Chapter 02: The Chemistry of Life

MULTIPLE CHOICE

1.	The smallest unit of aa. amino acid.b. molecule.	chemi	cal element tha	t displa c. d.	ys the propertie atom. bond.	es of th	at element is a(n)
	ANS: C MSC: Remembering	DIF:	Easy	REF:	2.1	OBJ:	2.1
2.	A proton has a. no b. a neutral	char	ge.	c. d.	a negative a positive		
	ANS: D MSC: Remembering	DIF:	Easy	REF:	2.1	OBJ:	2.1
3.	Electrons are found a. in the nucleus of a b. only in complex r c. in one or more sh d. in both the nucleu	an aton nolecul ells tha 15 and i	n. les. t surround the a nner shell of an	atom's : 1 atom.	nucleus.		
	ANS: C MSC: Remembering	DIF:	Moderate	REF:	2.1	OBJ:	2.1
4.	 Radioisotopes are use a. have a different n b. give off high-enermachines. c. have the same ato d. have a different n 	ful in s umber rgy rad omic ma umber	cientific resear of protons than iation that can b ass as other ison of electrons that	ch and other i be detector topes of an other	medicine becau sotopes of the s cted by film and f the same elem r isotopes of the	ise they same el d specia nent. e same	/ ement. alized scanning element.
	ANS: B MSC: Understanding	DIF:	Moderate	REF:	2.1	OBJ:	2.1
5.	Chemists often repres neutrons, and electron a. 10 p, 10 n, 10 e b. 15 p, 15 n, 15 e	ent the ns; whic	structure of ato ch atom would	oms usi have ar c. d.	ng p, n, and e to atomic mass r 15 p, 0 n, 15 c 0 p, 15 n, 15 c	o indica number e e	ate the numbers of protons, of 30?
	ANS: B MSC: Applying	DIF:	Moderate	REF:	2.1	OBJ:	2.1
6.	An atom of the elemea. neutrons.b. nuclei.	nt with	the atomic nur	nber of c. d.	11 (which can electrons. protons.	form a	n ion) always contains 11
	ANS: D MSC: Applying	DIF:	Difficult	REF:	2.1 2.2	OBJ:	2.1
7.	How many hydrogen a. 8	atoms a	are in a molecu	le of Ca	${}_{8}H_{10}N_{4}O_{2}?$		

	b. 10			d.	24		
	ANS: B MSC: Applying	DIF:	Easy	REF:	2.2	OBJ:	2.2
8.	How many atoms are	present	t in a single mo	lecule	of $C_8H_{10}N_4O_2$?		
	a. 4	-	-	c.	12		
	b. 8			d.	24		
	ANS: D	DIF:	Easy	REF:	2.2	OBJ:	2.1
	MSC. Applying						
9.	How many different of	element	s would be nee	ded to	construct a mol	ecule o	f C ₈ H ₁₀ N ₄ O ₂ ?
	a. 4			с.	12		
	b. 8			d.	24		
	ANS: A	DIF:	Easy	REF:	2.2	OBJ:	2.1
	MSC: Applying						

- 10. O₂, also termed *atmospheric oxygen*, is considered to be a molecule but not a compound; why not? a. It contains no covalent bonds.
 - b. It contains a double covalent bond but not a single covalent bond.
 - c. To be considered a compound, there must be a minimum of three atoms; atmospheric oxygen is too small.
 - d. Compounds are defined as molecules constructed from two or more different elements.

ANS: D DIF: Easy REF: 2.2 OBJ: 2.1 MSC: Understanding

11. Covalent bonds are formed by

- a. the sharing of valence electrons.
- b. the transfer of valence electrons from one atom to another.
- c. the sharing of electrons in the innermost shell.
- d. the conversion of ionic bonds to covalent bonds.

ANS: A DIF: Moderate REF: 2.2 OBJ: 2.3 MSC: Understanding

12. The following figure shows two hydrogen atoms.

How many covalent bonds will form between these two atoms?

- a. One
- b. Two
- c. Three
- d. None; these atoms will form an ionic bond.

