{k}}=\frac{6}{6+2}(18)=13.5 \mathrm{~V}$

$$
\begin{aligned}
& v_{3 \mathrm{k}}=\frac{3}{3+9}(18)=4.5 \mathrm{~V} \\
& v_{x}=v_{6 \mathrm{k}}-v_{3 \mathrm{k}}=13.5-4.5=9 \mathrm{~V}
\end{aligned}
$$

[b] $v_{6 \mathrm{k}}=\frac{6}{8}\left(V_{s}\right)=0.75 V_{s}$

$$
\begin{aligned}
& v_{3 \mathrm{k}}=\frac{3}{12}\left(V_{s}\right)=0.25 V_{s} \\
& v_{x}=\left(0.75 V_{s}\right)-\left(0.25 V_{s}\right)=0.5 V_{s}
\end{aligned}
$$

P 3.28

$$
5 \Omega\|20 \Omega=4 \Omega ; \quad 4 \Omega+6 \Omega=10 \Omega ; \quad 10\|(15+12+13)=8 \Omega
$$

Therefore, $i_{g}=\frac{125}{2+8}=12.5 \mathrm{~A}$

$$
i_{6 \Omega}=\frac{8}{6+4}(12.5)=10 \mathrm{~A} ; \quad i_{o}=\frac{5 \| 20}{20}(10)=2 \mathrm{~A}
$$

P 3.29 [a] The equivalent resistance seen by the voltage source is
$60\|[8+30 \|(4+80 \| 20)]=60\|[8+30 \| 20]=60 \| 20=15 \Omega$
Thus,
$i_{g}=\frac{300}{15}=20 \mathrm{~A}$
[b] Use current division to find the current in the 8Ω division:
$\frac{15}{20}(20)=15 \mathrm{~A}$
Use current division again to find the current in the 30Ω resistor:
$i_{30}=\frac{12}{30}(15)=6 \mathrm{~A}$
Thus,
$p_{30}=(6)^{2}(30)=1080 \mathrm{~W}$
P 3.30
[a] The voltage across the 9Ω resistor is $1(12+6)=18 \mathrm{~V}$.
The current in the 9Ω resistor is $18 / 9=2 \mathrm{~A}$. The current in the 2Ω resistor is $1+2=3 \mathrm{~A}$. Therefore, the voltage across the 24Ω resistor is $(2)(3)+18=24 \mathrm{~V}$.
The current in the 24Ω resistor is 1 A . The current in the 3Ω resistor is $1+2+1=4 \mathrm{~A}$. Therefore, the voltage across the 72Ω resistor is $24+3(4)=36 \mathrm{~V}$.
The current in the 72Ω resistor is $36 / 72=0.5 \mathrm{~A}$.
The $20 \Omega \| 5 \Omega$ resistors are equivalent to a 4Ω resistor. The current in this equivalent resistor is $0.5+1+3=4.5 \mathrm{~A}$. Therefore the voltage across the 108Ω resistor is $36+4.5(4)=54 \mathrm{~V}$.
The current in the 108Ω resistor is $54 / 108=0.5 \mathrm{~A}$. The current in the 1.2Ω resistor is $4.5+0.5=5 \mathrm{~A}$. Therefore,

$$
v_{g}=(1.2)(5)+54=60 \mathrm{~V}
$$

[b] The current in the 20Ω resistor is

$$
i_{20}=\frac{(4.5)(4)}{20}=\frac{18}{20}=0.9 \mathrm{~A}
$$

Thus, the power dissipated by the 20Ω resistor is

$$
p_{20}=(0.9)^{2}(20)=16.2 \mathrm{~W}
$$

P 3.31 For all full-scale readings the total resistance is
$R_{V}+R_{\text {movement }}=\frac{\text { full-scale reading }}{10^{-3}}$
We can calculate the resistance of the movement as follows:
$R_{\text {movement }}=\frac{20 \mathrm{mV}}{1 \mathrm{~mA}}=20 \Omega$
Therefore, $\quad R_{V}=1000$ (full-scale reading) -20
[a] $R_{V}=1000(50)-20=49,980 \Omega$
[b] $R_{V}=1000(5)-20=4980 \Omega$
[c] $R_{V}=1000(0.25)-20=230 \Omega$
[d] $R_{V}=1000(0.025)-20=5 \Omega$
P $3.32[\mathbf{a}] v_{\text {meas }}=\left(50 \times 10^{-3}\right)[15\|45\|(4980+20)]=0.5612 \mathrm{~V}$
[b] $v_{\text {true }}=\left(50 \times 10^{-3}\right)(15 \| 45)=0.5625 \mathrm{~V}$

$$
\% \text { error }=\left(\frac{0.5612}{0.5625}-1\right) \times 100=-0.224 \%
$$

P 3.33 The measured value is $\quad 60 \| 20.1=15.05618 \Omega$.

$$
i_{g}=\frac{50}{(15.05618+10)}=1.995526 \mathrm{~A} ; \quad i_{\text {meas }}=\frac{60}{80.1}(1.996)=1.494768 \mathrm{~A}
$$

The true value is $\quad 60 \| 20=15 \Omega$.
$i_{g}=\frac{50}{(15+10)}=2 \mathrm{~A} ; \quad i_{\text {true }}=\frac{60}{80}(2)=1.5 \mathrm{~A}$
$\%$ error $=\left[\frac{1.494768}{1.5}-1\right] \times 100=-0.34878 \% \approx-0.35 \%$

P 3.34 Begin by using current division to find the actual value of the current i_{o} :

$$
\begin{aligned}
& i_{\text {true }}=\frac{15}{15+45}(50 \mathrm{~mA})=12.5 \mathrm{~mA} \\
& i_{\text {meas }}=\frac{15}{15+45+0.1}(50 \mathrm{~mA})=12.4792 \mathrm{~mA} \\
& \% \text { error }=\left[\frac{12.4792}{12.5}-1\right] 100=-0.166389 \% \approx-0.17 \%
\end{aligned}
$$

P 3.35 [a] The model of the ammeter is an ideal ammeter in parallel with a resistor whose resistance is given by

$$
R_{m}=\frac{100 \mathrm{mV}}{2 \mathrm{~mA}}=50 \Omega
$$

We can calculate the current through the real meter using current division:

$$
i_{m}=\frac{(25 / 12)}{50+(25 / 12)}\left(i_{\text {meas }}\right)=\frac{25}{625}\left(i_{\text {meas }}\right)=\frac{1}{25} i_{\text {meas }}
$$

[b] At full scale, $i_{\text {meas }}=5 \mathrm{~A}$ and $i_{\mathrm{m}}=2 \mathrm{~mA}$ so $5-0.002=4998 \mathrm{~mA}$ flows throught the resistor R_{A} :

$$
\begin{aligned}
& R_{\mathrm{A}}=\frac{100 \mathrm{mV}}{4998 \mathrm{~mA}}=\frac{100}{4998} \Omega \\
& i_{m}=\frac{(100 / 4998)}{50+(100 / 4998)}\left(i_{\text {meas }}\right)=\frac{1}{2500}\left(i_{\text {meas }}\right)
\end{aligned}
$$

[c] Yes
P 3.36

Original meter: $\quad R_{\mathrm{e}}=\frac{50 \times 10^{-3}}{5}=0.01 \Omega$
Modified meter: $\quad R_{\mathrm{e}}=\frac{(0.02)(0.01)}{0.03}=0.00667 \Omega$

$$
\begin{aligned}
& \therefore \quad\left(I_{\mathrm{fs}}\right)(0.00667)=50 \times 10^{-3} \\
& \therefore \quad I_{\mathrm{fs}}=7.5 \mathrm{~A}
\end{aligned}
$$

