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CHAPTER 2 Linearity and
Nonlinearity

 
 
 

2.1 
 
Linear Equations: The Nature of Their  
Solutions 

 

 

 Classification 

1. First-order, nonlinear 

2. First-order, linear, nonhomogeneous, variable coefficients 

3. Second-order, linear, homogeneous, variable coefficients 

4. Second-order, linear, nonhomogeneous, variable coefficients 

5. Third-order, linear, homogeneous, constant coefficients 

6. Third-order, linear, nonhomogeneous, constant coefficients 

7. Second-order, linear, nonhomogeneous, variable coefficients 

8. Second-order, nonlinear 

9. Second-order, linear, homogeneous, variable coefficients 

10. Second-order, nonlinear 

 Linear Operation Notation 

11. Using the common differential operator notation that D(y) = dy
dt

, we have the following: 

 (a) 3 0y ty y′′ ′+ − =  can be written as L(y) = 0 for L = D2 + tD − 3. 

 (b) y′  + y2 = 0 is not  a linear DE. 

 (c) y′  + sin y = 1 is not a linear DE. 

 (d) y′  + t2y = 0 can be written as L(y) = 0 for L = D + t2. 
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  (e) y′  + (sin t)y = 1 can be written as L(y) = 1 for L = D + sin t. 

  (f) 3y y y′′ ′− +  = sin t can be written as L(y) = sin t for L = D2 − 3D + 1. 

 Linear and Nonlinear Operations 

12. ( ) 2L y y y′= +  

Suppose 1 2,  y y  and y are functions of t and c is any constant. Then  

( ) ( ) ( )
( ) ( )
( )

( ) ( ) ( )
( ) ( )

1 2 1 2 1 2

1 1 2 2

1 2

2

2 2

2 2

2

L y y y y y y

y y y y

L y y

L cy cy cy cy cy

c y y cL y

′+ = + + +

′ ′= + + +

= +

′ ′= + = +

′= + =

 

Hence, L is a linear operator. 
 

13. ( ) 2L y y y′= +  

To show that ( ) 2L y y y′= +  is not linear we can pick a likely function of t and show that it does 

not satisfy one of the properties of linearity, equations (2) or (3). Consider the function y t=  and 

the constant 5c = : 

( ) ( ) ( )

( ) ( )

2 2

2 2

5 5 5 5 25

5 5 5 5

L t t t t

t t t L t

′= + = +

⎛ ⎞′≠ + = + =⎜ ⎟
⎝ ⎠

 

Hence, L is not a linear operator. 

 
14. ( ) 2L y y ty′= +  

 Suppose 1 2,  y y  and y are functions and c is any constant. 

 

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

1 2 1 2 1 2

1 1 2 2

1 2

2

2 2

2 2

L y y y y t y y

y ty y ty

L y L y

L cy cy t cy c y ty

cL y

′+ = + + +

′ ′= + + +

= +

′ ′= + = +

=

 

 Hence, L is a linear operator. This problem illustrates the fact that the coefficients of a DE can be 
functions of t and the operator will still be linear. 
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15. ( ) tL y y e y′= −  

 Suppose 1 2,  y y  and y are functions of t and c is any constant. 

 

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

1 2 1 2 1 2

1 1 2 2

1 2

t

t t

t t

L y y y y e y y

y e y y e y

L y L y

L cy cy e cy c y e y

cL y

′+ = + − +

′ ′= − + −

= +

′ ′= − = −

=

 

 Hence, L is a linear operator. This problem illustrates the fact that a linear operator need not have 
coefficients that are linear functions of t. 

16. ( ) ( )sinL y y t y′′= +  

 

( ) ( ) ( )( )
( ){ } ( ){ }

( ) ( )

( ) ( ) ( )( )
( ){ }

( )

1 2 1 2 1 2

1 1 2 2

1 2

sin

sin sin

sin

sin

L y y y y t y y

y t y y t y

L y L y

L cy cy t cy

c y t y

cL y

′′+ = + + +

′′ ′′= + + +

= +

′′= +

′′= +

=

 

 Hence, L is a linear operator. This problem illustrates the fact that a linear operator need not have 
coefficients that are linear functions of t. 

17. ( ) ( )21L y y y y y′′ ′= + − +  

 

( ) ( ) ( ){ } ( )

( ){ }
( )

2

2

1

1

L cy cy cy y cy

c y y y y

cL y

′′ ′= + − +

′′ ′≠ + − +

=

 

 Hence, ( )L y  is not a linear operator. 

   

 Pop Quiz 

18. ( ) 2 12 1
2

ty y y t ce−′ + = ⇒ = +  19. ( )2 2ty y y t ce−′ + = ⇒ = +   

20. ( ) 0.080.08 100 1250ty y y t ce′ − = ⇒ = −  21. ( ) 3 53 5
3

ty y y t ce′ − = ⇒ = −  
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22. 5 1y y′ + = , ( ) ( ) 5 11 0
5

ty y t ce−= ⇒ = + , ( ) 511 0
5

y c e= ⇒ = − . Hence, ( ) ( )( )5 11 1
5

ty t e− −= − . 

23. 2 4y y′ + = , ( ) ( ) 20 1 2ty y t ce−= ⇒ = + , ( )0 1 1y c= ⇒ = − . Hence, ( ) 22 ty t e−= − . 

 Superposition Principle 

24. If 1y  and 2y  are solutions of ( ) 0y p t y′ + = , then 

 
( )
( )

1 1

2 2

0

0.

y p t y

y p t y

′ + =

′ + =
 

 Adding these equations gives  

 ( ) ( )1 2 1 2 0y y p t y p t y′ ′+ + + =   

 or  

 ( ) ( )( )1 2 1 2 0y y p t y y′+ + + = ,  

 which shows that 1 2y y+  is also a solution of the given equation. 

  If 1y  is a solution, we have  

 ( )1 1 0y p t y′ + =   

 and multiplying by c we get 

 

( )( )
( )

( ) ( )( )

1 1

1 1

1 1

0

0

0,

c y p t y

cy cp t y

cy p t cy

′ + =

′ + =

′ + =

 

 which shows that 1cy  is also a solution of the equation. 