ANS: A	DIF:	Moderate	REF: 2.2	OBJ:	2.3
MSC: Applying					

13. The outer electron shell of a nitrogen atom can hold up to eight electrons but contains only five. As a result, nitrogen can form _____ covalent bonds.

a. Zero b. One			с. d.	Three Eight		
ANS: C MSC: Applying	DIF:	Difficult	REF:	2.2	OBJ:	2.3

- 14. Ionic bonds
 - a. result from the sharing of electrons between atoms.
 - b. form only between polar molecules.
 - c. form between atoms that develop opposite charges.
 - d. result from the natural repulsion that develops between protons.

ANS: C DIF: Easy REF: 2.2 OBJ: 2.4 MSC: Remembering

15. Which of the following combinations of atoms would form ionic bonds?

a. H^+ and O		с.	Na^+ and Cl^-		
b. Na ⁺ and K^+		d.	PO_4^- and I_2^-		
ANS: C	DIF: Easy	REF:	2.2	OBJ:	2.4
MSC: Remember	ing				

16. Examine the following illustration, a representation of a sodium ion with a charge of +1. Based on the information provided, determine the proton number for this atom.

	a. 8 b. 9			c. d.	10 11			
	ANS: D MSC: Understandin	DIF: g	Moderate	REF:	2.2	OBJ:	2.1 2.4	
17.	Individual water mol them.	ecules	orient toward e	each oth	er because of th	ne	bonds that form between	
	a. covalent b. hydrogen			с. d.	peptide ionic			
	ANS: B MSC: Remembering	DIF:	Easy	REF:	2.3	OBJ:	2.3 2.5	
18.	 Oil and water do not mix together well because a. water is polar and oil is nonpolar. b. only identical molecules of the same chemical can mix together easily. c. water has hydrogen bonds and oil is polar. d. water and oil are covalently bonded together. 							
	ANS: A	DIF:	Moderate	REF:	2.3	OBJ:	2.5	

MSC: Applying

19. You are given an unknown substance and asked to determine whether it is polar or nonpolar. The easiest way to do this would be to

- a. determine whether the compound is held together by hydrogen bonds.
- b. determine the number of electrons in the compound's outer shell.
- c. mix the compound with an ionic substance to see whether its bonds can withstand the pressure.
- d. determine whether the compound dissolves in water.

ANS:	D	DIF:	Moderate	REF:	2.3	OBJ:	2.5
MSC:	Understanding	ŗ					

20. In the following illustration, a positive ion is surrounded by water molecules.

The water molecules orient as shown because the slightly ______ atoms in the water molecules are attracted to the positive charge of the ion.

a.	negative hydrogen c				negative oxygen		
b.	positive hydrogen d				positive oxygen		
AN MS	S: C C: Understanding	DIF:	Moderate	REF:	2.3	OBJ:	2.5

21. Based only on the following illustration, it could be predicted that ice floats on liquid water because

- a. the crystal structure of ice is more regular than that seen in liquid water.
- b. the distance between water molecules in ice is greater than in liquid water.
- c. the cool temperature of ice reduces the extent of molecular motion relative to liquid water.
- d. when ice forms, the hydrogen bond in the water molecule becomes nonpolar; ice behaves like oil.

ANS: B DIF: Difficult REF: 2.3 OBJ: 2.5 MSC: Analyzing

22. The chemical reaction that represents the combustion of glucose is $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O + E$; the reactants are

 a. CO₂ and H₂O. b. O₂ and H₂O. 			с. d.	$C_6H_{12}O_6$ and $C_6H_{12}O_6$ and	O2. CO2.	
ANS: C MSC: Applying	DIF:	Easy	REF:	2.4	OBJ:	2.6

23. In the equation $2 H_2O_2 \rightarrow 2 H_2O + O_2$, the H_2O_2 molecules are the _____ and the $H_2O + O_2$ molecules are the _____.

a. products; products;b. reactants; products	c. d.	products; reactants reactants; reactants; reactants; reactants				
ANS: B MSC: Applying	DIF:	Easy	REF:	2.4	OBJ:	2.6

24. Chemical reactions do not change the identity of the participating atoms; all atoms present at the beginning of the reaction must be present at the end. Balance the chemical reaction by indicating the number of molecules necessary for each reactant and product: _____ Cl₂+ ____ NaBr

\neg Br ₂ +_		_ NaCI.				
a. 1; 1; 1; 1			с.	1; 2; 1; 2		
b. 1; 2; 1; 1			d.	2; 2; 1; 2		
ANS: C MSC: Applying	DIF:	Moderate	REF:	2.4	OBJ:	2.6