P 3.37 [a]

$$
\begin{aligned}
& 20 \times 10^{3} i_{1}+80 \times 10^{3}\left(i_{1}-i_{\mathrm{B}}\right)=7.5 \\
& 80 \times 10^{3}\left(i_{1}-i_{\mathrm{B}}\right)=0.6+40 i_{\mathrm{B}}\left(0.2 \times 10^{3}\right) \\
& \therefore \quad 100 i_{1}-80 i_{\mathrm{B}}=7.5 \times 10^{-3} \\
& \quad 80 i_{1}-88 i_{\mathrm{B}}=0.6 \times 10^{-3} \\
& \text { Calculator solution yields } i_{\mathrm{B}}=225 \mu \mathrm{~A}
\end{aligned}
$$

[b] With the insertion of the ammeter the equations become

$$
\begin{aligned}
& 100 i_{1}-80 i_{\mathrm{B}}=7.5 \times 10^{-3} \quad(\text { no change }) \\
& 80 \times 10^{3}\left(i_{1}-i_{\mathrm{B}}\right)=10^{3} i_{\mathrm{B}}+0.6+40 i_{\mathrm{B}}(200) \\
& 80 i_{1}-89 i_{\mathrm{B}}=0.6 \times 10^{-3}
\end{aligned}
$$

Calculator solution yields $i_{\mathrm{B}}=216 \mu \mathrm{~A}$
$[\mathbf{c}] \%$ error $=\left(\frac{216}{225}-1\right) 100=-4 \%$
P 3.38 The current in the shunt resistor at full-scale deflection is
$i_{\mathrm{A}}=i_{\text {fullscale }}=2 \times 10^{-3} \mathrm{~A}$. The voltage across R_{A} at full-scale deflection is always 50 mV ; therefore,
$R_{\mathrm{A}}=\frac{50 \times 10^{-3}}{i_{\text {fullscale }}-2 \times 10^{-3}}=\frac{50}{1000 i_{\text {fullscale }}-2}$
[a] $R_{\mathrm{A}}=\frac{50}{10,000-2}=5.001 \mathrm{~m} \Omega$
[b] $R_{\mathrm{A}}=\frac{50}{1000-2}=50.1 \mathrm{~m} \Omega$
$[\mathrm{c}] \quad R_{\mathrm{A}}=\frac{50}{50-2}=1.042 \mathrm{~m} \Omega$
[d] $R_{\mathrm{A}}=\frac{50}{2-2}=\infty \quad$ (open circuit)
P 3.39 At full scale the voltage across the shunt resistor will be 50 mV ; therefore the power dissipated will be
$P_{\mathrm{A}}=\frac{\left(50 \times 10^{-3}\right)^{2}}{R_{\mathrm{A}}}$
Therefore $R_{\mathrm{A}} \geq \frac{\left(50 \times 10^{-3}\right)^{2}}{0.5}=5 \mathrm{~m} \Omega$
Otherwise the power dissipated in R_{A} will exceed its power rating of 0.5 W When $R_{\mathrm{A}}=5 \mathrm{~m} \Omega$, the shunt current will be
$i_{\mathrm{A}}=\frac{50 \times 10^{-3}}{5 \times 10^{-3}}=10 \mathrm{~A}$
The measured current will be $i_{\text {meas }}=10+0.001=10.001 \mathrm{~A}$
\therefore Full-scale reading for practical purposes is 10 A .
P $3.40 R_{\text {meter }}=R_{m}+R_{\text {movement }}=\frac{750 \mathrm{~V}}{1.5 \mathrm{~mA}}=500 \mathrm{k} \Omega$
$v_{\text {meas }}=(25 \mathrm{k} \Omega\|125 \mathrm{k} \Omega\| 50 \mathrm{k} \Omega)(30 \mathrm{~mA})=(20 \mathrm{k} \Omega)(30 \mathrm{~mA})=600 \mathrm{~V}$
$v_{\text {true }}=(25 \mathrm{k} \Omega \| 125 \mathrm{k} \Omega)(30 \mathrm{~mA})=(20.83 \mathrm{k} \Omega)(30 \mathrm{~mA})=625 \mathrm{~V}$
$\%$ error $=\left(\frac{600}{625}-1\right) 100=-4 \%$
P 3.41 [a] Since the unknown voltage is greater than either voltmeter's maximum reading, the only possible way to use the voltmeters would be to connect them in series.
[b]

$$
\begin{aligned}
& R_{m 1}=(300)(900)=270 \mathrm{k} \Omega ; \quad R_{m 2}=(150)(1200)=180 \mathrm{k} \Omega \\
& \therefore \quad R_{m 1}+R_{m 2}=450 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& i_{1 \max }=\frac{300}{270} \times 10^{-3}=1.11 \mathrm{~mA} ; \quad i_{2} \max =\frac{150}{180} \times 10^{-3}=0.833 \mathrm{~mA} \\
& \therefore \quad i_{\max }=0.833 \mathrm{~mA} \text { since meters are in series } \\
& v_{\max }=\left(0.833 \times 10^{-3}\right)(270+180) 10^{3}=375 \mathrm{~V}
\end{aligned}
$$

Thus the meters can be used to measure the voltage.

$$
\begin{aligned}
& {[\mathbf{c}] i_{m}=\frac{320}{450 \times 10^{3}}=0.711 \mathrm{~mA}} \\
& v_{m 1}=(0.711)(270)=192 \mathrm{~V} ; \quad v_{m 2}=(0.711)(180)=128 \mathrm{~V}
\end{aligned}
$$

P 3.42 The current in the series-connected voltmeters is

$$
\begin{aligned}
& i_{m}=\frac{205.2}{270,000}=\frac{136.8}{180,000}=0.76 \mathrm{~mA} \\
& v_{50 \mathrm{k} \Omega}=\left(0.76 \times 10^{-3}\right)(50,000)=38 \mathrm{~V} \\
& V_{\text {power supply }}=205.2+136.8+38=380 \mathrm{~V}
\end{aligned}
$$

P 3.43 [a] $v_{\text {meter }}=180 \mathrm{~V}$
[b] $R_{\text {meter }}=(100)(200)=20 \mathrm{k} \Omega$

$$
\begin{aligned}
& 20 \| 70=15.555556 \mathrm{k} \Omega \\
& v_{\text {meter }}=\frac{180}{35.555556} \times 15.555556=78.75 \mathrm{~V}
\end{aligned}
$$

[c] $20 \| 20=10 \mathrm{k} \Omega$

$$
v_{\text {meter }}=\frac{180}{80}(10)=22.5 \mathrm{~V}
$$

[d] $v_{\text {meter a }}=180 \mathrm{~V}$
$v_{\text {meter } \mathrm{b}}+v_{\text {meter } \mathrm{c}}=101.26 \mathrm{~V}$
No, because of the loading effect.
P 3.44 From the problem statement we have

$$
\begin{align*}
& 50=\frac{V_{s}(10)}{10+R_{s}} \quad \text { (1) } \quad V_{s} \text { in } \mathrm{mV} ; R_{s} \text { in } \mathrm{M} \Omega \\
& 48.75=\frac{V_{s}(6)}{6+R_{s}}
\end{align*}
$$

