Di screte and Combi natorial Mathematics 5th Edition Ginmal di Sol utions Munual

CHAPTER 2
FUNDAMENTALS OF LOGIC

Section 2.1

1. The sentences in parts {(a}, (¢), (d), and (f) are statements.
2. The statements in parts (a}, (c), and (f} are primitive statements.

3. Since p — ¢ is false the truth value for p is 1 and that of ¢ is 0. Consequently, the truth
values for the given compound statements are

(a) 0 (b) 0 () 1 @ o
4. (a) r—g (b) g—p (¢) (sAr)—gq

5. (a) If triangle ABC is equilateral, then it is isosceles.
(b) If triangle ABC is not isosceles, then it is not equilateral.
(¢) Triangle ABC is equilateral if and only if it is equiangular.
(d) Triangle ABC is isosceles but it is not equilateral.
(e} I triangle ABC is equiangular, then it is isosceles.

6. (a) True (1) (b) False (0) (¢) True (1)

7. (a) I Darci practices her serve daily then she will have a good chance of winning the
tennis tournament.
(¢} ¥ Mary is to be allowed on Larry’s motorcycle, then she must wear her helmet.

8.

plglpVei(a)~(pVg > pip—glg—p|(d) p=ag—-(4—p
0olo0] © 1 1 1 1
ol1] 1 1 1 i) 0
116 1 1 0 1 1
1111 1 1 1 1
plalp—=qgiphp—=qgllellpAlp—g]—q | ({f)|(g)
0lo| 1 0 1 10
ol1} 1 0 1 11
1106] © 0 1 119
111 1 1 1 110
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9.

10.

11.

12.

13.
14.

15.

i8.

17.

plgirig—=r (b)) p=(g—r) p—=gl(c)p—g —r  (h)
0100 1 1 1 0 1
01011 1 1 1 1 1
01110 E 1 1 0 1
01111 1 1 1 1
11010 1 1 0 1 1
1101 1 1 0 1 1
11116 0 0 1 0 1
11141 1 1 1 1 1
Propositions {(a}, (e), (f), and (h) are tautologies.
2 S
pleirip—(g=r)|(p=g—(p—r)|s—t
01010 1 1 1
0i01}1 1 1 1
06,10 i 1 1
0i11}1 1 1 1
1700 1 1 1
11011 1 1 1
11140 0 0 1
1111 1 1 1
(a) 2°=32 (b) 2~

(a) [pAg)Ar]—(sVt) isfalse (0) when (pAg)Ar istrue (1) and sVt is false (0).
Hence p,q, and r must be true (1) while s and ¢ must be false (0).

p:0; r:0; s:0

(8) n=9 (b) n=19 (¢) n=19

{(a) m=3, n=6 by m=3, n=9 (¢} m=18 n=9
(d) m=4,n=9 () m=4 n=29

(a) 16°-10=90 {b) 20°~ 20 =380

{c} (10}20) —10=190 (d} (20)(10) — 10 = 190

Cousider the following possibilities:

(i) Suppose that either the first or the second statement is the true one. Then statements
(3) and (4) are false — so their negations are true. And we find from (8} that Tyler did
not eat the piece of pie — while from (4) we conclude that Tyler did eat the pie.

{ii}) Now we'll suppose that statement (3) is the only true statement. So statements (3)
and (4) no longer contradict each other. But now statement (2) is false, and we have Dawn
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guilty (from statement (2)) and Tyler guilty (from statement (3)).

(iii) Finally, consider the last possibility — that is, statement (4) is the true one. Once
again statements (3) and (4) do not contradict each other, and here we learn from statement
(2) that Dawn is the vile culprit.

Section 2.2

(a)

(i)
plglrighrip—{gAr)ip—gip—ri{(pogAr(p—r)
ololo] © 1 1 1 1
0jol1]| © 1 1 1 1
oj1jol o 1 1 1 1
ol1]1] 1 1 1 1 1
1/0/0] 0 0 0 0 0
1{0i1! © 0 0 1 0
1]1/0] o 0 1 0 0
11)1] 1 1 1 1 1
(ii)
plelripVegl(pVg—rip—rig=ri(p=riA(g—r)
olojo| o© 1 1 1 1
oloj1] O 1 1 1 1
ol1lo] 1 - 0 1 0 0
oj1f1] 1 1 1 1 1
110j0] 1 0 0 1 0
1{ol1] 1 1 1 1 1
1{116] 1 0 0 0 0
111111 1 1 1 1 1
(iii)
plgirigVrip—{gVr)ip—q|-r—(p-—+gq)
glotol o 1 1 1
oloj1] 1 1 1 1
0({110] 1 1 1 1
ol1(1] 1 1 1 1
116/0] 0 0 0 0
tiel1] 1 1 0 1
11110 1 1 1 1
11171] 1 1 1 1
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8.

b)

[p— (g v r)] = [ —(p—q) From part {iii} of part (a)

<= [-r — (-pVg)] By the 2nd Substitution Rule,
and (p — ) == (~pV )
<= [~(-p V g} — —r] By the lst Substitution Rule,

and (8 — t) &= {(—~t — —s), for
primitive statements s,?

&= [(-mp A—g) — 1] By DeMorgan’s Law, Double Negation
and the 2nd Substitution Rule
< [(pA—g) — 7] By Double Negation and the

2nd Substitution Rule

plalpAglpVpAg
olo] o© 0
ol1!l o 0
1,0] 0 1
1(1] 1 1

a) For a primitive statement s, sV =-s <= Tj. Replace each occurrence of s by
pV (g Ar) and the result follows by the 1st Substitution Rule.

b) For primitive statements s, ¢ we have (s — {) <= (-t — =-s). Replace each
occurrence of s by pV g, and each occurrence of ¢t by r, and the result is a consequence
of the 1st Substitution Rule.

(D) [pAdArIVIPADA-rI = PAQA(rV-r) = PAGAT &> pAg.
@) [prg) Vgl = (pV ) A(gV ~g) &= (pV ) ATy = pV g
Therefore, the given statement simplifies to {(pV —g) — s or {g = p) — s

a) Kelsey placed her studies before her interest in cheerleading, but she (still) did not get
a good education.

b} Norma is not doing her mathematics homework or Karen is not practicing her piano
lesson.

¢) Harold did pass his C+4+ course and he did finish his data structures project, but he
did not graduate at the end of the semester.

(a) ~fpA(gVr)A{~pV —qVr)l <> -pV(~gA-wr)V(pAgA-r) &= (ngA-r)V|-pV
(pArgh-r)] <= (~gA-r)VIToA(mpV (g A~r))] & (g A-r)V [-pV{gA-r)] <
~pV[{(~qVg)A-r] & —pV-r.

(b} -lprg)—=rle~[pAgVr] & (pAg)Ar.

{c) pA(gV~-r) (d) —pA-gA-r
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10.

11.

12.

24
e’

pigl{(-pVgAlpA(pAg) [PAg
010 0 0
011 0 0
110 0 0
101 1 1

b)(mpAg)V{pV(pVg) =>pVyg

(a) g—p<4=>qVp, so(g— p) <> gAp.

(b) p—+(gAr)<=>-pV(gAr),sofp— (gAT)]* &= -pA(gVr).

(¢) pe g+ (p— QMg — p) = (~pVeA(—gVp), so (p & ¢)* &= (-pAg)V(=gAp).
(d) p¥g <= (pA-g)V (=pAg), so(pVg)! <= (pV ~q) A (~pV g).

(a) 0+ 0=0,then2+2=1.

Llet p: 0+4+0=0,¢:1+1=1.