 Second-Order Superposition Principle 

25. If 1y  and 2y  are solutions of  
 ( ) ( ) 0y p t y q t y′′ ′+ + = ,  

 we have  

 
( ) ( )
( ) ( )

1 1 1

2 2 2

0

0.

y p t y q t y

y p t y q t y

′′ ′+ + =

′′ ′+ + =
 

 Multiplying these equations by 1c  and 2c  respectively, then adding and using properties of the 

derivative, we arrive at  

 ( ) ( )( ) ( )( )1 1 2 2 1 1 2 2 1 1 2 2 0c y c y p t c y c y q t c y c y′′ ′+ + + + + = ,  

 which shows that 1 1 2 2c y c y+  is also a solution. 
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 Verifying Superposition 

26. 9 0;y y′′ − =    3
1

ty e=    ⇒  3
1 3 ty e′ =   ⇒  3

1 9 ,ty e′′ =  so that  3 3
1 19 9 9 0t ty y e e′′− = − = . 

   3
2

ty e−=   ⇒  3
2 3 ty e′ = −  ⇒  3

2 9 ,ty e′′ =  so that  3 3
2 29 9 9 0t ty y e e− −′′ − = − = . 

 Let y3 = c1y1 + c2y2 = c1e3t + c2e−3t , then  3 3
3 1 23 ( 3)t ty c e c e−′ = + −  

      3 3
3 1 29 9t ty c e c e−′′ = +  

 Thus, 3 3 3 3
3 3 1 2 1 29 ( 9 9 ) 9( ) 0t t t ty y c e c e c e c e− −′′ − = + − + =  

 
27. 4 0;y y′′ + =   

 For y1 = sin 2t,    1 2cos 2y t′ =   ⇒  1 4sin 2 ,y t′′ = −  so that  1 14 4sin 2 4sin 2 0y y t t′′+ = − + = . 

 For y2 = cos 2t,   2 2sin 2y t′ = −   ⇒   2 4cos2 ,y t′′ = −  so that 2 24 4cos 2 4cos2 0y y t t′′ + = − + = . 

 Let y3 = c1 sin 2t + c2 cos 2t, then 3 1 22cos 2 ( 2sin 2 )y c t c t′ = + −  

  3 1 2( 4sin 2 ) ( 4cos2 )y c t c t′′ = − + −  

 Thus, 3 3 1 2 1 24 ( 4sin 2 ) ( 4cos2 ) 4( sin 2 cos2 ) 0y y c t c t c t c t′′ + = − + − + + = . 

 
28. 2 0;y y y′′ ′+ − =  

 For y1 = et/2,  / 2
1

1
2

ty e′ = , / 2
1

1
4

ty e′′ = . 

 Substituting:  / 2 / 2 / 21 12 0
4 2

t t te e e⎛ ⎞ + − =⎜ ⎟
⎝ ⎠

. 

 For y2 = e−t, 2 ,ty e−′ = −   2
ty e−′′ = . 

 Substituting:  ( ) ( )2 t t te e e− − −+ − −  = 0. 

 For c1 and c2, let y = c1et/2 + c2e−t. 

 Substituting:  ( )/ 2 / 2 / 2
1 2 1 2 1 2

1 12
4 2

t t t t t tc e c e c e c e c e c e− − −⎛ ⎞ ⎛ ⎞+ + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = 0. 
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29. 5 6 0y y y′′ ′− + =  

 For y1 = e2t,  2
1 2 ty e′ = , 2

1 4 ty e′′ = . 

 Substituting:  2 2 24 5(2 ) 6( ) 0t t te e e− + = . 

 For y2 = e3t, 3
2 3 ,ty e′ =   3

2 9 ty e′′ = . 

 Substituting:  3 3 39 5(3 ) 6 0t t te e e− + = . 

 For y = c1e2t + c2e3t, 

 ( ) ( )2 3 2 3 2 3
1 2 1 2 1 25 6 4 9 5 2 3 6 0t t t t t ty y y c e c e c e c e c e c e′′ ′− + = + − + + + = . 

 
30. 6 0y y y′′ ′− − =  

 For y1 = e3t,  3
1 3 ,ty e′ =  3

1 9 ty e′′ =  

 Substituting:  3 3 ) 3(9 ) (3 ) 6( ) 0t t te e e− − =  

 For y2 = e−2t, 2
2 2 ,ty e−′ = −   2

2 4 ty e−′′ =  

 Substituting:  2 2 2(4 ) ( 2 ) 6 0t t te e e− − −− − − =  

 For y = c1e3t + c2e−3t 

 ( ) ( ) ( )3 2 3 2 3 3
1 2 1 1 26 9 4 3 2 6 0t t t t t ty y y c e c e c e e c e c e− − −′′ ′− − = + − − − + = . 

 
31. 9 0y y′′ − =  

 For y1 = cosh 3t, 1 3sinh3y t′ =  1 9cosh3y t′′ = . 

 Substituting:  (9cosh3 ) 9(cosh 3 ) 0t t− = . 

 For y2 = sinh 3t, 2 3cosh3 ,y t′ =   2 9sinh3y t′′ = . 

 Substituting:  (9sinh 3 ) 9(sinh3 )t t−  = 0. 

 For y = c1 cosh 3t + c2 sinh 3t, 

 ( ) ( )1 2 1 29 9cosh3 9sinh3 9 cosh3 sinh 3 0y y c t c t c t c t′′ − = + − + = . 
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 Different Results? 

32. The solutions of Problem 31, cosh 3t = 
3 33

2

t te−+  and sinh 3t = 
3 3

2

t te e−− , 

 are linear combinations of the solutions of Problem 26 and vice-versa, i.e.,  

 e3t = cosh 3t + sinh 3t and e−3t = cosh 3t − sinh 3t. 

 Many from One 

33. Because ( ) 2y t t=  is a solution of a linear homogeneous equation, we know by equation (3) that 
2ct  is also a solution for any real number c. 

 Guessing Solutions 

We can often find a particular solution of a nonhomogeneous DE by inspection (guessing). For the first-
order equations given for Problems 27–31 the general solutions come in two parts: solutions to the 
associated homogeneous equation (which could be found by separation of variables) plus a particular 
solution of the nonhomogeneous equation. For second-order linear equations as Problems 32–35 we can 
also sometimes find solutions by inspection. 

34. ( ) 1
2

t t ty y e y t ce e−′ + = ⇒ = +  35. ( )t t ty y e y t ce te− − −′ + = ⇒ = +  

36. ( )t t ty y e y t ce te′ − = ⇒ = +  37. ( ) 2 20 ty ty y t ce′ − = ⇒ =  

38. ( )
4

3

5
y c ty t y t
t t

′ + = ⇒ = +   

39. ( )2
1 20 at aty a y y t c e c e−′′ − = ⇒ = + . An alternative form is ( ) ( ) ( )1 2sinh coshy t c at c at= + . 