[a] From $\operatorname{Eq}(1) \quad 10+R_{s}=0.2 V_{s}$
$\therefore \quad R_{s}=0.2 V_{s}-10$
Substituting into Eq (2) yields
$48.75=\frac{6 V_{s}}{0.2 V_{s}-4} \quad$ or $\quad V_{s}=52 \mathrm{mV}$
[b] From Eq (1)
$50=\frac{520}{10+R_{s}} \quad$ or $\quad 50 R_{s}=20$
So $R_{s}=400 \mathrm{k} \Omega$
P $3.45 \quad[\mathrm{a}] \quad R_{1}=(100 / 2) 10^{3}=50 \mathrm{k} \Omega$
$R_{2}=(10 / 2) 10^{3}=5 \mathrm{k} \Omega$
$R_{3}=(1 / 2) 10^{3}=500 \Omega$
[b] Let $i_{\mathrm{a}}=$ actual current in the movement

$$
i_{\mathrm{d}}=\text { design current in the movement }
$$

Then $\%$ error $=\left(\frac{i_{\mathrm{a}}}{i_{\mathrm{d}}}-1\right) 100$
For the 100 V scale:
$i_{\mathrm{a}}=\frac{100}{50,000+25}=\frac{100}{50,025}, \quad i_{\mathrm{d}}=\frac{100}{50,000}$
$\frac{i_{\mathrm{a}}}{i_{\mathrm{d}}}=\frac{50,000}{50,025}=0.9995 \quad \%$ error $=(0.9995-1) 100=-0.05 \%$
For the 10 V scale:
$\frac{i_{\mathrm{a}}}{i_{\mathrm{d}}}=\frac{5000}{5025}=0.995 \quad \%$ error $=(0.995-1.0) 100=-0.4975 \%$
For the 1 V scale:
$\frac{i_{\mathrm{a}}}{i_{\mathrm{d}}}=\frac{500}{525}=0.9524 \quad \%$ error $=(0.9524-1.0) 100=-4.76 \%$
P $3.46[\mathrm{a}] R_{\text {movement }}=50 \Omega$

$$
\begin{aligned}
& R_{1}+R_{\text {movement }}=\frac{30}{1 \times 10^{-3}}=30 \mathrm{k} \Omega \quad \therefore \quad R_{1}=29,950 \Omega \\
& R_{2}+R_{1}+R_{\text {movement }}=\frac{150}{1 \times 10^{-3}}=150 \mathrm{k} \Omega \quad \therefore \quad R_{2}=120 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& R_{3}+R_{2}+R_{1}+R_{\text {movement }}=\frac{300}{1 \times 10^{-3}}=300 \mathrm{k} \Omega \\
& \therefore \quad R_{3}=150 \mathrm{k} \Omega
\end{aligned}
$$

[b]

$v_{1}=(0.96 \mathrm{~m})(150 \mathrm{k})=144 \mathrm{~V}$
$i_{\text {move }}=\frac{144}{120+29.95+0.05}=0.96 \mathrm{~mA}$
$i_{1}=\frac{144}{750 \mathrm{k}}=0.192 \mathrm{~mA}$
$i_{2}=i_{\text {move }}+i_{1}=0.96 \mathrm{~m}+0.192 \mathrm{~m}=1.152 \mathrm{~mA}$
$v_{\text {meas }}=v_{x}=144+150 i_{2}=316.8 \mathrm{~V}$
[c] $v_{1}=150 \mathrm{~V} ; \quad i_{2}=1 \mathrm{~m}+0.20 \mathrm{~m}=1.20 \mathrm{~mA}$
$i_{1}=150 / 750,000=0.20 \mathrm{~mA}$

$$
\therefore v_{\text {meas }}=v_{x}=150+(150 \mathrm{k})(1.20 \mathrm{~m})=330 \mathrm{~V}
$$

P $3.47[\mathrm{a}] R_{\text {meter }}=300 \mathrm{k} \Omega+600 \mathrm{k} \Omega \| 200 \mathrm{k} \Omega=450 \mathrm{k} \Omega$

$$
\begin{aligned}
& 450 \| 360=200 \mathrm{k} \Omega \\
& V_{\text {meter }}=\frac{200}{240}(600)=500 \mathrm{~V}
\end{aligned}
$$

[b] What is the percent error in the measured voltage?

$$
\begin{aligned}
& \text { True value }=\frac{360}{400}(600)=540 \mathrm{~V} \\
& \% \text { error }=\left(\frac{500}{540}-1\right) 100=-7.41 \%
\end{aligned}
$$

P 3.48 Since the bridge is balanced, we can remove the detector without disturbing the voltages and currents in the circuit.

It follows that
$i_{1}=\frac{i_{g}\left(R_{2}+R_{x}\right)}{R_{1}+R_{2}+R_{3}+R_{x}}=\frac{i_{g}\left(R_{2}+R_{x}\right)}{\sum R}$
$i_{2}=\frac{i_{g}\left(R_{1}+R_{3}\right)}{R_{1}+R_{2}+R_{3}+R_{x}}=\frac{i_{g}\left(R_{1}+R_{3}\right)}{\sum R}$
$v_{3}=R_{3} i_{1}=v_{x}=i_{2} R_{x}$
$\therefore \frac{R_{3} i_{g}\left(R_{2}+R_{x}\right)}{\sum R}=\frac{R_{x} i_{g}\left(R_{1}+R_{3}\right)}{\sum R}$
$\therefore \quad R_{3}\left(R_{2}+R_{x}\right)=R_{x}\left(R_{1}+R_{3}\right)$
From which $R_{x}=\frac{R_{2} R_{3}}{R_{1}}$
P 3.49 Note the bridge structure is balanced, that is $15 \times 5=3 \times 25$, hence there is no current in the $5 \mathrm{k} \Omega$ resistor. It follows that the equivalent resistance of the circuit is
$R_{\mathrm{eq}}=750+(15,000+3000) \|(25,000+5000)=750+11,250=12 \mathrm{k} \Omega$
The source current is $192 / 12,000=16 \mathrm{~mA}$.
The current down through the branch containing the $15 \mathrm{k} \Omega$ and $3 \mathrm{k} \Omega$ resistors is

$$
\begin{aligned}
& i_{3 \mathrm{k}}=\frac{11,250}{18,000}(0.016)=10 \mathrm{~mA} \\
& \therefore \quad p_{3 \mathrm{k}}=3000(0.01)^{2}=0.3 \mathrm{~W}
\end{aligned}
$$

P 3.50 Redraw the circuit, replacing the detector branch with a short circuit.