(The implication: p— ¢) - 0+ 0 =0, then 1 + 1 = 1. — False.

(The Converse of p— ¢: ¢ = p)-If1+1=1, then 0+0=0. - True

(The Inverse of p— ¢: =p— —¢) - 0+05#0, then 1+ 1% 1. — True

(The Contrapositive of p — ¢g: =q¢ — —p) - 1+ 15 1, then 0+ 0 # 0. — False

(b) ¥ -1 < 3 and 3+ 7 =10, then sin(¥) = —1. (TRUE)
Converse: If sin(#¥) = —1, then —1 < 3 and 34 7 = 10. (TRUE)
Inverse: If —1 2> 3 or 3+ 7 # 10, then sin(*¥) # ~1. (TRUE)
Contrapositive: If sin(¥) s —1, then —1> 3 or 3+ 7 # 10.

(a) True (b) True {¢) True
a) (g—r)V-p b) (~gVr)V-p
plg|pNg pA-g | ~pAg|(pA-g)V(~pAg) | ~peq)

0jo] 0 0 0 0 0

011 1 0 1 1 1

1{o] 1 1 0 1 1

1{1] 0 0 0 0 0
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13.

14.

15.

16.

plaglriilpeoghrgenAlrepliliip—=gAg—r)A(r—p)
0700 1 1
0j0!1 0 0
01110 0 0
0111 0 0
11010 0 0
1101 0 0
1{110 0 0
11111 1 1

pleiphgla—(pAg) Ip—la—=(pAg)]

0l6| o 1 1
(@ 0}1] 0 0 1

10 o 1 1

11 1 1 1

(b) Replace each occurrence of p by pV¢g. Then we have the tautology (pV¢) — [qg —
[(pV¢)Ag]] by the first substitution rule. Since (pV¢)A g <= ¢, by the absorption laws,
it follows that {(pV¢) — [g— ¢] &= Tp.

plalpValpAgla—(pAg | (pVa —lg—(pAg)]

0/0] © 0 1 1
(c)yjo]1] 1 0 0 0

110] 1 0 1 1

1]1] 1 1 1 1

So the given statement is not a tautology. If we try to apply the second substitution rule
to the result in part (a) we would replace the first occurrence of p by pV ¢. But this
does not result in a tautology because it is not a valid application of this substitution rule
— for p is not logically equivalent to pV ¢.

(a) -p<=>(p1p)

(b) pVge&= ~(-pA-g) &= (-pT—g) <= (pTpT(aTg)

() pAger (pAg) > ~plg =T T(T9

(d) poge= pVee ~pA-g) > (pT ) = pllgTy

{e) perges>{(p—gA(g—p)<>tAut= (tTu)T (7T u), where ¢ stands for
pT(gTq) and u for ¢T(p1p)

(8) ~pe==(plp)

(b) pVags==pVg &> -(play(plglplg

(¢) phge>pA-—ge= (-pl-g) > (plp)llela)

(d}) p=ge=pVae(plalpla=lpinldlirinld

() perge=(rir)i(sls) where r standsfor [(p[p)|¢ll{(pip lg] and s
for (glg)lpllllela)lp
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17.

18,

19.

20.

pila|~plg (cpl~g) | ~(pTg) | (-pl-q)

6,0 0 0 0 O

611 1 1 0 0

110 i 1 ¢ 0

111 1 1 1 1

(a) pvaA(pV-q)iVe Reasons

& [pvi{gh—g)lvy Distributive Law of V over A

& (pVFE)Vyg g A =g < F (Inverse Law)

& pVg pV Fy & p (Identity Law)

() (p-+g)A[gA(rV~g)] Reasons

& (p—g)A—g Absorption Law (and the
Commutative Law of V)

& (mpVg)A~g p— g pVy

& —gA(-pVyg) Commutative Law of A

& (gA-p)V(~gAqg) Distributive Law of A over V

& (~gA-p)VFH Inverse Law

& —gA-p Identity Law

& ~{gVp) DeMorgan’s Laws

(a) pVipA(pVq) Reasons

& pVp Absorption Law

& p Idempotent Law of v

(b) pvgV(pA-gAr) Reasons

& (pvgavi-{pVeAr] DeMorgan’s Laws

& [pvgov-pvgir{pvevr) Distributive Law of V over A

& ThAa{(pVeVr) Inverse Law

& pVgVr Identity Law

() l=pV—g) = (pAgAT) Reasons

€& ~(-pV-g)VipAgAr) $—t & sV

& (=pA-giV{pAgAT) DeMorgan’s Laws

& {(pAgV{pAgATr) Law of Double Negation

& pAg Absorption Law

(a) [pA(wVeV-gVirViv-r)A-q = PArVIDIVHT V1) A —g] <=

ALYV {TeAg) &= pV g

(b) [pvipargviphgAr)IAl(pArAt)Vi] <= pAt by the Absorption Law.
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1.

Section 2.3

(a}

plairip—a (pVg | (pVg —=r
ololo] 1 0 1
olol1]| 1 0 1
oitjo] 1 1 0
ol1]1] 1 1 1
1{0/0] © 1 0
11ei1] o 1 1
1j1/0) 1 1 0
i1t} 1 1 1

The validity of the argument follows from the results in the last row. {The first seven rows

may be ignored.)
(b)

plalriprg)—r =gip——r|-pV-g
000 1 1 1 1
0lof1 1 1 1 1
o110 1 0 1 1
0f1]1 1 0 1 1
110}0 1 1 1 1
1101 1 1 0 1
1{1]0 0 0 1 0
11111 1 0 0 0

The validity of the argument follows from the results in rows 1, 2, and 5 of the table. The
results in the other five rows may be ignored.

(c) '

plalrigVripV(gVvr)i[pV({gVr)A-g|pVr
0lol0| 0 0 0 0
01011 1 1 1 1
oli1(o] 1 1 0 0
0i1l1] 1 1 0 1
1tiei0l o 1 1 1
110017 1 1 1 1
1i1ie} 1 1 0 1
1111 1 1 0 1

Consider the last two columns of this truth table. Here we find that whenever the truth
value of [pV (g V 7)] A —g is 1 then the truth value of pV r is also 1. Consequently,

pvgvr)a-g=pvr
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{The rows of the table that are crucial for assessing the validity of the argument are rows
2,5, and 6. Rows 1, 3, 4, 7, and 8 may be ignored.)

(a)
plglrip=glg—=rip=rillp—=gAlg=r)i-{p—r)
olojo] 1 1 1 1
olol1] 1 1 1 1
ol1i0f 1 0 1 1
gj1i1] 1 1 1 1
110610 © 1 0 1
110/1] o© 1 1 1
1i1/0] 1 0 0 1
1111} 1 1 1 1
(b)
plelp—=qllp=OA~qlllp—=g)A-gl = p
o]0 1 1 1

0l1] 1 0 1

1{o0] © 0 1

111 1 0 1

(¢)
pleglpipVel(eVvaghr-pillpVvgA-p —q
0/0] 1] O 0 1

ol1]1 1] 1 1 1
1ioj0] 1 0 1
1{1{0 | 1 0 1

(d)

R S,
plalrip=rlg—=ri(pVg—=rilpor)A(gor)]—s
0/0/0] 1 1 1 1
ploj1] 1 1 1 1
glijo] 1 0 0 1
olili| 1 1 1 1
110/l o© 1 0 1
1lol1} 1 1 1 1
111101 o 0 0 1
1{1i1] 1 i 1 1

(a) I p has the truth value 0, then so does pAg.