25. In the equation $3H_2 + N_2 \rightarrow 2NH_3$, how many molecules of hydrogen gas (H₂) are present?

b. 3		d. 12	
ANS: B MSC: Applying	DIF: Easy	REF: 2.4	OBJ: 2.6

26. An acid is a polar substance that dissolves in water and

- a. becomes nonpolar.
- b. leaves behind an OH^- ion.
- c. accepts hydrogen ions from the solution.
- d. donates hydrogen ions to the solution.
- ANS: DDIF: EasyREF: 2.5OBJ: 2.7MSC: Remembering

27. A solution with a pH of 3 is

a. acidic. b. nonpolar.		c. basic. d. neutral.	
ANS: A MSC: Applying	DIF: Easy	REF: 2.5	OBJ: 2.7

28. A solution with a pH of ______ is _____ times more acidic than a solution with a pH of

	a. 3; 10,000; 7 b. 12; 100; 10			c. d.	7; 1,000; 9 4; 10; 3		
	ANS: A MSC: Understanding	DIF: g	Difficult	REF:	2.5	OBJ:	2.7
29.	Of the following pH a. 3 b. 7	values,	which indica	ates the mo c. d.	ost basic pH? 8 10		

ANS: D DIF: Easy REF: 2.5 OBJ: 2.7 MSC: Applying

30. After adding a small amount of Solution A to Solution B, the pH of Solution B declines from 8 to 3. Solution A must contain

a. a salt.b. an acid.			с. d.	water only. a base.		
ANS: B MSC: Applying	DIF:	Moderate	REF:	2.5	OBJ:	2.7

- 31. Inside a cell, the cytoplasm is generally maintained at a pH around 7. This might be so because a. buffers work best when the pH is close to 7.
 - b. humans are largely made up of water by weight.
 - c. most chemical reactions that occur in the cytoplasm can proceed optimally at pH 7.
 - d. ionic bonds cannot form at pH 7.

ANS: C DIF: Moderate REF: 2.5 OBJ: 2.7 MSC: Understanding

- 32. Carbon dioxide is carried to the lungs in the blood. When it is dissolved in water, an acid is created. How does the body prevent your blood from becoming too acidic on the way to the lungs?
 - a. Buffers in the blood release OH^- ions to make the blood more basic.
 - b. Buffers in the blood accept H^+ ions to make the blood less acidic.
 - c. Buffers in the blood release H^+ to make the blood more basic.
 - d. Buffers in the blood accept OH⁻ to make the blood less acidic.

	ANS: B MSC: Applying	DIF:	Difficult	REF:	2.5	OBJ:	2.7
33.	In organic compound a. ionic bonds. b. polar bonds.	ls, carbo	on atoms are bo	ound to c. d.	each other by hydrogen bon covalent bonc	ıds. ls.	
	ANS: D MSC: Remembering	DIF:	Easy	REF:	2.6	OBJ:	2.2 2.3 2.8
34.	A molecule with the	general	formula CH ₂ O	is a(n)			
	a. protein.b. carbohydrate.			с. d.	amino acid. nucleic acid.		
	ANS: B MSC: Remembering	DIF:	Easy	REF:	2.7	OBJ:	2.8
35.	The sugar glucose ha a. in the formation o b. in short-term ene	c. d.	in the formation of membranes. as a building block of nucleotides.				
	ANS: B MSC: Remembering	DIF:	Easy	REF:	2.7	OBJ:	2.6 2.8
36.	A molecule compose a. nucleotide. b. lipid.	d of am	ino acids is a	c. d.	carbohydrate. protein.		
	ANS: D MSC: Remembering	DIF:	Easy	REF:	2.8	OBJ:	2.8

- 37. Macromolecules are typically formed by repetitively adding small monomers together; which macromolecule is properly matched with the appropriate monomer?
 - a. polypeptide–amino acid c. polysaccharide–nucleotide

b. nucleic acid–amino acid d.				triglyceride-cholesterol			
ANS: A MSC: Applying	DIF:	Easy	REF:	2.8	OBJ:	2.8	

38. Which of the following levels of protein structure involves more than one polypeptide chain?

a. primaryb. secondary			c. d.	tertiary quaternary		
ANS: D MSC: Rememberir	DIF:	Easy	REF:	2.8	OBJ:	2.8

- 39. Fevers in young children are a particular concern because oxygen is less effectively transported by hemoglobin at high temperature. How might this be explained?
 - a. The hemoglobin becomes denatured and cannot transport the oxygen.
 - b. The oxygen becomes denatured and cannot bind to the hemoglobin.
 - c. Oxygen has too much thermal energy to be bound by hemoglobin.
 - d. Oxygen evaporates at high temperature and is not available for binding with hemoglobin.