$6 \mathrm{k} \Omega \| 30 \mathrm{k} \Omega=5 \mathrm{k} \Omega$
$12 \mathrm{k} \Omega \| 20 \mathrm{k} \Omega=7.5 \mathrm{k} \Omega$
$i_{s}=\frac{75}{12,500}=6 \mathrm{~mA}$
$v_{1}=0.006(5000)=30 \mathrm{~V}$
$v_{2}=0.006(7500)=45 \mathrm{~V}$
$i_{1}=\frac{30}{6000}=5 \mathrm{~mA}$
$i_{2}=\frac{45}{12,000}=3.75 \mathrm{~mA}$
$i_{\mathrm{d}}=i_{1}-i_{2}=1.25 \mathrm{~mA}$

P $3.51 \quad[\mathrm{a}]$

The condition for a balanced bridge is that the product of the opposite resistors must be equal:

$$
(500)\left(R_{x}\right)=(1000)(750) \quad \text { so } \quad R_{x}=\frac{(1000)(750)}{500}=1500 \Omega
$$

[b] The source current is the sum of the two branch currents. Each branch current can be determined using Ohm's law, since the resistors in each branch are in series and the voltage drop across each branch is 24 V :
$i_{s}=\frac{24 \mathrm{~V}}{500 \Omega+750 \Omega}+\frac{24 \mathrm{~V}}{1000 \Omega+1500 \Omega}=28.8 \mathrm{~mA}$
[c] We can use Ohm's law to find the current in each branch:
$i_{\text {left }}=\frac{24}{500+750}=19.2 \mathrm{~mA}$
$i_{\text {right }}=\frac{24}{1000+1500}=9.6 \mathrm{~mA}$
Now we can use the formula $p=R i^{2}$ to find the power dissipated by each resistor:
$p_{500}=(500)(0.0192)^{2}=184.32 \mathrm{~mW} \quad p_{750}=(750)(0.0192)^{2}=276.18 \mathrm{~mW}$
$p_{1000}=(1000)(0.0096)^{2}=92.16 \mathrm{~mW} \quad p_{1500}=(1500)(0.0096)^{2}=138.24 \mathrm{~mW}$
Thus, the 750Ω resistor absorbs the most power; it absorbs 276.48 mW of power.
[d] From the analysis in part (c), the 1000Ω resistor absorbs the least power; it absorbs 92.16 mW of power.

P 3.52 In order that all four decades $(1,10,100,1000)$ that are used to set R_{3} contribute to the balance of the bridge, the ratio R_{2} / R_{1} should be set to 0.001 .

P 3.53 Begin by transforming the Δ-connected resistors $(10 \Omega, 40 \Omega, 50 \Omega)$ to Y-connected resistors. Both the Y-connected and Δ-connected resistors are shown below to assist in using Eqs. $3.44-3.46$:

Now use Eqs. $3.44-3.46$ to calculate the values of the Y-connected resistors:

$$
R_{1}=\frac{(40)(10)}{10+40+50}=4 \Omega ; \quad R_{2}=\frac{(10)(50)}{10+40+50}=5 \Omega ; \quad R_{3}=\frac{(40)(50)}{10+40+50}=20 \Omega
$$

The transformed circuit is shown below:

The equivalent resistance seen by the 24 V source can be calculated by making series and parallel combinations of the resistors to the right of the 24 V source:
$R_{\text {eq }}=(15+5)\|(1+4)+20=20\| 5+20=4+20=24 \Omega$
Therefore, the current i in the 24 V source is given by
$i=\frac{24 \mathrm{~V}}{24 \Omega}=1 \mathrm{~A}$
Use current division to calculate the currents i_{1} and i_{2}. Note that the current i_{1} flows in the branch containing the 15Ω and 5Ω series connected resistors, while the current i_{2} flows in the parallel branch that contains the series connection of the 1Ω and 4Ω resistors:
$i_{1}=\frac{4}{15+5}(i)=\frac{4}{20}(1 \mathrm{~A})=0.2 \mathrm{~A}, \quad$ and $\quad i_{2}=1 \mathrm{~A}-0.2 \mathrm{~A}=0.8 \mathrm{~A}$
Now use KVL and Ohm's law to calculate v_{1}. Note that v_{1} is the sum of the voltage drop across the 4Ω resistor, $4 i_{2}$, and the voltage drop across the 20Ω resistor, 20i:
$v_{1}=4 i_{2}+20 i=4(0.8 \mathrm{~A})+20(1 \mathrm{~A})=3.2+20=23.2 \mathrm{~V}$
Finally, use KVL and Ohm's law to calculate v_{2}. Note that v_{2} is the sum of the voltage drop across the 5Ω resistor, $5 i_{1}$, and the voltage drop across the 20Ω resistor, $20 i$:
$v_{2}=5 i_{1}+20 i=5(0.2 \mathrm{~A})+20(1 \mathrm{~A})=1+20=21 \mathrm{~V}$

P 3.54 [a] After the $20 \Omega-100 \Omega-50 \Omega$ wye is replaced by its equivalent delta, the circuit reduces to

Now the circuit can be reduced to

$$
\begin{aligned}
& i=\frac{96}{400}(1000)=240 \mathrm{~mA} \\
& i_{o}=\frac{400}{1000}(240)=96 \mathrm{~mA}
\end{aligned}
$$

[b] $i_{1}=\frac{80}{400}(240)=48 \mathrm{~mA}$
[c] Now that i_{o} and i_{1} are known return to the original circuit

$$
\begin{aligned}
v_{2} & =(50)(0.048)+(600)(0.096)=60 \mathrm{~V} \\
i_{2} & =\frac{v_{2}}{100}=\frac{60}{100}=600 \mathrm{~mA} \\
{[\mathrm{~d}] \quad v_{g} } & =v_{2}+20(0.6+0.048)=60+12.96=72.96 \mathrm{~V} \\
p_{g} & =-\left(v_{g}\right)(1)=-72.96 \mathrm{~W}
\end{aligned}
$$

Thus the current source delivers 72.96 W .
P 3.55 The top of the pyramid can be replaced by a resistor equal to

$$
R_{1}=\frac{(18)(9)}{27}=6 \mathrm{k} \Omega
$$

The lower left and right deltas can be replaced by wyes. Each resistance in the wye equals $3 \mathrm{k} \Omega$. Thus our circuit can be reduced to

Now the $12 \mathrm{k} \Omega$ in parallel with $6 \mathrm{k} \Omega$ reduces to $4 \mathrm{k} \Omega$.

$$
\therefore \quad R_{\mathrm{ab}}=3 \mathrm{k}+4 \mathrm{k}+3 \mathrm{k}=10 \mathrm{k} \Omega
$$

P 3.56 [a] Calculate the values of the Y-connected resistors that are equivalent to the $10 \Omega, 40 \Omega$, and $50 \Omega \Delta$-connected resistors:
$R_{X}=\frac{(10)(50)}{10+40+50}=5 \Omega ; \quad R_{Y}=\frac{(50)(40)}{10+40+50}=20 \Omega ;$
$R_{Z}=\frac{(10)(40)}{10+40+50}=4 \Omega$
Replacing the $R_{2}-R_{3}-R_{4}$ delta with its equivalent Y gives

Now calculate the equivalent resistance R_{ab} by making series and parallel combinations of the resistors:

$$
R_{\mathrm{ab}}=13+5+[(8+4) \|(20+4)]+7=33 \Omega
$$

[b] Calculate the values of the Δ-connected resistors that are equivalent to the $10 \Omega, 8 \Omega$, and 40Ω Y-connected resistors:

$$
\begin{aligned}
& R_{X}=\frac{(10)(8)+(8)(40)+(10)(40)}{8}=\frac{800}{8}=100 \Omega \\
& R_{Y}=\frac{(10)(8)+(8)(40)+(10)(40)}{10}=\frac{800}{10}=80 \Omega \\
& R_{Z}=\frac{(10)(8)+(8)(40)+(10)(40)}{40}=\frac{800}{40}=20 \Omega
\end{aligned}
$$

Replacing the R_{2}, R_{4}, R_{5} wye with its equivalent Δ gives

Make series and parallel combinations of the resistors to find the equivalent resistance R_{ab} :
$100 \Omega\|50 \Omega=33.33 \Omega ; \quad 80 \Omega\| 4 \Omega=3.81 \Omega$
$\therefore 20 \|(33.33+3.81)=13 \Omega$
$\therefore \quad R_{\mathrm{ab}}=13+13+7=33 \Omega$
[c] Convert the delta connection $R_{4}-R_{5}-R_{6}$ to its equivalent wye.
Convert the wye connection $R_{3}-R_{4}-R_{6}$ to its equivalent delta.
P 3.57 [a] Convert the upper delta to a wye.

$$
\begin{aligned}
& R_{1}=\frac{(50)(50)}{200}=12.5 \Omega \\
& R_{2}=\frac{(50)(100)}{200}=25 \Omega \\
& R_{3}=\frac{(100)(50)}{200}=25 \Omega
\end{aligned}
$$

Convert the lower delta to a wye.

$$
\begin{aligned}
& R_{4}=\frac{(60)(80)}{200}=24 \Omega \\
& R_{5}=\frac{(60)(60)}{200}=18 \Omega \\
& R_{6}=\frac{(80)(60)}{200}=24 \Omega
\end{aligned}
$$

Now redraw the circuit using the wye equivalents.