(b) When pV g has the truth value 0, then the truth value of p (and that of ¢} is 0.
{c) ¥ ¢ has truth value 0, then the truth value of {(pV ¢) A —p] is 0, regardless of the
truth value of p.

{(d) The statement ¢V s has truth value 0 only when each of ¢,s has truth value 0. Then
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(p — ¢) has truth value 1 when p has truth value 0; (r — s) has truth value 1 when r
has truth value 0. But then (pV r} must have truth value 0, not 1.

(e) For (-pV —r) the truth value is 0 when both p,r have truth value 1. This then
forces ¢,s to have truth value 1, in order for (p — ¢), (» — s} to have truth value 1.
However, this results in truth value 0 for (—gV -s).

{(a) Janice’s daughter Angela will check Janice’s spark plugs. (Modus Ponens)
(b) Brady did not solve the first problem correctly. (Modus Tollens)

{(c) This is a repeat-until loop. (Modus Ponens)

(d) Tim watched television in the evening. (Modus Tollens)

{a) Rule of Conjunctive Simplification

(b) Invalid — attempt to argue by the converse
(¢) Modus Tollens

(d} Rule of Disjunctive Syllogism

(e) Invalid — attempt to argue by the inverse

(a)

Steps Reasons
(1) gAr Premise
2) ¢ Step (1) and the Rule of Conjunctive Simplification
3) J.qvr Step (2) and the Rule of Disjunctive Amplification

Consequently, (g Ar) — (¢ V r) is a tautology, or gAr =gV r.

(b} Consider the truth value assignments p : 0, ¢ : 1, and r : 0. For these assignments
[pA(gAr)}V=lpV (gAr)] has truth value 1, while [pA (g V )]V —[pV (¢ V r)] has truth
value 0. Therefore, P — P; is not a tautology, or P # P;.

(1) & (2)  Premise

(3) Steps (1), (2) and the Rule of Detachment

(4) Premise

(5) Step (4) and (r — ¢} &= (=g — or) &= (g — —r)
(8) Steps (3), (8) and the Rule of Detachment

(7 Premise

{8) Steps (6), (7) and the Rule of Disjunctive Syllogism
(%) Step {8) and the Rule of Disjunctive Amplification

(1) Premise

(2) Step (1) and the Rule of Conjunctive Simplification
(3) Premise

{4) Steps (2), (3) and the Rule of Detachment
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(5)
(6)
()
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(13)

(a)

(1)
()
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

(b)

(1)
(2)
(3)
@)
(5)
)
(M)
(g} & @

(c)

(1)
(2)

Step (1) and the Rule of Conjunctive Simplification
Steps (4), (5) and the Rule of Conjunction
Premise

Step (7) and [r — (s V)] &= [=(s V) — 7]
Step (8) and DeMorgan’s Laws

Steps (6}, (9) and the Rule of Detachment

Premise

‘Step (11) and [(-pV ) = 7] <= [~r = =(=pV g)]

Step (12) and DeMorgan’s Laws and the Law of Double Negation
Steps (10), (13) and the Rule of Detachment
Step (14) and the Rule of Conjunctive Simplification

Premise {The Negation of the Conclusion)

Step (1) and =(—g — 8) <= =(——g V 8) <=> (g V s) &= g A s
Step (2) and the Rule of Conjunctive Simplification
Premise

Steps (3), (4) and the Rule of Disjunctive Syllogism
Premise

Step (2) and the Rule of Conjunctive Simplification
Steps (6), (7) and Modus Tollens

Premise

Steps (8), (9) and the Rule of Disjunctive Syllogism
Steps (5), (10) and the Rule of Conjunction

Step (11) and the Method of Proof by Contradiction

p—q Premise

g - P Step (1) and (p — ¢) = (~g — ~p)

pVr Premise

-p b T Step (3} and (pVr) & (~p— 1)

-G~ T Steps (2), (4) and the Law of the Syllogism
AR Premise

rer s Step (6) and (~r V 5) €= (r — 8)

g — 8 Steps (5), (7) and the Law of the Syllogism
-p e ¢ Premise

(mp - g) Ag— —p) Step (1) and (—p < g} <= [(-p — @) A{g — —p)]
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10.

(3)
(4)
(5)
(6)
(M
(a)
(1)
(2)
(3)

(4)
(5) 9%@

(b)

(1)
(2)
()
(4)
(5) ﬁ‘@

(¢)

(1)
(2)
(3)
(4)
(8) %

(d)

(1)

(2

(3)
(4).",

TP g
q——*?"
Y e
-y

pPA—g

PAT
(pAT)Vq

b, p—*4g

—gVr
g—r

-3

p—rg, g
—p

-y

=p A
=(pVr)

Step (2) and the Rule of Conjunctive Simplification
Premise

Steps (3), (4) and the Law of the Syllogism
Premise

Steps (5), (6) and Modus Tollens.

Premise '

Step (1) and the Rule of Conjunctive Simplification
Premise

Steps (2), (3) and the Rule of Conjunction

Step (4) and the Rule of Disjunctive Amplification

Premises

Step (1) and the Rule of Detachment
Premise

Step (3) and =gV r &= (g —r)

Steps (2), (4) and the Rule of Detachment

Premises

Step (1) and Modus Tollens

Premise

Steps (2), (3) and the Rule of Conjunction
Step {(4) and DeMorgan’s Laws

Premises
Step (1) and the Rule of Detachment
Premise

Steps (2), (3) and Modus Tollens
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B

(2) ~g—-p
3) p—g

4) 4q

(6) pAg

6) p—{g—r)
(1) (phg)—r
8 ..r

(f)

(1) pAg

2 »

(3) p—(rig)
(4) rhg

56y r

(6) r—{(sVt)
() sVt

(8 s

9) .o ¢

(g)

(1) -s,pVs
2 »p

(3) p—ilg—r)
4) g-r

(5) t -+ g

{(6) t -7

(T) 2, = = =t
(b)

(1)  -pvr

2) por

(3 -r

4) -»

(8) pVg

6) -p—yg
(7)., ¢

Premise

Premise

Step (2) and (p — ¢) &= (=g — —p)

Steps (1), (3) and the Rule of Detachment
Steps (1), (4) and the Rule of Conjunction
Premise

Step (6), and [p— (g —r)] &= [(pAg) — 1]
Steps (5), (7) and the Rule of Detachment

Premise

Step (1) and the Rule of Conjunctive Simplification
Premise

Steps (2}, (3) and the Rule of Detachment

Step (4) and the Rule of Conjunctive Simplification
Premise

Steps (5), (6) and the Rule of Detachment

Premise

Steps (7), (8) and the Rule of Disjunctive Syllogism

Premises

Step (1) and the Rule of Disjunctive Syllogism
Premise

Steps (2), (3) and the Rule of Detachment
Premise

Steps (4), (8) and the Law of the Syllogism
Step (6) and (t — r) &= (~r — ~i)

Premise

Step (1) and (p—r) & (mpVr)

Preraise

Steps (2), (3) and Modus Tollens

Premise

Step (5) and (pV g) & (=—pV q) & (~p — ¢)
Steps (4), (6) and Modus Ponens
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il.

12.