40. ( )2
1 20 sin cosy a y y t c at c at′′ + = ⇒ = +  41. ( ) 1 20 ty y y t c c e−′′ ′+ = ⇒ = +  

42. ( ) 1 20 ty y y t c c e′′ ′− = ⇒ = +  

 Nonhomogeneous Principle 

In these problems, the verification of py  is a straightforward substitution. To find the rest of the solution 
we simply add to py  all the homogeneous solutions hy , which we find by inspection or separation of 

variables. 

43. 3 ty y e′ − =  has general solution ( ) 3t t
h py t y y ce te= + = + . 

44. 2 10siny y t′ + =  has general solution ( ) 2 4sin 2cost
h py t y y ce t t−= + = + − . 

45. 22y y y
t

′ − =  has general solution ( ) 2 3
h py t y y ct t= + = + . 
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46. 1 2
1

y y
t

′ + =
+

 has general solution ( )
2 2

1 1h p
c t ty t y y

t t
+

= + = +
+ +

. 

 Third-Order Examples 

47. (a) For y1 = et, we substitute into  

  0y y y y′′′ ′′ ′− − + =  to obtain et − et − et + et = 0. 

  For y2 = tet, we obtain  2 ,t ty te e′ = +  2 ( ) ,t t ty te e e′′ = + +  2 ( ) 2 ,t t ty te e e′′′ = + +  

  and substitute to verify  

    (tet + 3et) − (tet + 2et) − (tet + et) + tet = 0. 

  For y3 = e−t, we obtain 3 3 3, , ,t t ty e y e y e− − −′ ′′ ′′′= − = = −  

  and substitute to verify 

     ( ) ( ) ( )t t t te e e e− − − −− − − − +  = 0. 

 (b) yh = c1et + c2tet + c3e−t 

 (c) Given  yp = 2t + 1 + e2t: 

   22 2 t
py e′ = +  

   24 t
py e′′ =  

   28 t
py e′′′ =  

  To verify: 

  
2 2 2 2

2

8 4 (2 2 ) (2 1 )

2 1 3

t t t t
p p p p

t

y y y y e e e t e

t e

′′′ ′′ ′− − + = − − + + + +

= − +
 

 (d) y(t) = yh + yp = c1et + c2tet + c3e−t + 2t + 1 + e2t 
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 (e) 2
1 2 3( ) 2 2t t t t ty c e c te e c e e−′ = + + − + +  

  2
1 2 3( 2 ) 4t t t t ty c e c te e c e e′′ = + + + +  

  y(0)  = 1 = c1          + c3  + 2 ⇒ c1          +  c3 = −1 Equation (1) 

  (0)y′    = 2 = c1 + c2  −  c3 + 4 ⇒ c1   + c2 − c3 = −2 Equation (2) 

  (0)y′′   = 3 = c1 + 2c2 + c3 + 4 ⇒ c1 + 2c2 + c3 = −1 Equation (3) 

  Add Equation (2) to (1) and (3) 

  1 2

1 2

2 3
2 3 3

c c
c c

+ = − ⎫
⎬+ = − ⎭

 ⇒ c2 = 0,  c1 = 3
2

− , c3 = 1
2

. 

  Thus, y = 23 1 2 1 .
2 2

t t te e t e−− + + + +     

48. 4sin 3y y y y t′′′ ′′ ′+ − − = +  

 (a) For y1 = et, we obtain by substitution 

   0t t t ty y y y e e e e′′′ ′′ ′+ − − = + − − = . 

  For y = e−t, we obtain by substitution   

   ( ) ( ) 0t t t ty y y y e e e e− − − −′′′ ′′ ′+ − − = − + − − − = . 

  For y = te−t we obtain by substitution 

   ( 3 ) ( 2 ) ( ) 0t t t t t t ty y y y te e te e te e te− − − − − − −′′′ ′′ ′+ − − = − + + − − − + − = . 

 (b) yh = c1et + c2e−t + c3te−t 

 (c) Given  yp = cos t −sin t − 3: 

   sin cospy t t′ = − −  

   cos sinpy t t′′ = − +  

   sin cospy t t′′′ = +  

  To verify: 

  
(sin cos ) ( cos sin ) ( sin cos ) (cos sin 3)

4sin 3
p p p py y y y t t t t t t t t

t

′′′ ′′ ′+ − − = + + − + − − − − − −

= +
 

 (d) y(t) = yh + yp = c1et + c2e−t + c3te−t + cos t − sin t − 3 
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 (e) 1 2 3( ) sin cost t t ty c e c e c te e t t− − −′ = − + − + − −  

  1 2 3 ( 2 ) cos sint t t ty c e c e c te e t t− − −′′ = + + − − +  

  y(0)  = 1 = c1 + c2                + 1 − 3    ⇒    c1 + c2          = 3  Equation (1) 

  (0)y′    = 2 = c1 + c2 −   c3 − 1        ⇒    c1 − c2 + c3   = 3  Equation (2) 

  (0)y′′   = 3 = c1 + c2 − 2c3 − 1        ⇒    c1 + c2 − 2c3 = 4  Equation (3) 

  Add Equation (2) to (1) and (3) 

  1 3

1 3

2 6
2 7
c c
c c
+ = ⎫

⎬− = ⎭
 ⇒ c1 = 13

4
, c2 = 1 ,

4
−   c3 = 1 .

2
−  

   y(t) = 13 1 1 cos sin 3
4 4 2

t t te e te t t− −− − + − − .  

 Suggested Journal Entry 

49. Student Project 

 



102     CHAPTER 2     Linearity and Nonlinearity 
 

2.2 Solving the First-Order Linear Differential 
Equation 

 

 

 General Solutions 

The solutions for Problems 1–15 can be found using either the Euler-Lagrange method or the integrating 
factor method. For problems where we find a particular solution by inspection (Problems 2, 6, 7) we use 
the Euler-Lagrange method. For the other problems we find it more convenient to use the integrating 
factor method, which gives both the homogeneous solutions and a particular solution in one swoop. You 
can use the Euler-Lagrange method to get the same results. 

1. 2 0y y′ + =  

 By inspection we have ( ) 2ty t ce−= . 