ANS: A DIF: Moderate REF: 2.8 OBJ: 2.8 MSC: Understanding

- 40. One of the symptoms of kidney disease is the presence of proteins in a patient's urine. To quickly test for kidney disease using a urine sample, a doctor might add a chemical that causes a color change when
 - a. nitrogen is present, but not oxygen.
 - b. nitrogen is present, but not phosphorus.
 - c. only oxygen and hydrogen are present.
 - d. only carbon and hydrogen are present.

ANS: B DIF: Difficult REF: 2.8 OBJ: 2.8 MSC: Analyzing

- 41. When you place a piece of red meat on a hot barbeque, it slowly changes from soft to firm. Meat is primarily made of proteins. Which of the following might account for the change in texture during cooking?
 - a. The heat causes the cells in the meat to produce more protein.
 - b. The heat causes chemical bonds to form between the proteins and nucleic acids in the meat.
 - c. The heat from the barbeque converts proteins into lipids.
 - d. The addition of heat causes proteins to denature and link together.

ANS: D DIF: Difficult REF: 2.8 OBJ: 2.8 MSC: Applying

- 42. You purchase a laundry product that claims to use natural enzymes to remove stains from clothing. After spilling grape juice on your favorite shirt, you apply the product and wash your shirt (following the directions, of course). When you pull the shirt out of the washer, the stain is still there! Which of the following might explain why the stain remover did not work?
 - a. The stain remover and the grape juice are both hydrophilic, so the enzymes could not interact with the stain.
 - b. The pH of the water in your house has a pH of 7.0, which prevents the enzymes from working properly.
 - c. Before you got home from the store, you stopped at the mall and left your stain remover in the trunk of your car on a hot day, denaturing the enzymes.

d. The stain remover and the grape juice are both hydrophobic, so the enzymes could not interact with the stain.

ANS: C DIF: Difficult REF: 2.8 OBJ: 2.8 MSC: Analyzing

43. A scientist observed a chemical that changes to bright red in the presence of organic compounds containing nitrogen and phosphorus. To test this chemical, a set of test tubes is prepared, with each tube containing a purified sample of one of the following organic compounds. The chemical is then added to each tube. The test tube containing ______ will always turn bright red.

a. nucleic acids
b. proteins
c. carbohydrates
d. phospholipids

ANS: A DIF: Moderate REF: 2.8 OBJ: 2.8 MSC: Applying

- 44. In water, phospholipids arrange themselves such that
 - a. their fatty acid head groups are facing the water.
 - b. their hydrophobic tails are kept away from the water.
 - c. saturated fatty acids face the water, while unsaturated fatty acids are separated from the water.
 - d. the charged atoms on their fatty acid chains can interact directly with the water molecules.

ANS:	В	DIF:	Moderate	REF:	2.9	OBJ:	2.8
MSC:	Understanding	ŗ					

45. Which of the following is NOT a role of fatty acids in living organisms?

a. energy storageb. storage of genetic	e inforn	nation	с. d.	membrane co building block	nstruction ks of fats
ANS: B MSC: Remembering	DIF:	Moderate	REF:	2.9	OBJ: 2.8

- 46. An oil is a lipid that is ______ at room temperature.
 a. liquid c. supersaturated
 b. saturated d. solid
 ANS: A DIF: Moderate REF: 2.9 OBJ: 2.8 MSC: Remembering
- 47. Which of the following is NOT a function of cholesterol?
 - a. Cholesterol is converted into other important molecules like steroid hormones.
 - b. Cholesterol is converted into a vitamin important in the growth and maintenance of bone and muscle.
 - c. Cholesterol is a necessary component in the cell membranes of plants.
 - d. A derivative of cholesterol aids in the digestion of fats.