(a) p:1 g:0 r:l
(b p:0 g:0 r:0orl
p:0 g:1 vl
(¢) pgr:l s:0
(&) p,gr:1 s:0
a} p: Rochelle gets the supervisor’s position.
g: Rochelle works hard.
r: Rochelle gets a raise.
s: Rochelle buys a new car.
(phg)—r
r— S
-8
oo TPV g
(1) s Premise
2) r—s Premise
3y -r Steps (1), (2) and Modus Tollens
(4) (pAg)—r Premise
(8) =(pAq) Steps (3), (4) and Modus Tollens
(6) .. ~pV g Step (5) and ~(p A q) +=> —pV —q.
b} p: Dominic goes to the racetrack.
g: Helen gets mad.
r: Ralph plays cards all night.
s: Carmela gets mad.
t: Veronica is notified.
p—yq
r—s
(gvs)—1
-4
oo AT
(1y Premise
(2) (gvs)—t Premise
(3) ~{gvs) Steps (1}, (2) and Modus Tollens
(4) —gA e Step (3) and ~{gV 8) &> —g A s
(8 —gq  Step (4) and the Rule of Conjunctive Simplification
6) »p—gq Premise
(7) —p Steps (5}, (6) and Modus Tollens
8 s Step (4) and the Rule of Conjunctive Simplification
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13.

(9) r-—s Premise
(10) -r Steps (8), (9) and Modus Tollens
(11} ,", -p A —r Steps (7), (10) and the Rule of Conjunction

c) p: There is a chance of rain.
¢: Lois’ red head scarf is missing.
r: Lois does not mow her lawn.
s: The temperature is over 80° F.

(pVg)—r
3-—)“‘!}}
s A g

Ed
g
L r

The following truth value assignments provide a counterexample to the validity of this

argument:

p:0;¢:0;r:1;5:1

(2) t

P lgiripVe | pVr i (pVgA(-pVr)lqVr t—(qgVr)
0 1010 0. 1 0 0 1
0 |10}1 0 1 0 1 1
0 j110 1 1 1 1 1
0 11}1 1 1 1 1 1
1100 1 0 0 0 1
11071 1 1 1 1 1
1 111067 1 0 0 1 1
1 7111 1 1 1 1 1

From the last column of the truth table it follows that [[pVg)A(-pVr)] = (gVr)isa
tautology.

Alternately we can try to see if there are truth values that can be assigned to p,q, and r
so that {g V r) has truth value 0 while {(p V ¢), (—~p V r) both have truth value 1.

For (g V r) to have truth value 0, it follows that ¢ : 0 and r : 0. Consequently, for (pV ¢)
to have truth value 1, we have p : 1 since ¢ : 0. Likewise, with r : 0§ it follows that
-p 1 1 # (~pV)r has truth value 1. But we cannot have p : 1 and —p : 1. So whenever
{pV ¢), (mpVr) have truth value 1, we have (g V r} with truth value 1 and it follows that
pVa)A{~pVr)] - (gVr)is a tautology.

Finally we can also argue as follows:
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Steps
pVy
gVp
~(-g)Vp
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—pVr
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Steps
pV(gVr)
(pV@A(pVr)
pvr

p-—+s

-pV s

. e TV

Steps

per g
®—-9)A(g—p)
p—gq

—pVq

P

pVyq

(Vg A(-pV4q)
gVyg
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Steps

rVyg

p»«k'(‘

“pVr

lpva A(-pVr)
gvr

ot G

- W g
(rVg)A{-rvs)]

s qVs

&b

@ oo
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e e B N o

Reasons
Premise
Step (1) and the Commutative Law of V

- Step (2) and the Law of Double Negation

Step (3), ~¢ = p& ~(~g)Vp

Premise

Step (8),p—r & —pVr

Steps (4), (6), and the Law of the Syllogism
Step (7), "¢ »r & qVr

Reasons

Premise

Step (1) and the Distribution Law of V over A

Step (2) and the Rule of Conjunctive Simplification
Premise

Step (4), p—> 3 & —pVs

Steps (3), (8), the Rule of Conjunction, and Resolution

Reasons

Premise

(peg e llp—a)A(g—p)

Step (2) and the rule of Conjunctive Simplification
Step (3}, p— g ¢ —pVyg

Premise

Step (5) and the Rule of Disjunctive Amplification
Steps (6), (4), and the Rule of Conjunction

Step (7) and Resolution

Step (8) and the Idempotent Law of V.

Reasons

Premise

Premise

Step (2), p—r & —pVr

Steps (1), (3}, and the Rule of Conjunction
Step (4) and Resolution

Premise

Step (8),r — s & ~rVs

Steps (5}, {7), the Commutative Law of V,
and the Rule of Conjunction

Step (8) and Resolution

RSl ol A e

o

o
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- 10,

Steps
-pVgVr
gV(-pVr)

~q
~qV(~pVr)

lgv(=vmA[-¢V(=pVri]
(mpVvr)

-

"‘!TV“‘lp

[(rV —p) A(=rV -p)]

A
ﬁ@ﬂp

10.

42

Reasons

Premise

Step (1) and the Commutative and
Associative Laws of V

Premise

Step (3) and the Rule of Disjunctive
Aruplification

Steps (2), (4}, and the Rule of
Conjunction

Step (5), Resolution, and the
Idempotent Law of A

Premise

Step (7) and the Rule of
Disjunctive Amplification

Steps (6), (8), the Commutative Law
of v, and the Rule of Conjunction
Step (9), Resolution, and the
Idempotent Law of V



(v)

@ ha e

[

=

10.

il.
12,

13.

14.

15.

16.

(c) Consider the following assignments.
p: Jonathan has his driver’s license.
q: Jonathan’s new car is out of gas.
r

Steps
—pV s
pVgVi
pv{gVi)
[lpv(gVHlA(-pVs)
(gVi)Vs
gV (tVs)
—“gVr
lgv(tvs)]
(tVs)Vr
tV{(sVr)

-tV {(sAr)
(mtVs)A(—tVr)

~tV s
MtV {(svrlA(-tVs)]
(sVr)vs

&
¢ @ rvs

b

10.

11.
12.

13.

14,

15.

16.

Reasons

Premise

Premise

Step (2) and the Associative
Law of V

Steps {3), (1), and the Rule

of Conjunction

Step (4) and Resolution (and

the First Substitution Rule)
Step (5) and the Associative Law of V
Premise

Steps (6), (7), and the

Rule of Conjunction

Step (8) and Resolution {and the
First Substitution Rule)

Step (9) and the Associative
Law of V

Premise

Step (11) and the Distributive
Law of V over A

Step (12) and the Rule of
Conjunctive Simplification

Steps (10}, (13), and the Rule

of Conjunction

Step (14) and Resolution {and
the First Substitution Rule)
Step (15) and the Commutative,
Associative, and Idempotent Laws of V

Jonathan likes to drive his new car.
Then the given argument can be written in symbolic form as

—“pVyg
Y -

gy S
_gvor

s
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Steps HReasons

1. -pVg 1. Premise

2. p¥Y-r 2. Premise

3. (pV-riA(-pVyg) 3. Steps (2), (1), and the Rule of Conjunction

4. -rVgqg 4. Step (3) and Resolution

5 ¢qV-r 5. Step (4) and the Commutative Law of Vv

6. —gV-r 6. Premise

7. {gV-r)A(~gV -r) 7. Steps (3), (6), and the Rule of Conjunction

8 ~rVor 8. Step (7) and Resolution

9. J,or 9. Step (8) and Idempotent Law of V
Section 2.4

(a) False (b) False (¢) False

(d) True (e} False {f) TFalse
(a) (i) True (ii) True (iii) True (iv) True

(b) The only substitution for z that makes the open statement [p(z) A ¢g(z)] A r(z) into a
true statement is z = 2.

Statements (a), (c), and (e) are true, while statements (b), (d), and (f) are false.

(a) Every polygon is a quadrilateral or a triangle (but not both). (True — for this
universe.)