2. 2 3 ty y e′ + =  

 We find the homogeneous solution by inspection as 2t
hy ce−= . A particular solution on the 

nonhomogeneous equation can also be found by inspection, and we see t
py e= . Hence the 

general solution is ( ) 2t ty t ce e−= + . 

3. 3 ty y e′ − =  

 We multiply each side of the equation by the integrating factor  

 ( ) ( ) ( )1p t dt dt tt e e eμ − −∫ ∫= = =  

 giving  

 ( ) 3te y y− ′ − = ,  or simply   ( ) 3td ye
dt

− = .  

 Integrating, we find   3tye t c− = + ,   or  ( ) 3t ty t ce te= + . 

4. siny y t′ + =  

 We multiply each side of the equation by the integrating factor ( ) tt eμ = , giving 

 ( ) sint te y y e t′ + = ,  or,  ( ) sint td ye e t
dt

= .  

 Integrating by parts, we get  ( )1 sin cos
2

t tye e t t c= − + .  

 Solving for y, we find  ( ) 1 1sin cos
2 2

ty t ce t t−= + − . 
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5. 1
1 ty y

e
′ + =

+
 

 We multiply each side of the equation by the integrating factor ( ) tt eμ = , giving 

 ( ) ( ),  or,  .
1 1

t t
t t

t t
e d ee y y ye

dte e
′ + = =

+ +
 

 Integrating, we get  ( )ln 1t tye e c= + + .  

 Hence,   ( ) ( )ln 1t t ty t ce e e− −= + + . 

6. 2y ty t′ + =  

 In this problem we see that ( ) 1
2py t =  is a solution of the nonhomogeneous equation (there are 

other single solutions, but this is the easiest to find). Hence, to find the general solution we solve 
the corresponding homogeneous equation, 2 0y ty′ + = , 

 by separation of variables, getting 

 2dy tdt
y
= − , 

 which has the general solution 
2ty ce−= , where c is any constant.  

 Adding the solutions of the homogeneous equation to the particular solution 1
2py =  we get the 

general solution of the nonhomogeneous equation:  

 ( ) 2 1
2

ty t ce−= + . 

7. 2 23y t y t′ + =  

 In this problem we see that ( ) 1
3py t =  is a solution of the nonhomogeneous equation (there are 

other single solutions, but this is the easiest to find). Hence, to find the general solution, we solve 
the corresponding homogeneous equation, 23 0y t y′ + = , by separation of variables, getting  

 23dy t dt
y
= − ,  

 which has the general solution  ( ) 3ty t ce−= , where c is any constant. Adding the solutions of the 

homogeneous equation to the particular solution 1
3py = , we get the general solution of the 

nonhomogeneous equation  

 ( ) 3 1
3

ty t ce−= + . 
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8. 2
1 1y y
t t

′ + = , ( )0t ≠  

 We multiply each side of the equation by the integrating factor ( ) lndt t tt e e tμ ∫= = = ,  

 giving 

 ( )1 1 1,   or,  .dt y y ty
t t dt t

⎛ ⎞′ + = =⎜ ⎟
⎝ ⎠

 

 Integrating, we find  lnty t c= + . 

 Solving for y, we get  ( ) 1 lncy t t
t t

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

. 

9. 2ty y t′ + =  

 We rewrite the equation as  1 2y y
t

′ + = , and multiply each side of the equation by the integrating 

factor  ( ) lndt t tt e e tμ ∫= = = ,  

 giving 

( )1 2 ,  or,  2 .dt y y t ty t
t dt

⎛ ⎞′ + = =⎜ ⎟
⎝ ⎠

 

 Integrating, we find  2ty t c= + .  

 Solving for y, we get ( ) cy t t
t

= + . 

10. ( )cos sin 1t y ty′ + =  

 We rewrite the equation as  ( )tan secy t y t′ + = ,  

 and multiply each side of the equation by the integrating factor 

 ( ) ( ) ( ) 1ln cos ln costan sect ttdtt e e e tμ
−−∫= = = = ,  

 giving 

 ( )( ) ( )( )2 2sec tan sec ,   or,  sec sec .dt y t y t t y t
dt

′ + = =  

 Integrating, we find ( )sec tant y t c= + .  Solving for y, we get ( ) cos siny t c t t= + . 
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11. 22 cosy y t t
t

′ − = , ( )0t ≠  

 We multiply each side of the equation by the integrating factor 

 ( ) ( ) 22 2ln ln 2t dt t tt e e e tμ
−− − −∫= = = = ,  

 giving 

 ( )2 22 cos ,   or,  cos .dt y y t t y t
t dt

− −⎛ ⎞′ − = =⎜ ⎟
⎝ ⎠

 

 Integrating, we find  2 sint y t c− = + .  Solving for y, we get ( ) 2 2 siny t ct t t= + . 

12. 3
3 sin ty y
t t

′ + = , ( )0t ≠  

 We multiply each side of the equation by the integrating factor 

 ( ) ( ) ( )3ln3 3ln 3tt dt tt e e e tμ ∫= = = = ,  

 giving 

 ( )3 33 sin ,   or,  sin .dt y y t t y t
t dt

⎛ ⎞′ + = =⎜ ⎟
⎝ ⎠

 

 Integrating, we find  3 cost y t c= − + .  

 Solving for y, we get  ( ) 3 3
1 coscy t t

t t
= − . 

13. ( )1 0t te y e y′+ + =  

 We rewrite the equation as  0
1

t

t
ey y

e
⎛ ⎞

′ + =⎜ ⎟
+⎝ ⎠

, 

 and then multiply each side of the equation by the integrating factor 

 ( ) ( ) ( )1 ln 1
1

t t te e dt e tt e e eμ
+ +∫= = = + ,  

 giving  

 ( )( )1 0td e y
dt

+ = .  

 Integrating, we find  ( )1 te y c+ = .  Solving for y, we have ( )
1 t

cy t
e

=
+

. 
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14. ( )2 9 0t y ty′+ + =  

 We rewrite the equation as  2 0
9

ty y
t

⎛ ⎞′ + =⎜ ⎟+⎝ ⎠
,  

 and then multiply each side of the equation by the integrating factor 

 ( ) ( ) ( ) ( )2 29 1 2 ln 9 2 9
t t dt t

t e e tμ
+ +∫= = = + ,  

 giving ( )2 9 0d t y
dt

+ = .  

 Integrating, we find  2 9t y c+ = .  