ANS: C DIF: Moderate REF: 2.9 OBJ: 2.8 MSC: Understanding

- 48. The process of partial hydrogenation turns liquid plant lipids into semisolid lipids by a. adding antioxidants that prevent lipid oxidation.
 - b. creating hydrocarbon chains that are more kinked than those in natural fats.
 - c. substituting nitrogen for carbon in fatty acid chains.
 - d. removing double bonds and adding hydrogen to the fatty acid chains of plant lipids.

ANS:	D	DIF:	Moderate	REF:	2.9	OBJ:	2.8
MSC:	Understanding	5					

- 49. When phospholipids are added to water, they arrange themselves so that
 - a. their hydrophobic tails are on the inside of a lipid droplet.
 - b. their hydrophilic tails are on the outside of a lipid droplet.
 - c. their hydrophobic heads are facing the water.
 - d. their hydrophilic heads are on the inside of a lipid droplet.

ANS: A DIF: Difficult REF: 2.9 OBJ: 2.5 | 2.8 MSC: Understanding

50. The following figure shows the structural and space-filling models for stearic acid and oleic acid.

Although the two fatty acids have the same number of carbon atoms, they have different three-dimensional configurations; oleic acid has a slight bend near the middle. The result is that a. a pure sample of oleic acid would be more liquid than a pure sample of stearic acid.

- b. stearic acid would be classified as an unsaturated fatty acid.
- c. you would be more likely to find stearic acid in the form of an oil than in the form of a fat.
- d. oleic acid would be classified a saturated fatty acid.

ANS: A	DIF:	Difficult	REF: 2.9	OBJ:	2.8
MSC: Applying					

- 51. We use soap to clean ourselves better than we could with water alone. Soaps contain phospholipids that are responsible for the cleansing action. Which of the following statements is the most likely explanation for how soaps work?
 - a. Phospholipids are ions and therefore mix with both the water and oily dirt.
 - b. Phospholipids are completely hydrophilic and, therefore, oily dirt takes the place of the phospholipid molecules that would be dissolved in the rinse water.
 - c. The phospholipid tail attaches to the oily dirt, while the phospholipid head interacts with the rinse water and carries the dirt (and soap) away with it.
 - d. The nonpolar fatty acid chains that make up the heads of the phospholipid are hydrophilic, and thus are repelled by the water.

ANS: C DIF: Difficult REF: 2.9 OBJ: 2.5 | 2.8 MSC: Applying

52. Nucleotides

- a. are the building blocks of proteins.
- b. are involved in every chemical reaction in the cell.
- c. form physical structures such as hair.
- d. are the building blocks of nucleic acids.

ANS: D DIF: Easy REF: 2.10 OBJ: 2.8 MSC: Remembering

- 53. ATP is a universal fuel for living organisms. The energy that ATP molecules deliver in chemical reactions is stored in
 - a. covalent bonds between the molecule's phosphate groups.
 - b. covalent bonds between the molecule's sugar and phosphate groups.
 - c. hydrogen bonds between the bases of two of these molecules.
 - d. ionic bonds between the molecule's sugar and base.

ANS: A DIF: Moderate REF: 2.10 OBJ: 2.6 | 2.8 MSC: Understanding

- 54. Which statement below is consistent with the facts that one function of nucleotides is energy transfer and that carbohydrates can be used to store energy?
 - a. If we humans could not store and transfer energy, we would have to match our energy input (eating) exactly to our energy requirements, even while sleeping.
 - b. There are not enough kinds of amino acids for proteins to be used as energy storage molecules.
 - c. Energy transfer and storage are processes that are unique to humans and, therefore, they are used to determine the classification of people.
 - d. Energy transfer is how we take the energy we gather from photosynthesis and transfer it into water molecules for later use when we need energy.

ANS: A DIF: Difficult REF: 2.10 OBJ: 2.8 MSC: Analyzing

- 55. Both trans fats and saturated fats have been linked to comparable groups of undesirable health complications. What do the two types of molecules share in common that may account for the similarity in their health impacts?
 - a. Both molecules form solid assemblies at body temperature and clog small blood vessels.
 - b. Both molecules are rich in hydrogen that can easily form hydrogen ions and lower the pH to harmful values.
 - c. Both molecules are linear; for reasons not currently understood, linear fatty acids appear to be more difficult to metabolize and have high biological activities.
 - d. Both molecules are rapidly converted to signal molecules called prostaglandins, creating discordant signaling within the body.