(b) Every isosceles triangle is equilateral. (False)

(c) There exists a triangle with an interior angle that exceeds 180°. (False)

(d) A triangle has all of its interior angles equal if and only if it is an equilateral triangle.
(True)

(e) There exists a quadrilateral that is not a rectangle. (True)

(f) There exists a rectangle that is not a square. (True)

{g) I all the sides of a polygon are equal, then the polygon is an equilateral triangle.
(False)

(k) No triangle has an interior angle that exceeds 180°. (True)

(i) A polygon {of three or four sides) is a square if and only if all of its interior angles are
equal and all of its sides are equal. (False)

{7} A triangle has all interior angles equal if and only if all of its sides are equal. {True)



(a) dz [mz) A e(z) A §(z)] True
(b) dz {.s(x;é Aelz) A ~m{z)] True
() Ve [e(z) — (m(z) V p(z))] False
(d) vz [(g(z) A o(z)) — —p(=)], True
or Vz [(p(z) Ac(z)) — ~g(2)],
or Vo [(g(2) A p(e)) — ~e(z)]
(e) Ve [(c(z) A s(z)) — (p(z) ¥ e(2))], True
6.
(a) True (b) True (¢) False
(d) True (e) False (f) False
7. (a)
(i) 3z o(z)

(i) 3z [p(z) A g(z)]
(i) Ve fo(x) — ~4(z)]
(v) Vo [ofe) = ~4(x)]
) 3z [o(e) AK)]
(i) Ve [(alz) A r(z)) = 5()
(b) Statements (i), (iv), (v), and (vi) are true. Statements (i) and (iii) are false: z = 10
provides a counterexample for either statement.
c
© (i) I @ is a perfect square, then z > 0.
(i1} If z is divisible by 4, then z is even.
(iii) If z is divisible by 4, then z is not divisible by 5.
(iv) There exists an integer that is divisible by 4 but it is not a perfect square.
(d) i) Let z =0. (iii) Let z = 20.

8. (a) True {(b) False: For 2z =1, ¢(z) is true while p(z) is false.
(c) True (d) True (e) True (f) True
(g) True (h) False: For z = —1, (p{2) V ¢{z)) is true but r(z) is false.

9.
(a) (i) True (it} False -~ Consider z = 3.
(iit) True (iv) True
(b} (i) True (ii) False - Consider z = 3.
(iii} True (iv) True
{¢) (i) True (it) True
(i) True {iv) False- For z = 2 or 5, the truth

value of p{#) is 1 while that
of r{z} is 0.

10. (a} ¥Ym,n Alm,n] >0
{(b) ¥Ym,n 0 < 4lm,n] <70



11.

12.

13.

14.

15.

16.

i7.

(¢} Fm,n Alm,n]> 60

(d) Vm [(1<n<19) — (A4im,n] < Alm,n + 1])]

(e) ¥n [(1<m<9)— (Alm,n] < Alm + 1,n})]

() V1<mi<3V 1<n,j<20{((m,n)#,75)) — (Alm,n] # Ali,5])]

(a) In this case the variable z is free while the variables y, 7 are bound.
(b) Here the variables 2,y are bound; the variable z is free.

(a
: (i) False (ii) True (iii) True
(iv) False,ifz =0 (v) False,ifz=0 (vi} True
(vii) False —Ify=0then 2 0;ify #0, let = = 2y.
(vii) False — Let z = 2 and y = -2, for example.

(b) Statements (iv), (v), and (viil) are now true — because of the change in universe.

(¢} (i) True (i1) True (iii) True
(iv) False — For any y consider z = 2y.

(a) p(2,3) Ap(3,3) Ap(5,3)
(b) [p(2,2) v p(2,3) v p(2,5)] V [p(3,2) V p(3,3) V p(3,5)] v [p(5,2) V p(5,3) V p(5,5)]
(c) [p(2,2) v p(3,2) V p(5,2)] A[p(2,3) V p(3,3) V p(5,3)] A[p(2,5) V p(3,5) V p(5, 5)]

Statements (a), (b), (&), and (f) are logically equivalent and each may be expressed as
Ynlg(n) — p(n)]. Statements (c), (g) are logically equivalent and each may be expressed
as Vn[p(n) — g¢(n)]. Statement (d) is not logically equivalent to any of the other six
statements.

a) The proposed negation is correct and is a true statement.
b} The proposed negation is wrong. A correct version of the negation is: For all rational
numbers z,y, the sum z + y is rational. This correct version of the negation is a true
statement.
¢) The proposed negation is correct — but false. The (original) statement is true.
d) The proposed negation is wrong. A correct version of the negation is: For all integers
z,¥, if z,y are both odd, then zy is even,

The (original} statement is true.

{(a) Some student in Professor Lenbart’s C++ class is not majoring in either computer
science or mathematics.
(b} ¥ a student is in Professor Lenhart’s C++ class, then that student is not majoring in
history.

or, No student majoring in history is in Professor Lenhart’s C++ class.

a) There exists an integer n such that n is not divisible by 2 but n is even (that is, not
add}.

b} There exist integers k, m,n such that £ — m and m — n are odd, and &k — n is odd.
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18.

19.

20.

¢) For some real number z, z> > 16 but —4 < z < 4 (that is, ~4 < z and z < 4).
d) There exists a real number z such that |z — 3{ < 7 and either # < —4 or z > 10.

(2) Vz [=p(z) A —q(z)]

(b} Jzr [-p(a) V o(x)]

(c) 3z [p(z) A—g(z)]

(d) Yz [(p(z) V ¢(z)) A —r(z)]

(a) Statement: For all positive integers m,n, if m > n then m? > n®. (TRUE)
Converse: For all positive integers m,n, if m? > n? then m > n. (TRUE)

Inverse: For all positive integers m,n, if m < n then m? < n?. (TRUE)

Contrapositive: For all positive integers m,n, if m? < n* then m < n. (TRUE)

(b) Statement: For all integers a,b, if a > b then @ > b®. (FALSE — let ¢ = 1 and
b= -2.)

Converse: For all integers a, b, if a® > b then a > b. (FALSE — let a = —5 and b = 3.)
Inverse: For all integers a, b, if @ < b then o < %, (FALSE — let ¢ = —5 and b = 3.)
Contrapositive: For all integers a,b, if a® < §” then a < b. (FALSE — let ¢ = 1 and

b= 2.}
(c) Statement: For all integers m,n, and p, if m divides n and n divides p then m divides
p. (TRUE)

Converse: For all integers m and p, if m divides p, then for each integer n it follows that
m divides n and n divides p. (FALSE —let m =1, n =2, and p = 3.)

Inverse: For all integers m,n, and p, if m does not divide n or n does not divide p, then
m does not divide p. (False —let m=1,n=2, and p=3.)

Contrapositive: For all integers m and p, if m does not divide p, then for each integer n
it follows that m does not divide n or n does not divide p. (TRUE)

(d) Statemeni: Vz [(z > 3) — (2* > 9)] (TRUE)

Converse: ¥z {(z® > 9) — (z > 3)] (FALSE — let z = -5.)

Inverse: ¥z [(z <3) — (22 < 9)] (FALSE — let z = —5.)