[b] When $v_{\mathrm{ab}}=400 \mathrm{~V}$

$$
\begin{array}{r}
i_{g}=\frac{400}{80}=5 \mathrm{~A} \\
i_{31}=\frac{48}{80}(5)=3 \mathrm{~A} \\
p_{31 \Omega}=(31)(3)^{2}=279 \mathrm{~W}
\end{array}
$$

P 3.58 Replace the upper and lower deltas with the equivalent wyes:

$$
\begin{aligned}
& R_{1 \mathrm{U}}=\frac{(10)(50)}{100}=5 \Omega ; R_{2 \mathrm{U}}=\frac{(50)(40)}{100}=20 \Omega ; R_{3 \mathrm{U}}=\frac{(10)(40)}{100}=4 \Omega \\
& R_{1 \mathrm{~L}}=\frac{(10)(60)}{100}=6 \Omega ; R_{2 \mathrm{~L}}=\frac{(60)(30)}{100}=18 \Omega ; R_{3 \mathrm{~L}}=\frac{(10)(30)}{100}=3 \Omega
\end{aligned}
$$

The resulting circuit is shown below:

Now make series and parallel combinations of the resistors:

$$
\begin{aligned}
& (4+6)\|(20+32+20+18)=10\| 90=9 \Omega \\
& R_{\mathrm{ab}}=33+5+9+3+40=90 \Omega
\end{aligned}
$$

P $3.598+12=20 \Omega$

$$
\begin{aligned}
& 20 \| 60=15 \Omega \\
& 15+20=35 \Omega \\
& 35 \| 140=28 \Omega \\
& 28+22=50 \Omega \\
& 50 \| 75=30 \Omega \\
& 30+10=40 \Omega \\
& i_{g}=240 / 40=6 \mathrm{~A} \\
& i_{o}=(6)(50) / 125=2.4 \mathrm{~A} \\
& i_{140 \Omega}=(6-2.4)(35) / 175=0.72 \mathrm{~A} \\
& p_{140 \Omega}=(0.72)^{2}(140)=72.576 \mathrm{~W}
\end{aligned}
$$

P 3.60 [a] Replace the $60-120-20 \Omega$ delta with a wye equivalent to get

[b] $i_{o}=10-2.5=7.5 \mathrm{~A}$

$$
v=36 i_{1}-6 i_{o}=36(2.5)-6(7.5)=45 \mathrm{~V}
$$

$[\mathrm{c}] i_{2}=i_{o}+\frac{v}{60}=7.5+\frac{45}{60}=8.25 \mathrm{~A}$
$[\mathrm{d}] P_{\text {supplied }}=(750)(10)=7500 \mathrm{~W}$

P 3.61

$$
25\|6.25=5 \Omega \quad 60\| 30=20 \Omega
$$

$$
\begin{aligned}
& i_{1}=\frac{(6)(15)}{(40)}=2.25 \mathrm{~A} ; \quad v_{x}=20 i_{1}=45 \mathrm{~V} \\
& v_{g}=25 i_{1}=56.25 \mathrm{~V} \\
& v_{6.25}=v_{g}-v_{x}=11.25 \mathrm{~V} \\
& P_{\text {device }}=\frac{11.25^{2}}{6.25}+\frac{45^{2}}{30}+\frac{56.25^{2}}{15}=298.6875 \mathrm{~W}
\end{aligned}
$$

P 3.62 [a] Subtracting Eq. 3.42 from Eq. 3.43 gives

$$
R_{1}-R_{2}=\left(R_{\mathrm{c}} R_{\mathrm{b}}-R_{\mathrm{c}} R_{\mathrm{a}}\right) /\left(R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}\right)
$$

Adding this expression to Eq. 3.41 and solving for R_{1} gives

$$
R_{1}=R_{\mathrm{c}} R_{\mathrm{b}} /\left(R_{\mathrm{a}}+R_{\mathrm{b}}+R_{\mathrm{c}}\right)
$$

To find R_{2}, subtract Eq. 3.43 from Eq. 3.41 and add this result to
Eq. 3.42. To find R_{3}, subtract Eq. 3.41 from Eq. 3.42 and add this result to Eq. 3.43.
[b] Using the hint, Eq. 3.43 becomes

$$
R_{1}+R_{3}=\frac{R_{\mathrm{b}}\left[\left(R_{2} / R_{3}\right) R_{\mathrm{b}}+\left(R_{2} / R_{1}\right) R_{\mathrm{b}}\right]}{\left(R_{2} / R_{1}\right) R_{\mathrm{b}}+R_{\mathrm{b}}+\left(R_{2} / R_{3}\right) R_{\mathrm{b}}}=\frac{R_{\mathrm{b}}\left(R_{1}+R_{3}\right) R_{2}}{\left(R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}\right)}
$$

Solving for R_{b} gives $R_{\mathrm{b}}=\left(R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}\right) / R_{2}$. To find R_{a} : First use Eqs. 3.44-3.46 to obtain the ratios $\left(R_{1} / R_{3}\right)=\left(R_{\mathrm{c}} / R_{\mathrm{a}}\right)$ or
$R_{\mathrm{c}}=\left(R_{1} / R_{3}\right) R_{\mathrm{a}}$ and $\left(R_{1} / R_{2}\right)=\left(R_{\mathrm{b}} / R_{\mathrm{a}}\right)$ or $R_{\mathrm{b}}=\left(R_{1} / R_{2}\right) R_{\mathrm{a}}$. Now use these relationships to eliminate R_{b} and R_{c} from Eq. 3.42. To find R_{c}, use Eqs. 3.44-3.46 to obtain the ratios $R_{\mathrm{b}}=\left(R_{3} / R_{2}\right) R_{\mathrm{c}}$ and $R_{\mathrm{a}}=\left(R_{3} / R_{1}\right) R_{\mathrm{c}}$. Now use the relationships to eliminate R_{b} and R_{a} from Eq. 3.41.

$$
\begin{align*}
G_{\mathrm{a}} & =\frac{1}{R_{\mathrm{a}}}=\frac{R_{1}}{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}} \tag{P 3.63}\\
& =\frac{1 / G_{1}}{\left(1 / G_{1}\right)\left(1 / G_{2}\right)+\left(1 / G_{2}\right)\left(1 / G_{3}\right)+\left(1 / G_{3}\right)\left(1 / G_{1}\right)} \\
& =\frac{\left(1 / G_{1}\right)\left(G_{1} G_{2} G_{3}\right)}{G_{1}+G_{2}+G_{3}}=\frac{G_{2} G_{3}}{G_{1}+G_{2}+G_{3}}
\end{align*}
$$