ANS:	С	DIF:	Moderate	REF:	Biology Matters
OBJ:	2.8	MSC:	Applying		

- 56. Which of the following is NOT a method used to tenderize meat?
 - a. marinades with high pH
 - b. lemon juice, vinegar, or wine
 - c. brining or soaking in a salt water bath for several hours
 - d. pounding or grinding meat
 - ANS: ADIF: ModerateREF: Biology in the NewsOBJ: 2.8MSC: Understanding

COMPLETION

1.	. The uncharged component in the core of an atom is a(n)								
	ANS:	neutron							
	DIF:	Easy	REF:	2.1	OBJ:	2.1	MSC:	Remembering	
2.	The su	um of an atom's	s protor	is and neutrons	is its _	·			
	ANS:	atomic mass							
	DIF:	Moderate	REF:	2.1	OBJ:	2.1	MSC:	Remembering	
3.	Oxyge comm	en has six electron lonly form	rons in i	its outer shell the ovalent bonds.	hat can	hold up to eigh	t electro	ons. As a result, oxygen will	
	ANS:	two							
	DIF:	Moderate	REF:	2.2	OBJ:	2.3	MSC:	Applying	
4.	An ato	om that become	es charg	ed due to the g	ain or l	oss of an electro	on is ca	lled a(n)	
	ANS:	ion							
	DIF:	Easy	REF:	2.2	OBJ:	2.4	MSC:	Remembering	
5.	Molec	cules that are no	onpolar	and repelled by	water	are called			
	ANS:	hydrophobic							
	DIF:	Moderate	REF:	2.3	OBJ:	2.4	MSC:	Remembering	
6.	Molec	cules with an ur	neven di	stribution of cl	narge ai	re described as			
	ANS:	polar							
	DIF:	Moderate	REF:	2.3	OBJ:	2.5	MSC:	Remembering	
7.	Most	living organism	ns consi	st of more than	70 per	cent	by weig	ght.	
	ANS:	water							
	DIF:	Easy	REF:	2.3	OBJ:	2.2 2.5	MSC:	Remembering	
8.	The n	umber that repr	esents r	neutrality on the	e pH sc	ale is	_·		
	ANS:	7							
	DIF:	Easy	REF:	2.5	OBJ:	2.7	MSC:	Remembering	

9. A compound that maintains the pH of a solution by taking up or releasing hydrogen ions is called a

_____·

	ANS:	buffer								
	DIF:	Easy	REF:	2.5	OBJ:	2.7	MSC:	Remembering		
10.	The most versatile atom in living systems is									
	ANS:	carbon								
	DIF:	Easy	REF:	2.6	OBJ:	2.2 2.8	MSC:	Remembering		
11.	A grou	up of monomer	s bonde	ed together form	n a	·				
	ANS:	polymer								
	DIF:	Easy	REF:	2.6	OBJ:	2.8	MSC:	Remembering		
12.	Refere compl	encing the imag etely separate t	ge below he 6-m	v, wa onomer polyme	ater mo er into i	lecules would b ndividual mono	oe requi omers.	red for hydrolysis to		
	-) 						
	ANS:	five								
	DIF:	Easy	REF:	2.6	OBJ:	2.8	MSC:	Applying		
13.	The m	onomers in pro	oteins ai	re						
	ANS: amino acids									
	DIF:	Easy	REF:	2.8	OBJ:	2.8	MSC:	Remembering		
14.	The ty	pes of proteins	that sp	eed up the rate	of cher	nical reactions	in the c	ell are called		
	ANS:	enzymes								
	DIF:	Easy	REF:	2.8	OBJ:	2.8	MSC:	Remembering		
15.	Lipids	with a four-rin	ig struc	ture are called _		<u> .</u> .				
	ANS:	sterols								
	DIF:	Easy	REF:	2.9	OBJ:	2.8	MSC:	Remembering		
16.	Most	ipids contain o	ne or m	ore of the long	, hydro	phobic hydroca	rbon ch	ains known as		
	ANS:	fatty acids								
	DIF:	Moderate	REF:	2.9	OBJ:	2.8	MSC:	Remembering		

17. Because they are made of hydrocarbon chains that repel water, the most hydrophobic of the four classes of organic compounds is the _____.