Contrapositive: Vz [(z? < 9) — (z < 3)] (TRUE)

(¢) Statement: Vz [(z® +42—21>0) — [(z > 3)V(z < ~T7)]] (TRUE)

Converse: Vz [[(z > 3)V{(z < -7)] = (2% + 4z — 21 > 0)] (TRUE)

Inverse: Vr (2442 -21<0)—=[{z <3 A(z 2 -7}, or ¥z [{2® + 42 — 21 < 0) —
{(~7 <z < 3)] (TRUE)

Contrapositive: Vo [[(# <3 Az 2 -T)] = (2 +42 - 21 <0, or Ve [(-T <2 <3) —
(z* + 4z — 21 < 0)] (TRUE)

For each of the following answers it is possible to have the implication and its contrapositive
interchanged. When this happens the corresponding converse and inverse must also be
interchanged.

(a) Implication: If a positive integer is divisible by 21, then it is divisible by 7. (TRUE}
Converse: If a positive integer is divisible by 7, then it is divisible by 21. (FALSE —
consider the positive integer 14.)
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21.
22.

23.

24.

25.

26.

1.

Inverse: If a positive integer is not divisible by 21, then it is not divisible by 7. (FALSE
— consider the positive integer 14.)

Contrapositive: If a positive integer is not divisible by 7, then it is not divisible by 21.
(TRUE})

{b) Implication: If a snake is a cobra, then it is dangerous.

Converse: I a snake is dangerous, then it is a cobra.

Inverse: If a snake is not a cobra, then it is not dangerous.

Contrapositive: If a snake is not dangerous, then it is not a cobra.

(¢) Implication: For each complex number z, if z° is real then z is real. (FALSE — let
z=1.)

Converse: For each complex number z, if z is real then z° is real. (TRUE)

Inverse: For each complex number z, if z? is not real then z is not real. (TRUE)
Contrapositive: For each complex number z, if 2 is not real then z? is not real. (FALSE
—let z =1.)

() True (b) False (¢) False (d) True (e) False
(a) True (b) False {c) True (d) True (e) True

(a) Va3bla+b="5+a=0]

(b) 3uVa lau = ua = 4]

(¢) Va3# 03b[ab=ba=1]

(d) The statement in part (b) remains true but the statement in part (c) is no longer
true for this new universe.

{a) True (b) False (c¢) False (d) True

(@) 3zdyl(z>y)A(z-y<0)]
(b) FzIylz <y)AVzlz 22V 22yl
(¢) 3z Iy [(la] = ) A (y # £2)]

7%%?’,;#L#§f>0\ik>ﬁ3n[{n>k}/\irn-LIZe]

Section 2.5
Although we may write 28 =25+ 14+ 141 = 16 + 4 4 4 -+ 4, there is no way to express
28 as the sum of at most three perfect squares.

Although 3=1+141and 5 =4+ 1, when we get to 7 there is a problem. We can write
7 =4+ 141+ 1, but we cannot write 7 as the sum of three or fewer perfect squares,
[There is also a problem with the integers 15 and 23.]
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Here we find that

0=2504+4+1 40 =36+ 4 50 = 25 4 25
32=16+ 16 42 =254+16+1 52 =36+ 16

34 =25+9 44 =36 +4+4 54 =25+ 25+ 4
36 = 36 46=36+9+1 56 =36+ 16+ 4
=36+141 48 = 16 + 16+ 16 58 =49+9
4=2-+2 16 =13+3 28 =23+4+5

6=3-+3 18 =13+5 30 =17+ 13

8=3+45 20=17+3 32 =194+ 13

10=5+5 22 =17+35 34 = 17+ 17

12=T+5 24 = 17T+7 36 =19+ 17

14=T7T+7 26 =194+7 38 =194 19

(a) The real number 7 is not an integer.

(b) Margaret is a librarian.

(c¢) All administrative directors know how to delegate authority.
(d) Quadrilateral M N PQ is not equiangular.

(a) Valid — This argument follows from the Rule of Universal Specification and Modus
Ponens.

(b) Imvalid — Attempt to argue by the converse.

(¢) Invalid — Attempt to argue by the inverse.

(a) When the statement 3z [p(z) V ¢(z)] is true, there is at least one element ¢ in the
prescribed universe where p(c) V ¢(c) is true. Hence at least one of the statements
p{c), ¢(c) has the truth value 1, so at least one of the statements 3z p(z) and 3z ¢(z) is
true. Therefore, it follows that 3z p(z) V Iz ¢(z) is true, and Jz {p(z) V ¢(z)] =
Jz p(z) V 3z g(z). Conversely, if Iz p(z) V Iz ¢(z) is true, then at least one of
pla), g(b) has truth value 1, for some a, b in the prescribed universe. Assume without loss
of generality that it is p{a). Then p{e) V ¢(a) has truth value 1 so Iz [p(z) V ¢{z)] is a
true statement, and Iz p(z) V 3z ¢(z) = Jx [p(z) V ¢(z)].

(b) First consider when the statement Yz [p{r) A ¢(z)] is true. This occurs when
pla) A g(a) is true for each a in the prescribed universe. Then p{a) is true (as is g(a))
for all a in the universe, so the statements Vz p(x), Yz ¢{(z) are true. Therefore, the
statement Yz p{z) A Vz ¢(z) is frue and Ve [p(z) A ¢{z)] == Ve p(z) A Yz ¢(z).
Conversely, suppose that Ve p(z) A Ya ¢(z) is a true statement. Then Yo p(2), Vz ¢(=)
are both true. So now let ¢ be any element in the prescribed universe. Then p{c), ¢(c), and
ple) A glc) are all true. And, since ¢ was chosen arbitrarily, it follows that the statement
Vo [p{z) A ¢(z)] is true, and Vo pz) A Va ¢(z) = ¥z [p(z) A ¢(z)].

{(a) Suppose that the statement Vz p(z) vV Vz ¢(z) is true, and suppose without loss of
generality that Vz p(z) is true. Then for each ¢ in the given universe p(c) is true, as is
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?(c) V g{c). Hence Va [p{z)}V ¢(z)] is true and Vx p(z) V Yz ¢(z) = Vz [p(z) V ¢(z)].
{(b) Let p(z}): >0 and ¢(z): 2z <0 for the universe of all nonzero integers. Then
Va p(e),Vz q(z) are false, so Vz p(z) VVz ¢(z) is false, while Vz [p{(z) V ¢(z)] is true.

(1) Premise

(2) Premise

(3) Step (1) and the Rule of Universal Specification

(4) Step (2) and the Rule of Universal Specification

(5) Step (4) and the Rule of Conjunctive Simplification
(6) Steps (5), (3), and Modus Ponens

(7) Step (6) and the Rule of Conjunctive Simplification
(8) Step (4) and the Rule of Conjunctive Simplification
(9) Steps (7), (8), and the Rule of Conjunction

(10) Step (9) and the Rule of Universal Generalization

(4) Step (1) and the Rule of Universal Specification
(5) Steps (3), (4), and the Rule of Disjunctive Syllogism

(6) Premise :

(7) Step (6) and the Rule of Universal Specification

(8) Step (7) and —g¢(a) V r(a) & ¢(a) — r(a)

(9) Steps (8), (8), and Modus Ponens (or the Rule of Detachment)
(10) Premise
(11) Step (10) and the Rule of Universal Specification
(12) Step (11) and s(a) — —w(a) & —~-r(a) — ~s(a) & r(a) — —s{a)
{(13) Steps (9), (12), and Modus Ponens (or the Rule of Detachment)

Consider the open statements
w(z): z works for the credit union
£(z): = writes loan applications
e{z): z knows COBOL
g{z): 2z knows Excel
and let r represent Roxe and ¢ represent Imogene.

In symoblic form the given argument is given as follows:
Vz [w(z) — c(z)]
Va [(w(z) A £(z)) — glz)]
wir) Ag(r)
gli) A —e(i)
2o (1) A —w(i)

The steps {and reasons) needed to verify this argument can now be presented.