Similar manipulations generate the expressions for G_{b} and G_{c}.
[a] $R_{\mathrm{ab}}=2 R_{1}+\frac{R_{2}\left(2 R_{1}+R_{\mathrm{L}}\right)}{2 R_{1}+R_{2}+R_{\mathrm{L}}}=R_{\mathrm{L}}$
Therefore $\quad 2 R_{1}-R_{\mathrm{L}}+\frac{R_{2}\left(2 R_{1}+R_{\mathrm{L}}\right)}{2 R_{1}+R_{2}+R_{\mathrm{L}}}=0$
Thus $\quad R_{\mathrm{L}}^{2}=4 R_{1}^{2}+4 R_{1} R_{2}=4 R_{1}\left(R_{1}+R_{2}\right)$
When $R_{\mathrm{ab}}=R_{\mathrm{L}}$, the current into terminal a of the attenuator will be v_{i} / R_{L}
Using current division, the current in the R_{L} branch will be
$\frac{v_{i}}{R_{\mathrm{L}}} \cdot \frac{R_{2}}{2 R_{1}+R_{2}+R_{\mathrm{L}}}$
Therefore $\quad v_{o}=\frac{v_{i}}{R_{\mathrm{L}}} \cdot \frac{R_{2}}{2 R_{1}+R_{2}+R_{\mathrm{L}}} R_{\mathrm{L}}$
and $\quad \frac{v_{o}}{v_{i}}=\frac{R_{2}}{2 R_{1}+R_{2}+R_{\mathrm{L}}}$
[b] $(600)^{2}=4\left(R_{1}+R_{2}\right) R_{1}$
$9 \times 10^{4}=R_{1}^{2}+R_{1} R_{2}$
$\frac{v_{o}}{v_{i}}=0.6=\frac{R_{2}}{2 R_{1}+R_{2}+600}$
$\therefore 1.2 R_{1}+0.6 R_{2}+360=R_{2}$
$0.4 R_{2}=1.2 R_{1}+360$
$R_{2}=3 R_{1}+900$
$\therefore 9 \times 10^{4}=R_{1}^{2}+R_{1}\left(3 R_{1}+900\right)=4 R_{1}^{2}+900 R_{1}$
$\therefore \quad R_{1}^{2}+225 R_{1}-22,500=0$

$$
\begin{aligned}
& R_{1}=-112.5 \pm \sqrt{(112.5)^{2}+22,500}=-112.5 \pm 187.5 \\
& \therefore \quad R_{1}=75 \Omega \\
& \therefore \quad R_{2}=3(75)+900=1125 \Omega
\end{aligned}
$$

[c] From Appendix H, choose $R_{1}=68 \Omega$ and $R_{2}=1.2 \mathrm{k} \Omega$. For these values,

$$
\begin{aligned}
& R_{\mathrm{ab}}=R_{\mathrm{L}}=\sqrt{(4)(68)(68+1200)}=587.3 \Omega \\
& \% \text { error }=\left(\frac{587.3}{600}-1\right) 100=-2.1 \% \\
& \frac{v_{o}}{v_{i}}=\frac{1200}{2(68)+1200+587.3}=0.624 \\
& \% \text { error }=\left(\frac{0.624}{0.6}-1\right) 100=4 \%
\end{aligned}
$$

P 3.65 [a] After making the Y-to- Δ transformation, the circuit reduces to

Combining the parallel resistors reduces the circuit to

Now note: $\quad 0.75 R+\frac{3 R R_{\mathrm{L}}}{3 R+R_{\mathrm{L}}}=\frac{2.25 R^{2}+3.75 R R_{\mathrm{L}}}{3 R+R_{\mathrm{L}}}$
Therefore $\quad R_{\mathrm{ab}}=\frac{3 R\left(\frac{2.25 R^{2}+3.75 R R_{\mathrm{L}}}{3 R+R_{\mathrm{L}}}\right)}{3 R+\left(\frac{2.25 R^{2}+3.75 R R_{\mathrm{L}}}{3 R+R_{\mathrm{L}}}\right)}=\frac{3 R\left(3 R+5 R_{\mathrm{L}}\right)}{15 R+9 R_{\mathrm{L}}}$
If $R=R_{\mathrm{L}}$, we have $\quad R_{\mathrm{ab}}=\frac{3 R_{\mathrm{L}}\left(8 R_{\mathrm{L}}\right)}{24 R_{\mathrm{L}}}=R_{\mathrm{L}}$
Therefore $\quad R_{\mathrm{ab}}=R_{\mathrm{L}}$
[b] When $R=R_{\mathrm{L}}$, the circuit reduces to

$i_{o}=\frac{i_{i}\left(3 R_{\mathrm{L}}\right)}{4.5 R_{\mathrm{L}}}=\frac{1}{1.5} i_{i}=\frac{1}{1.5} \frac{v_{i}}{R_{\mathrm{L}}}, \quad v_{o}=0.75 R_{\mathrm{L}} i_{o}=\frac{1}{2} v_{i}$,
Therefore $\quad \frac{v_{o}}{v_{i}}=0.5$
P $3.66 \quad[\mathrm{a}] 3.5\left(3 R-R_{\mathrm{L}}\right)=3 R+R_{\mathrm{L}}$

$$
\begin{aligned}
& 10.5 R-1050=3 R+300 \\
& 7.5 R=1350, \quad R=180 \Omega \\
& R_{2}=\frac{2(180)(300)^{2}}{3(180)^{2}-(300)^{2}}=4500 \Omega
\end{aligned}
$$

[b]

$v_{o}=\frac{v_{i}}{3.5}=\frac{42}{3.5}=12 \mathrm{~V}$

$$
i_{o}=\frac{12}{300}=40 \mathrm{~mA}
$$

$$
i_{1}=\frac{42-12}{4500}=\frac{30}{4500}=6.67 \mathrm{~mA}
$$

$$
i_{g}=\frac{42}{300}=140 \mathrm{~mA}
$$

$$
i_{2}=140-6.67=133.33 \mathrm{~mA}
$$

$$
i_{3}=40-6.67=33.33 \mathrm{~mA}
$$

$$
i_{4}=133.33-33.33=100 \mathrm{~mA}
$$

$$
\begin{aligned}
& p_{4500 \text { top }}=\left(6.67 \times 10^{-3}\right)^{2}(4500)=0.2 \mathrm{~W} \\
& p_{180 \text { left }}=\left(133.33 \times 10^{-3}\right)^{2}(180)=3.2 \mathrm{~W} \\
& p_{180 \text { right }}=\left(33.33 \times 10^{-3}\right)^{2}(180)=0.2 \mathrm{~W} \\
& p_{180 \text { vertical }}=\left(100 \times 10^{-3}\right)^{2}(180)=0.48 \mathrm{~W} \\
& p_{300 \text { load }}=\left(40 \times 10^{-3}\right)^{2}(300)=0.48 \mathrm{~W}
\end{aligned}
$$

The 180Ω resistor carrying i_{2}
$[\mathbf{c}] p_{180 \text { left }}=3.2 \mathrm{~W}$
[d] Two resistors dissipate minimum power - the 4500Ω resistor and the 180 Ω resistor carrying i_{3}.
[e] They both dissipate 0.2 W .
P 3.67 [a]

$$
v_{\mathrm{a}}=\frac{v_{\mathrm{in}} R_{4}}{R_{o}+R_{4}+\Delta R}
$$

$$
v_{\mathrm{b}}=\frac{R_{3}}{R_{2}+R_{3}} v_{\mathrm{in}}
$$

$$
v_{o}=v_{\mathrm{a}}-v_{\mathrm{b}}=\frac{R_{4} v_{\mathrm{in}}}{R_{o}+R_{4}+\Delta R}-\frac{R_{3}}{R_{2}+R_{3}} v_{\mathrm{in}}
$$