 Solving for y, we find ( )
2 9

cy t
t

=
+

. 

15. 2 1 2ty y t
t
+⎛ ⎞′ + =⎜ ⎟

⎝ ⎠
, ( )0t ≠  

 We multiply each side of the equation by the integrating factor 

 ( ) 22 1 12 ttt dt dt te
t t

μ +
= = + =∫ ∫ , 

 giving  

 ( )2 2 22t td te y t e
dt

= .  

 Integrating, we find  2 2 2 2 21
2

t t t tte y t e te e c= − + + . 

 Solving for y, we have ( )
2 1 1

2

tey t c t
t t

−⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
. 

 Initial-Value Problems 

16. 1y y′ − = , ( )0 1y =  

 By inspection, the homogeneous solutions are t
hy ce= . A particular solution of the nonho-

mogeneous can also be found by inspection to be 1py = − . Hence, the general solution is  

 1t
h py y y ce= + = − .  

 Substituting  ( )0 1y =  gives 1 1c − =  or 2c = . Hence, the solution of the IVP is 

 ( ) 2 1ty t e= − . 
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17. 32y ty t′ + = , ( )1 1y =  

 We can solve the differential equation using either the Euler-Lagrange method or the integrating 
factor method to get  

 ( ) 221 1
2 2

ty t t ce−= − + .  

 Substituting ( )1 1y =  we find 1 1ce− =  or c = e. Hence, the solution of the IVP is 

 ( ) 22 11 1
2 2

ty t t e −= − + . 

18. 33y y t
t

⎛ ⎞′ − =⎜ ⎟
⎝ ⎠

, ( )1 4y =  

 We find the integrating factor to be 

 ( ) ( ) 33 3ln ln 3t dt t tt e e e tμ
−− − −∫= = = = .  

 Multiplying the DE by this, we get  

 ( )3 1d t y
dt

− = .  

 Hence, 3t y t c− = + , or, 3 4( )y t ct t= + .  

 Substituting ( )1 4y =  gives 1 4c + =  or 3c = . Hence, the solution of the IVP is 

  ( ) 3 43y t t t= + . 

19. 2y ty t′ + = , ( )0 1y =  

 We solved this differential equation in Problem 6 using the integrating factor method and found  

 ( ) 2 1
2

ty t ce−= + .  

 Substituting ( )0 1y =  gives 1 1
2

c + =  or 1
2

c = . Hence, the solution of the IVP is 

 ( ) 21 1
2 2

ty t e−= + . 

20. ( )1 0t te y e y′+ + = , ( )0 1y =  

 We solved this DE in Problem 13 and found  

 ( )
1 t

cy t
e

=
+

.  

 Substituting ( )0 1y =  gives 1
2
c
=  or 2c = . Hence, the solution of the IVP is ( ) 2

1 ty t
e

=
+

. 
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 Synthesizing Facts 

21. (a) ( ) ( )
2 2 ,  1

1
t ty t t
t
+

= > −
+

 

(b) ( ) ( )1,  1y t t t= + > −  

(c) The algebraic solution given in Example
1 for 1k =  is  

 ( ) ( )22 12 1
1 1

tt ty t
t t

++ +
= =

+ +
. 

 Hence, when 1t ≠ −  we have 1y t= + . 

 

–3

3
y

3
t

–3

 

(d) The solution passing through the origin ( )0,  0  asymptotically approaches the line 
1y t= +  as t →∞ , which is the solution passing through ( )0 1y = . The entire line 

1y t= +  is not a solution of the DE, as the slope is not defined when 1t = − . The 
segment of the line 1y t= +  for 1t > −  is the solution passing through ( )0 1y = . 

  On the other hand, if the initial condition were ( )5 4y − = − , then the solution 

would be the segment of the line 1y t= +  for t less than –1. Notice in the direction field 
the slope element is not defined at ( )1,  0− . 

 Using Integrating Factors 

In each of the following equations, we first write in the form ( ) ( )y p t y f t′ + =  and then identify ( )p t . 

22. 2 0y y′ + =  

 Here ( ) 2p t = , therefore the integrating factor is ( ) ( ) 2 2p t dt dt tt e e eμ ∫ ∫= = = .  

 Multiplying each side of the equation 2 0y y′ + =  by 2te  yields  

 ( )2 0td ye
dt

= .  

 Integrating gives 2tye c= .  Solving for y gives ( ) 2ty t ce−= . 

23. 2 3 ty y e′ + =  

 Here ( ) 2p t = , therefore the integrating factor is ( ) ( ) 2 2p t dt dt tt e e eμ ∫ ∫= = = .  

 Multiplying each side of the equation  2 3 ty y e′ + =  by 2te  yields  

 ( )2 33t td ye e
dt

= .  

 Integrating gives 2 3t tye e c= + .  Solving for y gives  ( ) 2t ty t ce e−= + . 
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24. 3ty y e′ − =  

 Here ( ) 1p t = − , therefore the integrating factor is ( ) ( )p t dt dt tt e e eμ − −∫ ∫= = = .  

 Multiplying each side of the equation 3ty y e′ − =  by te−  yields  

 ( ) 2t td ye e
dt

− = .  

 Integrating gives  21
2

t tye e c− = + .  Solving for y gives ( ) 31
2

t ty t ce e= + . 

25. siny y t′ + =  

 Here ( ) 1p t =  therefore the integrating factor is ( ) ( )p t dt dt tt e e eμ ∫ ∫= = = .  

 Multiplying each side of the equation  siny y t′ + =  by te  gives 

 ( ) sint td ye e t
dt

= .  

 Integrating gives  ( )1 sin cos
2

t tye e t t c= − + .  Solving for y gives ( ) ( )1 sin cos
2

ty t t t ce−= − + . 

26. 1
1 ty y

e
′ + =

+
 

 Here ( ) 1p t =  therefore the integrating factor is ( ) ( )p t dt dt tt e e eμ ∫ ∫= = = .  

 Multiplying each side of the equation  1
1 ty y

e
′ + =

+
  by te  yields  

 ( )
1

t
t

t
d eye
dt e

=
+

.  

 Integrating gives ( )ln 1t tye e c= + + .  Solving for y gives ( ) ( )ln 1t t ty t e e ce− −= + + . 

27. 2y ty t′ + =   

 Here ( ) 2p t t= , therefore the integrating factor is ( ) ( ) 22p t dt tdt tt e e eμ ∫ ∫= = = .  