12.

13.

(1)
(2)
(3)
4)
(5)
(6)
(7)
(8)

O]
(10)
(11)

Steps

Yz [w(z) — o(z)]

g(2) A ~e(t)

(i)

w(s} — (i)

—(z)

Vz [(w(z) At(z)) — q(z)]
w(r) A —q(r)

—g(r)

(w(r) Al(r)) — ¢lr)
ﬂgw)('r) AL(r))

Reasons

Premise

Premise

Step (2) and the Rule of Conjunctive Simplification

Step (1) and the Rule of Universal Specification

Steps (3), (4), and Modus Tollens

Premise

Premise

Step (7) and the Rule of Conjunciive
Simplification

Step (6) and the Rule of Universal Specification

Steps (8), (9), and Modus Tollens

Step (7) and the Rule of Conjunctive

Simplification

Step (10) and DeMorgan’s Law

Steps (11), (12), and the Rule of Disjunctive
Syllogism

Steps (13), (5), and the Rule of Conjunction

(12) —w(r) Vv ~r)
(13) —&(r)

(14) .5 ~€(r) A ~w(3)

(a) Proof: Since k,f are both even we may write k = 2¢ and £ = 2d, where c,d are
integers. This follows from Definition 2.8. Then the sum k+ £ = 2¢+ 2d = 2(c+ d) by the
distributive law of multiplication over addition for integers. Consequently, by Definition
2.8, it follows from k -+ € = 2(c + d), with ¢ + d an integer, that k + £ is even.

(b) Proof: As in part (a) we write £ = 2¢ and ¢ = 2d for integers ¢,d. Then —
by the commutative and associative laws of multiplication for integers — the product
kl = (2¢)(2d) = 2(2¢d), where 2cd is an integer. With (2¢)(2d) = 2(2¢d), and 2¢d an
integer, it now follows from Definition 2.8 that kZ is even.

(a) Contrapositive: For all integers k and £, if &, £ are not both odd then k¢ is not odd.
— OR, For all integers k and 7, if at least one of &, £ is even then kf is even.

Proof: Let us assume (without loss of generality) that k is even. Then k = 2c¢ for some
integer ¢ — because of Definition 2.8. Then k€ = (2¢)f = 2(cf), by the associative law of
multiplication for integers — and ¢f is an integer. Consequently, k€ is even — once again,
by Definition 2.8. [Note that this result does not require anything about the integer £.]

{b) Contrapositive: For all integers & and £, if k£ and £ are not both even or both odd
then & + £ is odd. — OR, For all integers k and £, if one of k, £ is odd and the other even
then &k + £ is odd.

Proof: Let us assume {without loss of geperality) that k is even and £ is odd. Then i
follows from Definition 2.8 that we may write £ = 2¢ and £ = 2d + 1 for integers c and d.
And now we find that ¥+ £ = 2c+ (2d 4 1) = 2(c + d) -+ 1, where ¢+ d is an integer — by
the associative law of addition and the distributive law of multiplication over addition for
integers. From Definition 2.8 we find that k + £ = 2(c + d) + 1 implies that &k + £ is odd.
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14.

15.

16.

17.

18,

19.

Proof: Since n is odd we may write n = 2a + 1, where a is an integer — by Definition
2.8. Then n? = (2a + 1) = 4d® + 4a + 1 = 2(2¢% + 2a) + 1, where 2a¢® + 2a is an integer.
So again by Definition 2.8 it follows that n? is odd.

Proof: Assume that for some integer n, n? is odd while n is not odd. Then n is even
and we may write n = 2a, for some integer ¢« — by Definition 2.8. Consequently, n? =
{2a)* = (2a)(2a) = (2 2)(a - a), by the commutative and associative laws of multiplication
for integers. Hence, we may write n? = 2(24?), with 2a? an integer — and this means that
n? is even. Thus we have arrived at a contradiction since we now have n? both odd (at the
start) and even. This contradiction came about from the false assumption that n is not
odd. Therefore, for every integer n, it follows that n® odd = n odd.

Here we must prove two results — namely, (i) if n? is even, then n is even; and (ii) if n is
even, then n? is even.

Proof (i): Using the method of contraposition, suppose that n is not even — that is, n is
odd. Then n = 2a-1, for some integer a, and n* = (2a+1)? = 4a®*+4a+1 = 2(2¢2+2a)+1,
where 2a? + 2a is an integer. Hence n? is odd (or, not even).

Proof (ii): I n is even then n = 2c¢ for some integer c¢. So n? = (2¢)? = (2¢)(2) =
2(e(2e)) = 2A(c-2)c) = 2((2c)c) = 2(2¢?), by the associative and commutative laws of
multiplication for integers. Since 2¢? is an integer, it follows that n? is even.

Proof:

(1) Since n is odd we have n = 2a 4 1 for some integer a. Thenn +11 = (2a¢+ 1)+ 11 =
2a + 12 = 2(a + 6), where a + 6 is an integer. So by Definition 2.8 it follows that n + 11 is
even. .

(2) If n+11is not even, then it is odd and we have n 4 11 = 2b+ 1, for some integer b.
Son = (2b+1)~11 = 2b — 10 = 2(b — 5), where b — 3 is an integer, and it follows from
Definition 2.8 that n is even — that is, not odd.

(3) In this case we stay with the hypothesis — that n is odd — and also assume that
n + 11 is not even — hence, odd. So we may write n 4+ 11 = 2b+ 1, for some integer b.
This then implies that n = 2(b — 5}, for the integer 5 — 5. So by Definition 2.8 it follows
that » is even. But with n both even (as shown) and odd (as in the hypothesis) we have
arrived at a contradiction. So our assumption was wrong, and it now follows that n 4 11
is even for every odd integer n.

Proof: [Here we provide a direct proof.] Since m,n are perfect squares, we may write
m o= o’ and n = B, where a,b are (positive) integers. Then by the associative and
commutative laws of multiplication for integers we find that mn = (a®){$*) = (aa){(bb) =
{({aa)b}b = {a{ab)}b = ({(ab)a)b = (ab} ab) = (ab)?, so mn is also a perfect square.

This resuli is not true, in general. For example, m = 4 = 22 and n = 1 = 1? are two
positive integers that are perfect squares, but m +n = 2%+ 1% = 5 is not a perfect square.



20.

21.

22.

23.

24.

Let m =9 = 3% and n = 16 = 4. Then m + n = 25 = 5%, so the result is true.

Proof: We shall prove the given result by establishing the truth of its (logically equivalent)
contrapositive.
Let us consider the negation of the conclusion — that is, ¢ < 50 and y < 50. Then with
z < 50 and y < 30 it follows that « + y < 50 4+ B0 = 100, and we have the negation
of the hypothesis. The given result now follows by this indirect method of proof {by the
contrapositive).

Proof: Since 4n+7 =4n+6+1 = 2(2n + 3) + 1, it follows from Definition 2.8 that dn+7
is odd.

Proof: If n is odd, then n = 2k + 1 for some (particular) integer k. Then Tn + 8 =
72k +1)+8=14k+7+8 =14k + 15 =14k + 14 + 1 = 2(Tk + 7) + 1. It then follows
from Definition 2.8 that 7Tn + 8 is odd.

To establish the converse, suppose that n is not odd. Then n is even, so we can write
n = 2t, for some (particular) integer £. But then Tn 4+ 8 = 7(2t) + 8 = 14¢ + 8 = 2(7t + 4),
so it follows from Definition 2.8 that Tn-+8 is even — that is, Tn+8 is not odd. Consequently,
the converse follows by contraposition.