When the bridge is balanced,

$$
\begin{aligned}
& \frac{R_{4}}{R_{o}+R_{4}} v_{\mathrm{in}}=\frac{R_{3}}{R_{2}+R_{3}} v_{\mathrm{in}} \\
& \therefore \quad \frac{R_{4}}{R_{o}+R_{4}}=\frac{R_{3}}{R_{2}+R_{3}}
\end{aligned}
$$

Thus, $\quad v_{o}=\frac{R_{4} v_{\text {in }}}{R_{o}+R_{4}+\Delta R}-\frac{R_{4} v_{\text {in }}}{R_{o}+R_{4}}$

$$
=R_{4} v_{\text {in }}\left[\frac{1}{R_{o}+R_{4}+\Delta R}-\frac{1}{R_{o}+R_{4}}\right]
$$

$$
=\frac{R_{4} v_{\mathrm{in}}(-\Delta R)}{\left(R_{o}+R_{4}+\Delta R\right)\left(R_{o}+R_{4}\right)}
$$

$$
\approx \frac{-(\Delta R) R_{4} v_{\mathrm{in}}}{\left(R_{o}+R_{4}\right)^{2}}, \quad \text { since } \Delta R \ll R_{4}
$$

[b] $\Delta R=0.03 R_{o}$

$$
\begin{aligned}
R_{o} & =\frac{R_{2} R_{4}}{R_{3}}=\frac{(1000)(5000)}{500}=10,000 \Omega \\
\Delta R & =(0.03)\left(10^{4}\right)=300 \Omega \\
\therefore \quad v_{o} & \approx \frac{-300(5000)(6)}{(15,000)^{2}}=-40 \mathrm{mV} \\
{[\mathbf{c}] \quad v_{o} } & =\frac{-(\Delta R) R_{4} v_{\mathrm{in}}}{\left(R_{o}+R_{4}+\Delta R\right)\left(R_{o}+R_{4}\right)} \\
& =\frac{-300(5000)(6)}{(15,300)(15,000)} \\
& =-39.2157 \mathrm{mV}
\end{aligned}
$$

P 3.68 [a] approx value $=\frac{-(\Delta R) R_{4} v_{\text {in }}}{\left(R_{o}+R_{4}\right)^{2}}$

$$
\begin{aligned}
& \text { true value }=\frac{-(\Delta R) R_{4} v_{\text {in }}}{\left(R_{o}+R_{4}+\Delta R\right)\left(R_{o}+R_{4}\right)} \\
& \therefore \quad \frac{\text { approx value }}{\text { true value }}=\frac{\left(R_{o}+R_{4}+\Delta R\right)}{\left(R_{o}+R_{4}\right)} \\
& \therefore \quad \% \text { error }=\left[\frac{R_{o}+R_{4}}{R_{o}+R_{4}+\Delta R}-1\right] \times 100=\frac{-\Delta R}{R_{o}+R_{4}} \times 100
\end{aligned}
$$

Note that in the above expression, we take the ratio of the true value to the approximate value because both values are negative.
But $R_{o}=\frac{R_{2} R_{4}}{R_{3}}$

$$
\therefore \quad \% \text { error }=\frac{-R_{3} \Delta R}{R_{4}\left(R_{2}+R_{3}\right)}
$$

$[\mathrm{b}] \%$ error $=\frac{-(500)(300)}{(5000)(1500)} \times 100=-2 \%$

$$
\begin{aligned}
\text { P } 3.69 & \frac{\Delta R\left(R_{3}\right)(100)}{\left(R_{2}+R_{3}\right) R_{4}}=0.5 \\
& \frac{\Delta R(500)(100)}{(1500)(5000)}=0.5
\end{aligned}
$$

$$
\therefore \quad \Delta R=75 \Omega
$$

$$
\% \text { change }=\frac{75}{10,000} \times 100=0.75 \%
$$

P 3.70 [a] From Eq 3.64 we have

$$
\left(\frac{i_{1}}{i_{2}}\right)^{2}=\frac{R_{2}^{2}}{R_{1}^{2}(1+2 \sigma)^{2}}
$$

Substituting into Eq 3.63 yields

$$
R_{2}=\frac{R_{2}^{2}}{R_{1}^{2}(1+2 \sigma)^{2}} R_{1}
$$

Solving for R_{2} yields

$$
R_{2}=(1+2 \sigma)^{2} R_{1}
$$

[b] From Eq 3.67 we have

$$
\frac{i_{1}}{i_{\mathrm{b}}}=\frac{R_{2}}{R_{1}+R_{2}+2 R_{\mathrm{a}}}
$$

But $R_{2}=(1+2 \sigma)^{2} R_{1}$ and $R_{\mathrm{a}}=\sigma R_{1}$ therefore

$$
\begin{aligned}
\frac{i_{1}}{i_{\mathrm{b}}} & =\frac{(1+2 \sigma)^{2} R_{1}}{R_{1}+(1+2 \sigma)^{2} R_{1}+2 \sigma R_{1}}=\frac{(1+2 \sigma)^{2}}{(1+2 \sigma)+(1+2 \sigma)^{2}} \\
& =\frac{1+2 \sigma}{2(1+\sigma)}
\end{aligned}
$$

It follows that

$$
\left(\frac{i_{1}}{i_{\mathrm{b}}}\right)^{2}=\frac{(1+2 \sigma)^{2}}{4(1+\sigma)^{2}}
$$

Substituting into Eq 3.66 gives

$$
R_{\mathrm{b}}=\frac{(1+2 \sigma)^{2} R_{\mathrm{a}}}{4(1+\sigma)^{2}}=\frac{(1+2 \sigma)^{2} \sigma R_{1}}{4(1+\sigma)^{2}}
$$

P 3.71 From Eq 3.69
$\frac{i_{1}}{i_{3}}=\frac{R_{2} R_{3}}{D}$
But $D=\left(R_{1}+2 R_{\mathrm{a}}\right)\left(R_{2}+2 R_{\mathrm{b}}\right)+2 R_{\mathrm{b}} R_{2}$
where $R_{\mathrm{a}}=\sigma R_{1} ; R_{2}=(1+2 \sigma)^{2} R_{1}$ and $R_{\mathrm{b}}=\frac{(1+2 \sigma)^{2} \sigma R_{1}}{4(1+\sigma)^{2}}$
Therefore D can be written as

$$
\begin{aligned}
D= & \left(R_{1}+2 \sigma R_{1}\right)\left[(1+2 \sigma)^{2} R_{1}+\frac{2(1+2 \sigma)^{2} \sigma R_{1}}{4(1+\sigma)^{2}}\right]+ \\
& 2(1+2 \sigma)^{2} R_{1}\left[\frac{(1+2 \sigma)^{2} \sigma R_{1}}{4(1+\sigma)^{2}}\right] \\
= & (1+2 \sigma)^{3} R_{1}^{2}\left[1+\frac{\sigma}{2(1+\sigma)^{2}}+\frac{(1+2 \sigma) \sigma}{2(1+\sigma)^{2}}\right] \\
= & \frac{(1+2 \sigma)^{3} R_{1}^{2}}{2(1+\sigma)^{2}}\left\{2(1+\sigma)^{2}+\sigma+(1+2 \sigma) \sigma\right\} \\
= & \frac{(1+2 \sigma)^{3} R_{1}^{2}}{(1+\sigma)^{2}}\left\{1+3 \sigma+2 \sigma^{2}\right\} \\
D= & \frac{(1+2 \sigma)^{4} R_{1}^{2}}{(1+\sigma)} \\
\therefore \frac{i_{1}}{i_{3}}= & \frac{R_{2} R_{3}(1+\sigma)}{(1+2 \sigma)^{4} R_{1}^{2}} \\
= & \frac{(1+2 \sigma)^{2} R_{1} R_{3}(1+\sigma)}{(1+2 \sigma)^{4} R_{1}^{2}} \\
= & \frac{(1+\sigma) R_{3}}{(1+2 \sigma)^{2} R_{1}}
\end{aligned}
$$