 Multiplying each side of the equation  2y ty t′ + =   by 
2te  yields  

 ( )2 2t td ye te
dt

= .  

 Integrating gives 
2 21

2
t tye e c= + .  Solving for y gives ( ) 2 1

2
ty t ce−= + . 
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28. 2 23y t y t′ + =  

 Here ( ) 23p t t= , therefore the integrating factor is ( ) ( ) 2 33p t dt t dt tt e e eμ ∫ ∫= = = .  

 Multiplying each side of the equation  2 23y t y t′ + =   by 
3te  yields  

 ( )3 32t td ye t e
dt

= .  

 Integrating gives 
3 31

3
t tye e c= + .  Solving for y gives ( ) 3 1

3
ty t ce−= + . 

29. 2
1 1y y
t t

′ + =  

 Here ( ) 1p t
t

= , therefore the integrating factor is ( ) ( ) ( )1 lnp t dt t dt tt e e e tμ ∫ ∫= = = = .  

 Multiplying each side of the equation 2
1 1y y
t t

′ + =  by t yields  

 ( ) 1d ty
dt t

= .  

 Integrating gives lnty t c= + .  Solving for y gives ( ) 1 1lny t c t
t t

= + . 

30. 2ty y t′ + =  

 Here ( ) 1p t
t

= , therefore the integrating factor is ( ) ( ) ( )1 lnp t dt t dt tt e e e tμ ∫ ∫= = = = .  

 Multiplying each side of the equation  2yy
t

′ + =  by t yields  

 ( ) 2d ty t
dt

= .  

 Integrating gives 2ty t c= + .  Solving for y gives ( ) 1y t c t
t

= + . 

 Switch for Linearity 1dy
dt t y

=
+

, ( )1 0y − =  

31. Flipping both sides of the equation yields the equivalent linear form dt t y
dy

= + , or dt t y
dy

− = . 

Solving this equation we get  ( ) 1yt y ce y= − − .  

 Using the condition ( )1 0y − = , we find 01 1ce− = − , and so 0c = . Thus, we have 1t y= − −  and 

solving for y gives  

 ( ) 1y t t= − − . 
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 The Tough Made Easy 
2

2y
dy y
dt e ty

=
−

 

32. We flip both sides of the equation, getting  

 2
2 ,

ydt e ty
dy y

−
=   or,  2

2 ydt et
dy y y

+ = .  

 We solve this linear DE for ( )t y  getting ( ) 2

ye ct y
y
+

= . 

 A Useful Transformation 

33. (a) Letting lnz y= , we have zy e=  and zdy dze
dt dt

= .  

  Now the equation lndy ay by y
dt

+ =  can be rewritten as z z zdze ae bze
dt

+ = .  

 Dividing by ze  gives the simple linear equation dz bz a
dt

− = − . 

 Solving yields bt az ce
b

= +  and using lnz y= , the solution becomes ( ) ( ) bta b cey t e += . 

(b) If 1a b= = , we have ( ) ( )1 tce
y t e

+
= .  

 Note that when 0c =  we have the constant solution y e= . 

 Bernoulli Equation ( ) ( )y p t y q t yα′ + = , 0α ≠ , 1α ≠  

34. (a) We divide by yα  to obtain 1( ) ( )y y p t y q tα α− −′ + = . 

         Let  1v y α−=  so that (1 ) av y yα −′ ′= −  and 
1

av y y
α

−′
′=

−
. 

 
  Substituting into the first equation for 1y α−  and y yα− ′ , we have 

( ) ( )
1

v p t v q t
α
′

+ =
−

, a linear DE in v, 

 
       which we can now rewrite into standard form as 
 

(1 ) ( ) (1 ) ( )v p t v q tα α′ + − = − . 
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(b) 3α = , ( ) 1p t = − , and ( ) 1q t = ; hence 2 2dv v
dt

+ = − , which has the general solution 

 ( ) 21 tv t ce−= − + .  

 Because 2
1v
y

= , this yields ( ) ( ) 1 221 ty t ce
−−= − + .  

 Note, too, that 0y =  satisfies the given equation. 

(c) When 0α =  the Bernoulli equation is  

 ( ) ( )dy p t y q t
dt

+ = ,  

 which is the general first-order linear equation we solved by the integrating factor method 
and the Euler-Lagrange method. 

  When 1α =  the Bernoulli equation is  

 ( ) ( )dy p t y q t y
dt

+ = ,  or,  ( ) ( )( ) 0dy p t q t y
dt

+ − = ,  

 which can be solved by separation of variables. 

 Bernoulli Practice 

35. 3y ty ty′ + =  or 3 2y y ty t− −′ + =  

 Let v = y−2, so dv
dt

 = 32 dyy
dt

−− .  

 Substituting in the DE gives 1 ,  so that 
2

dv tv t
dt

− + = 2 2 ,dv tv t
dt

− = −  which is linear in v, with 

integrating factor μ = 
22tdt te e− −∫ = . 

 Thus, 
2 2 2

2 2t t tdve te v te
dt

− − −− = − , and 
2 2 2

2 ,t t te v te dt e c− − −= − = +∫  

 so 
2

1 tv ce= + . 

 Substituting back for v gives 

  2
2 1 ,

1 t
y

ce
=

+
 hence 2

1( ) .
1 t

y t
ce

= ±
+
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36. 2ty y e y′ − = , so that  2 1 ty y y e− −′ − =    

 Let v = y−1, so 2dv dyy
dt dt

−= − . 

 Substituting in the DE gives tdv v e
dt

+ = − , which is linear in v with integrating factor dt te eμ ∫= = . 

 Thus 2t t tdve e v e
dt

+ = − , and 
2

2

2

t
t t ee v e dt c= − = − +∫ , so  

2

t
tev ce−= − + . 

 Substituting back for v gives 1
1

1

2,   or     ( )
2

t
t

t t
ey c e y t

e c e
− −

−= − + =
− +

. 

37. 2 42 3t y ty y′ − =   or  4 2 32 3y t y ty− −′ − = ,    t ≠ 0 

 Let v = y−3, so 43dv dyy
dt dt

−= − . 

 Substituting in the DE gives 

21 2 3
3

dvt tv
dt

− − = , or, 2
6 9dv

dt t t
+ = − , 

 which is linear in v, with integrating factor μ = 
6

6ln 6.
dt tte e t∫ = =    

 Thus 6 5 46 9dvt t v t
dt

+ = − , and 6 4 599
5

t v t dt t c= − = − +∫ , 

 so 59
5

v ct
t

−= − + . Substituting back for v gives 3
6

9
5

cy
t t

− = − + . 