ANS: lipids DIF: Moderate REF: 2.9 OBJ: 2.5 | 2.8 MSC: Understanding

18. The following figure shows the chemical structure and space-filling models for stearic acid and oleic acid.

The reason oleic acid is slightly bent (as compared to stearic acid) is that it contains a ______ between two of its carbon atoms.

ANS: double bond

DIF: N	Aoderate	REF: 2.9	OBJ: 2.8	MSC:	Understanding
--------	----------	----------	----------	------	---------------

19. The monomers that are linked together to form a DNA polymer are called ______.

	ANS:	nucleotides					
	DIF:	Easy	REF:	2.10	OBJ:	2.8	MSC: Remembering
20.	A type	e of organic cor	npound	that plays a rol	le in bo	th heredity and	in energy delivery in cells is a
	ANS:	nucleic acid					
	DIF:	Moderate	REF:	2.10	OBJ:	2.8	MSC: Remembering
21.	Marin	ades that contai	in vineg	gar, wine, or yo	gurt are	e able to tender	ize meat by breaking down collagen

into smaller polypeptides because of their _____.

ANS: acidity, low pH

	DIF: MSC:	Moderate Applying	REF:	Biology in the	News		OBJ:	2.7 2.8		
TRUI	E/FALS	SE								
1.	All the isotopes of a particular element have the same number of protons.									
	ANS: MSC:	T Remembering	DIF:	Easy	REF:	2.1	OBJ:	2.1		
2.	An ato	om is in its mos	t stable	state when all	its elec	tron shells are f	ïlled to	capacity.		
	ANS: MSC:	T Understanding	DIF:	Easy	REF:	2.2	OBJ:	2.1		
3.	Covale	ent bonds conta	in ions							
	ANS: MSC:	F Understanding	DIF:	Moderate	REF:	2.2	OBJ:	2.3 2.4		
4.	The nu	umber of electro	ons sur	rounding an atc	om's co	re never change	es.			
	ANS: MSC:	F Understanding	DIF:	Moderate	REF:	2.2	OBJ:	2.3 2.4		
5.	The at	oms in water m	olecule	es are held toge	ther by	hydrogen bond	ls.			
	ANS: MSC:	F Understanding	DIF:	Moderate	REF:	2.3	OBJ:	2.5		
6.	Nonpo	olar molecules a	are high	nly charged.						
	ANS:	F	DIF:	Moderate	REF:	2.3	OBJ:	2.4 2.5		

7. Because both the wood in a tree branch and the spider's exoskeleton are composed of low-density cellulose, each floats when placed in water.

MSC: Remembering

ANS: F DIF: Moderate REF: 2.3 OBJ: 2.8 MSC: Applying

8. Chemical reactions rearrange atoms, but do not create or destroy them.

	ANS: MSC:	T Understanding	DIF:	Easy	REF:	2.4	OBJ:	2.6	
9.	A solution with a pH of 7 is neither acidic nor basic.								
	ANS: MSC:	T Remembering	DIF:	Easy	REF:	2.5	OBJ:	2.7	
10.	A monosaccharide is made up of several sugar molecules strung together.								
	ANS: MSC:	F Remembering	DIF:	Moderate	REF:	2.7	OBJ:	2.8	
11.	The pr	imary structure	of a pr	otein consists o	of its an	nino acid seque	nce.		
	ANS: MSC:	T Remembering	DIF:	Easy	REF:	2.8	OBJ:	2.8	
12.	Protein	ns provide most	t of the	energy for life	process	ses.			
	ANS: MSC:	F Remembering	DIF:	Moderate	REF:	2.8	OBJ:	2.6 2.8	
13.	Steroid	ds and proteins	are diff	Ferent types of 1	ipids.				
	ANS: MSC:	F Remembering	DIF:	Moderate	REF:	2.8 2.9	OBJ:	2.8	
14.	Phosp	holipids are fou	nd in c	ell membranes.					
	ANS: MSC:	T Remembering	DIF:	Easy	REF:	2.9	OBJ:	2.8	
15.	Nuclei	c acids contain	phospł	orus but not su	lfur.				
	ANS: MSC:	T Remembering	DIF:	Moderate	REF:	2.10	OBJ:	2.8	
16.	The m	ost abundant pr	otein fo	ound in animals	s is acti	nomyosin.			
	ANS:	F	DIF:	Moderate	REF:	Biology in the	News		

ANS: FDIF:ModerateIOBJ:2.8MSC:Remembering