When this result is substituted into Eq 3.69 we get
$R_{3}=\frac{(1+\sigma)^{2} R_{3}^{2} R_{1}}{(1+2 \sigma)^{4} R_{1}^{2}}$
Solving for R_{3} gives
$R_{3}=\frac{(1+2 \sigma)^{4} R_{1}}{(1+\sigma)^{2}}$
P 3.72 From the dimensional specifications, calculate σ and R_{3} :

$$
\sigma=\frac{y}{x}=\frac{0.025}{1}=0.025 ; \quad \quad R_{3}=\frac{V_{\mathrm{dc}}^{2}}{p}=\frac{12^{2}}{120}=1.2 \Omega
$$

Calculate R_{1} from R_{3} and σ :
$R_{1}=\frac{(1+\sigma)^{2}}{(1+2 \sigma)^{4}} R_{3}=1.0372 \Omega$
Calculate R_{a}, R_{b}, and R_{2} :
$R_{a}=\sigma R_{1}=0.0259 \Omega \quad \quad R_{b}=\frac{(1+2 \sigma)^{2} \sigma R_{1}}{4(1+\sigma)^{2}}=0.0068 \Omega$
$R_{2}=(1+2 \sigma)^{2} R_{1}=1.1435 \Omega$

Using symmetry,
$R_{4}=R_{2}=1.1435 \Omega \quad R_{5}=R_{1}=1.0372 \Omega$
$R_{c}=R_{b}=0.0068 \Omega \quad R_{d}=R_{a}=0.0259 \Omega$

Test the calculations by checking the power dissipated, which should be 120 W / m. Calculate D, then use Eqs. (3.58)-(3.60) to calculate i_{b}, i_{1}, and i_{2} :
$D=\left(R_{1}+2 R_{a}\right)\left(R_{2}+2 R_{b}\right)+2 R_{2} R_{b}=1.2758$
$i_{b}=\frac{V_{\mathrm{dc}}\left(R_{1}+R_{2}+2 R_{a}\right)}{D}=21 \mathrm{~A}$
$i_{1}=\frac{V_{\mathrm{dc}} R_{2}}{D}=10.7561 \mathrm{~A} \quad i_{2}=\frac{V_{\mathrm{dc}}\left(R_{1}+2 R_{a}\right)}{D}=10.2439 \mathrm{~A}$
It follows that $i_{b}^{2} R_{b}=3 \mathrm{~W}$ and the power dissipation per meter is $3 / 0.025=120 \mathrm{~W} / \mathrm{m}$. The value of $i_{1}^{2} R_{1}=120 \mathrm{~W} / \mathrm{m}$. The value of $i_{2}^{2} R_{2}=120$ W / m. Finally, $i_{1}^{2} R_{a}=3 \mathrm{~W} / \mathrm{m}$.

P 3.73 From the solution to Problem 3.72 we have $i_{\mathrm{b}}=21 \mathrm{~A}$ and $i_{3}=10 \mathrm{~A}$. By symmetry $i_{\mathrm{c}}=21 \mathrm{~A}$ thus the total current supplied by the 12 V source is $21+21+10$ or 52 A . Therefore the total power delivered by the source is $p_{12 \mathrm{~V}}$ $(\operatorname{del})=(12)(52)=624 \mathrm{~W}$. We also have from the solution that $p_{\mathrm{a}}=p_{\mathrm{b}}=p_{\mathrm{c}}=p_{\mathrm{d}}=3 \mathrm{~W}$. Therefore the total power delivered to the vertical resistors is $p_{\mathrm{V}}=(8)(3)=24 \mathrm{~W}$. The total power delivered to the five horizontal resistors is $p_{\mathrm{H}}=5(120)=600 \mathrm{~W}$.
$\therefore \quad \sum p_{\text {diss }}=p_{\mathrm{H}}+p_{\mathrm{V}}=624 \mathrm{~W}=\sum p_{\text {del }}$
P 3.74
[a] $\sigma=0.03 / 1.5=0.02$
Since the power dissipation is $200 \mathrm{~W} / \mathrm{m}$ the power dissipated in R_{3} must be 200(1.5) or 300 W . Therefore

$$
R_{3}=\frac{12^{2}}{300}=0.48 \Omega
$$

From Table 3.1 we have

$$
\begin{aligned}
& R_{1}=\frac{(1+\sigma)^{2} R_{3}}{(1+2 \sigma)^{4}}=0.4269 \Omega \\
& R_{a}=\sigma R_{1}=0.0085 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& R_{2}=(1+2 \sigma)^{2} R_{1}=0.4617 \Omega \\
& R_{b}=\frac{(1+2 \sigma)^{2} \sigma R_{1}}{4(1+\sigma)^{2}}=0.0022 \Omega
\end{aligned}
$$

Therefore

$$
\begin{array}{ll}
R_{4}=R_{2}=0.4617 \Omega & R_{5}=R_{1}=0.4269 \Omega \\
R_{c}=R_{b}=0.0022 \Omega & R_{d}=R_{a}=0.0085 \Omega
\end{array}
$$

[b] $D=[0.4269+2(0.0085)][0.4617+2(0.0022)]+2(0.4617)(0.0022)=0.2090$
$i_{1}=\frac{V_{\mathrm{dc}} R_{2}}{D}=26.51 \mathrm{~A}$
$i_{1}^{2} R_{1}=300 \mathrm{~W}$ or $200 \mathrm{~W} / \mathrm{m}$
$i_{2}=\frac{R_{1}+2 R_{a}}{D} V_{\mathrm{dc}}=25.49 \mathrm{~A}$
$i_{2}^{2} R_{2}=300 \mathrm{~W}$ or $200 \mathrm{~W} / \mathrm{m}$
$i_{1}^{2} R_{\mathrm{a}}=6 \mathrm{~W}$ or $200 \mathrm{~W} / \mathrm{m}$
$i_{\mathrm{b}}=\frac{R_{1}+R_{2}+2 R_{a}}{D} V_{\mathrm{dc}}=52 \mathrm{~A}$
$i_{\mathrm{b}}^{2} R_{\mathrm{b}}=6 \mathrm{~W}$ or $200 \mathrm{~W} / \mathrm{m}$
$i_{\text {source }}=52+52+\frac{12}{0.48}=129 \mathrm{~A}$
$p_{\text {del }}=12(129)=1548 \mathrm{~W}$
$p_{H}=5(300)=1500 \mathrm{~W}$
$p_{\mathrm{V}}=8(6)=48 \mathrm{~W}$
$\sum p_{\text {del }}=\sum p_{\text {diss }}=1548 \mathrm{~W}$