 Hence 
6

3
5

6

1 5 ,9 9 5
5

ty c t c
t t

= =
− +− +

 so 2
3 5

1

5( )
9

y t t
c t

=
−

. 

38. 2 2(1 ) 0t y ty ty′− − − =   (Assume 1t < ) 

 2 2 1(1 )y t y ty t− −′− − =   

 Let v = y−1, so 2 .dv dyy
dt dt

−= −  

 Substituting in the DE gives 

2(1 ) ,dvt tv t
dt

− − − =  so that 2 2 ,
1 1

dv t tv
dt t t

−
+ =

− −
 

 which is linear in v, with integrating factor  21

t dt
teμ −

∫
=

21 ln(1 )
2

t
e
− −

= = 2 1/ 2(1 )t −− . 
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 Thus, 2 1/ 2 2 3/ 2 2 3/ 2(1 ) (1 ) (1 )dvt t t v t t
dt

− − −− + − = − , and 

   

2 1/ 2
2 3/ 2 3/ 2

1/ 2

1/ 2 2 1/ 2

1(1 )
2(1 )

1
12
2

(1 )

t dt dwt v
t w

w c

w c t c

−

−

− −

−
− = = −

−

= − +
⎛ ⎞−⎜ ⎟
⎝ ⎠

= + = − +

∫ ∫

  

2(Substitute  1
2

1 )
2

w t
dw tdt

dw tdt

= −
= −

− =
 

  

 Hence v = 1 + c(1 − t2)1/2 and substituting back for v gives y(t) = 1/ 2
1 .

1 (1 )c t+ −
 

39. 
2y yy

t t

−

′ + =   y(1) = 2 

 
3

2 1yy y
t t

′ + =       

 Let v = y3, so 23 .dv dyy
dt dt

=  

 Substituting in the DE gives 1 1 1
3

dv v
dt t t

+ = , or  3 3dv v
dt t t

+ = ,   

 which is linear in v, with integrating factors 3/  3ln 3t dt te e tμ ∫= = = . 

 Thus, 3 2 23 3dvt t v t
dt

+ = , and 3 2 33t v t dt t c= = +∫ , so 31 .v ct−= +  

 Substituting back for v gives 3 31y ct−= +  or 3 3( ) 1 .y t ct−= +  

 For the IVP we substitute the initial condition  y(1) = 2, which gives 23 = 1 + c, so c = 7.  

 Thus, y3 = 1 + 7t−3 and 3 3( ) 1 7 .y t t−= +  

40. 2 33 2 1 0y y y t′ − − − =    

 Let v = y3, so 23dv dyy
dt dt

= , and  2 1dv v t
dt

− = + ,  

 which is linear in v with integrating factor 2 2dt te eμ − −∫= = . 
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 Thus, 2 2 22 ( 1)t t tdve e v t e
dt

− − −− = + , and  

    2 2( 1)t te v t e dt− −= +∫  

             

2 2

( 1) .     (Integration by parts)
2 4

t te et c
− −

= − + − +  

 Hence v = 2 21 1 3 .
2 4 2 4

t tt tce ce+
− − + = − − +  

 Substituting back for v gives y3 = 23
2 4

tt ce− − + . 

 For the IVP, substituting the initial condition  y(0) = 2 gives 8 = 3
4

c− + , c = 35
4

. 

 Hence,  y3 = 23 35
2 4 4

tt e− − + , and 23
3 35( ) .

2 4 4
tty t e−

= − +  

 Ricatti Equation ( ) ( ) ( ) 2y p t q t y r t y′ = + +  

41. (a) Suppose 1y  satisfies the DE so that 

 ( ) ( ) ( ) 21
1 1

dy p t q t y r t y
dt

= + + .  

 If we define a new variable 1
1y y
v

= + , then 1
2

1dydy dv
dt dt dtv

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

.  

 Substituting for 1dy
dt

 yields ( ) ( ) ( ) 2
1 1 2

1dy dvp t q t y r t y
dt dtv

⎛ ⎞= + + − ⎜ ⎟
⎝ ⎠

.  

 Now, if we require, as suggested, that v satisfies the linear equation 

 ( ) ( )( ) ( )12dv q t r t y v r t
dt

= − + − ,  

 then substituting in the previous equation gives 

 ( ) ( ) ( ) ( ) ( ) ( )12
1 1 2

2q t r t y r tdy p t q t y r t y
dt v v v

= + + + + + , 

 which simplifies to  

 ( ) ( ) ( ) ( ) ( ) ( )2 21
1 1 2

1 12 ydy p t q t y r t y p t q t y r t y
dt v v v

⎛ ⎞⎛ ⎞⎛ ⎞= + + + + + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

.  

 Hence, 1
1y y
v

= +  satisfies the Ricatti equation as well, as long as v satisfies its given 

equation. 
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(b) 21 2y y y′ = − + −  

 Let 1 1y =  so 1 0y′ = , and substitution in the DE gives 

 2
1 10 1 2 1 2 1 0y y= − + − = − + − = . 

 Hence, 1y  satisfies the given equation. To find v and then y, note that  

 ( ) 1p t = − , ( ) 2q t = , ( ) 1r t = − . 

 Now find v from the assumed requirement that 

 ( )( )( ) ( )2 2 1 1 1dv v
dt

= − + − − − ,  

 which reduces to 1dv
dt

= . This gives ( )v t t c= + , hence ( ) 1
1 11y t y
v t c

= + = +
+

. 

 Computer Visuals 

42. (a) 2y y t′ + =  

–5

5
y

5–5
t

y x= −05 0 25. .

 

(b) ( ) 2t
hy t ce−= , 1 1

2 4py t= −  

 The general solution is  

 ( ) 2 1 1
2 4

t
h py t y y ce t−= + = + − . 

 The curves in the figure in part (a) are labeled for different values of c. 

(c) The homogeneous solution hy  is transient because 0hy →  as t →∞ . However, 
although all solutions are attracted to py , we would not call py  a steady-state solution 
because it is neither constant nor periodic; py →∞  as t →∞ . 
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43. (a) 3ty y e′ − =  

(b) ( ) t
hy t ce= , 31

2
t

py e= .  

 The general solution is  

 ( ) 31
2h

p

t t
h p

y
y

y t y y ce e= + = + . 