Proof: If n is even, then n = 2k for some (particular) integer k. Then 31In + 12 =
31(2k) + 12 = 62k + 12 = 2(31k + 6), so it follows from Definition 2.8 that 31n + 12 is
even.

Conversely, suppose that n is not even. Then n is odd, so n = 2t + 1 for some (particular)
integer . Therefore, 31n+12 = 31(2+1)+12 = 62t +31+12 = 62t +43 = 2(31¢-+21)+1,
so from Definition 2.8 we have 31n+ 12 odd - hence, not even. Consequently, the converse
follows by contraposition.
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{b) I p,then g, else r.
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4.

(2)
plalrigoripo@er)|pegi(poger
olo0l0 1 0 1 0
0i0l1! o 1 1 1
0i1/0] © 1 0 1
olii1] 1 0 0 0
1{olo] 1 1 0 1
1loi1] o 0 0 0
11110] o 0 1 0
11111 1 1 1 1

It follows from the results in columns 5 and 7 that [p < (¢ = r)] © [(p > g) « 7).

(b) The truth value assignments p : 0; ¢ : 0; r : 0 result in the truth value 1 for
[p— (g —r) and 0for {(p — ¢) — r]. Consequently, these statements are not logically
equivalent.

perge=(po QA (g p)e> (pVOA(mgVp),s0 ~(p e q) &
~(=pV @)V (g Vp) <> (pA-g)V{gA-p)

Since pV —g & =—pV =g & —p — g, we can express the given statement as:
(1) I Kaylyn does not practice her piano lessons, then she cannot go to the movies.

But pV ¢ & ~¢ V p & g - p, so we can also express the given statement as:
(2) M Kaylyn is to go to the movies, then she will have to practice her piano lessons.

2) p— (gAT)
Converse: (gAr)—p

Taverse: [p — ~(q Ar)] 4 [p = (~g V )]
Contrapositive: [={g A7) — =p] & [(—=g V —r) — —p]

b) (pVg)—r

Converse: r — (pV q)

Inverse: [~(pV g} — ~r] & [(-pA—g) — -]
Contrapositive: [~v ~ =(pV ¢)] & [~r — (=p A =g)]

(a) (pV-q)A(BVp)Ap
(b) {(~pV - A(FoVp)Ap
= (pVgAlphAp) Fyvpesp
G (pV gl Ap Idempotent Law of A
= pA{—pV g) Commutative Law of A
&= (pA-p)Vi{pA-g) Distributive Law of A aver V
<=3 FyV(pA~g) pA-p &> Iy
&= pA-yg Fy is the identity for V.

[ 4
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10.

(8) (pA-g)V(-rAs)

(b) Since p — (@A =r As) & —pV{gA-rAs)it follows that [p — (g A —r A s)j? &
“pA(gV-rVs)

(¢) pAFYV{gATIAIr VsV F

(a) contrapositive (b} inverse {¢) contrapositive
(d) inverse {e) converse

Proof by Contradiction

(1) ~(p—s) Premise {Negation of Conclusion)

(2) pA-s Step (1), (p — s) <= —pV s, DeMorgan’s Laws, and the Law
of Double Negation

3y »p Step {2) and the Rule of Conjunctive Simplification

4) p—g Premise

(3) ¢ Steps {3), (4), and the Rule of Detachment

6) r Premise '

(7) gqAr Steps (5), (6), and the Rule of Conjunction

(8) (gAr)—s Premise

9) s Steps (7), (8), and the Rule of Detachment

(10) s Step (2) and the Rule of Conjunctive Simplification

(11) sA=s (<= Fy) Steps (9), (10), and the Rule of Conjunction

(12) Sop— s Steps (1), (11), and the Method of Proof by Contradiction

Method 2

(1) (gAr)—s  Premise
(2) r—(g—s) To(gosE>(ghr) s

3 r Premise

(4 g-—s Steps (2), (3}, and Modus Ponens

(8 p-—y Premise

6. .p—s Steps (4}, (3), and the Law of the Syllogism



Method 3

(1) {(gAr)—s  Premise

{2) s — (g Ar) Step (1) and for primitive statements u,v
#% - v <> - — —y — and the 1st Substitution Rule.

{3) sV-{gAr) Step (2) and for primitive statements u,v,u —+ v &= ~u Vv —
and the lst Substitution Rule. Also, -8 <= s.

(4) (sv-—g)V-r Step(3), DeMorgan’s Law, and the Associative Law of V

5) r Premise

6) sV-q Steps (4), (8), and the Law of Disjunctive Syllogism
(7) q—s Step () and sV —g <= ~qV s <> ¢ — s

8) p—g Premise

9. sp—s Steps (7), (8), and the Law of the Syllogism

Method 4 {Here we assume p as an additional premise and obtain s as our conclusion.)

1y p Premise (assumed)

(2) p—y¢ Premise

3) ¢ Steps (1), (2), and Modus Ponens

4 Premise

(3) gqAr Steps (3), (4), and the Rule of Conjunction

(6) {(gAr)-+s  Premise

(7) s Steps (5), (6), and Modus Ponens
11. {a) = ‘

plajrip¥Yal(p¥Y g ¥riqg¥ripV(g¥r)

010610 0 0 0 0

0011 0 1 1 1

01116, 1 1 1 1

01111 1 0 0 0

11068 1 1 0 1

11011 1 0 1 0

11110 0 0 1 0

11141 0 1 O 1

It follows from the results in columns 5 and Tthat [(p ¥ ¢) M rie{p ¥ (g ¥ 7).
{b) The given statements are not logically equivalent. The truth value assignments
pil; ¢:0; r: 0 provide a counterexainple.
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12.

13.

14.

15.

16.

p: The temperature is cool on Friday.
g: Craig wears his suede jacket.
r: The pockets (of the suede jacket) are mended.

p—r(r—g)
pATr

efn g

The argument is invalid. The truth value assignments p:1; ¢:1; r:0 providea
counterexample.

{a} True (b} False (¢} True {(d) True
(e} False {(f} False (g) False (h) True

a) This statement is true. Note that 1 = 7(-2) + 5(3), so for each integer z, z =
7(—2z) + 5(3z).

b) Since 2 divides both 4 and 6, it follows that 2 divides 4y + 62. Consequently, the result
is false for each odd integer z. [Since 2 = 4(~1} + 6(1), the result is true for each even
integer z.]

Suppose that the 62 squares in this 8 x 8 chessboard (with two opposite missing corners)
can be covered with 31 dominos. We agree to place each domino on the board so that
the blue part is on top of a blue square (and the white part is then necessarily above a
white square}. The given chessboard contains 30 blue squares and 32 white ones. Each
domino covers one blue and one white square — for a total of 31 blue squares and 31 white
ones. This contradiction tells us that we cannot cover this 62 square chessboard with the
31 dominos.

Suppose that the 60 squares in the 8 x 8 chessboard (with two squares — one blue and
one white — removed from each of two opposite corners) can be covered with 15 of these
T-shaped figures. When covering the chessboard we agree to place each T-shaped figure
on the board so that the color of each square in the T-shaped figure matches the color of
the chessboard square that it covers. Let n be the number of T-shaped figures with three
blue squares {and one white one) used in the covering. The chessboard contains 30 blue
squares, so it follows that
In+1-(15n —~n) = 30.

Consequently, 2n = 15 — so 15 is both odd and even. This contradiction tells us that we
cannot cover the given chessboard with these T-shaped figures.
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