 

3–3
t

–3

3
y

c  = –2

 
(c) There is no steady-state solution because all solutions (including both hy  and py ) go to 

∞ as t →∞ . The c values are approximate:  

 {0.5, –0.8, –1.5, –2, –2.5, –3.1} 

 as counted from the top-most curve to the bottom-most one. 

44. (a) siny y t′ + =  

6–6
t

–2

2
y

c=-0.002

 

(b) ( ) t
hy t ce−= , 1 1sin cos

2 2py t t= − . 

 The general solution is  ( ) 1 1sin cos
2 2

t
h py t y y ce t t−= + = + − . 

 The curves in the figure in part (a) are labeled for different values of c. 

(c) The sinusoidal steady-state solution 1 1sin cos
2 2py t t= −   

 occurs when 0c = . Note that the other solutions approach this solution as t →∞ . 
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45. (a) sin 2y y t′ + =  

6–6
t

–2

2
y

 

(b) ( ) t
hy t ce−= , ( )1 sin 2 2cos2

5py t t= − . 

 The general solution is  ( ) sin 2 2cos2
5h
p

t

y
y

t ty t ce− −
= + . 

(c) The steady-state solution is py , which attracts all other solutions.  

 The transient solution is hy . 

46. (a) 2 0y ty′ + =  

–2

2
y

c  = –2

c  = 2

c  = –1

c  = 1

c  = 0 2–2
t

 

 (b) This equation is homogeneous. 
The general solution is  

 ( ) 2t
hy t ce−= .  

(c) The equation has steady-state 
solution 0y = . All solutions 

tend towards zero as t →∞ . 
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47. (a) 2 1y ty′ + =  

–4

4
y

4–4
t

 

 The approximate c values corresponding 
to the curves in the center counted from 
top to bottom, are  

{1; –1; 2; –2}  

and approximately 50,000 (left curve) and
–50,000 (right curve) for the side curves.

(b) ( ) 2t
hy t ce−= , 

2 2t t
py e e dt−= ∫ . 

 The general solution is ( ) 2 2 2

h
p

t t t

y
y

y t ce e e dt− −= + ∫ . 

(c) The steady-state solution is ( ) 0y t = , which is not equal to py . Both hy  and py  are 

transient, but as t →∞ , all solutions approach 0. 

 Computer Numerics 

48. 2y y t′ + = , ( )0 1y =  

(a) Using step size 0.1h =  and 0.01h =  and Euler’s method, we compute the following 

values. In the latter case we print only selected values. 

  Euler’s Method 

  t ( )= 0.1y h ( )= 0.01y h

 
T ( )= 0.1y h  ( )= 0.01y h

 

  0 1 1.0000 0.6 0.3777 0.4219 

  0.1 0.8 0.8213 0.7 0.3621 0.4039 

  0.2 0.65 0.6845 0.8 0.3597 0.3983 

  0.3 0.540 0.5819 0.9 0.3678 0.4029 

  0.4 0.4620 0.5071 1 0.3842 0.4158 

  0.5 0.4096 0.4552    

 By Runge-Kutta (RK4) we obtain ( )1 0.4192y ≈  for step size 0.1h = . 

 

 

 



120     CHAPTER 2     Linearity and Nonlinearity 

(b) From Problem 42, we found the general solution of DE to be ( ) 2 1 1
2 4

ty t ce t−= + − .  

 Using IC ( )0 1y =  yields 5
4

c = . The solution of the IVP is ( ) 25 1 1
4 2 4

ty t e t−= + − , 

 and to 4 places, we have  

 ( ) 25 1 11 0.4192
4 2 4

y e−= + − ≈ . 

(c) The error for ( )1y  using step size 0.1h =  in Euler’s approximation is  

 ERROR 0.4192 0.3842 0.035= − =  

 Using step size 0.01h = , Euler’s method gives  

 ERROR 0.4192 0.4158 0.0034= − = , 

 which is much smaller. For step size 0.1h = , Runge-Kutta gives ( )1 0.4158y =  and zero 

error to four decimal places. 

(d) The accuracy of Euler’s method can be greatly improved by using a smaller step size. 
The Runge-Kutta method is more accurate for a given step size in most cases. 

49. Sample analysis: 3ty y e′ − = , ( )0 1y = , ( )1y . 

Exact solution is 30.5 0.5t ty e e= + , so ( )1 11.4019090461656y =  to thirteen decimal places. 

(a) ( )1 9.5944y ≈  by Euler’s method for step size 0.1h = , 

 ( )1 11.401909375y ≈  by Runge-Kutta for step size 0.1 (correct to six decimal places). 

(b) From Problem 24, we found the general solution of the DE to be 31
2

t ty ce e= + . 

(c) The accuracy of Euler’s method can be greatly improved by using a smaller step size; but 
it still is not correct to even one decimal place for step size 0.01. 

 ( )1 11.20206y ≈ for step size 0.01h =  

(d) MORAL: Euler’s method converges ever so slowly to the exact answer—clearly a far 
smaller step would be necessary to approach the accuracy of the Runge-Kutta method. 
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50. 2 1y ty′ + = , ( )0 1y =  

(a) Using step size 0.1h =  and 0.01h =  and Euler’s method, we compute the following 

values. 

  Euler’s Method 

  t ( )= 0.1y h ( )= 0.01y h

 
T ( )= 0.1y h  ( )= 0.01y h

 

  0 1 1.0000 0.6 1.2308 1.1780 

  0.1 1.1 1.0905 0.7 1.1831 1.1288 

  0.2 1.178 1.1578 0.8 1.1175 1.0648 

  0.3 1.2309 1.1999 0.9 1.0387 0.9905 

  0.4 1.2570 1.2165 1 0.9517 0.9102 

  0.5 1.2564 1.2084    

 ( )1 0.905958y ≈  by Runge-Kutta method using step size 0.1h =  (correct to six decimal 

places). 

(b) From Problem 47, we found the general solution of DE to be ( ) 2 2 2t t ty t ce e e dt− −= + ∫ . 

Using IC ( )0 1y = , yields 1c = . The solution of the IVP is  

 ( ) 2 2

0
(1 )

tt uy t e e du−= + ∫  

 and so to 10 places, we have ( )1 0.9059589485y =  

(c) The error for ( )1y  using step size 0.1h =  in Euler’s approximation is  

 ERROR 0.9517 0.9059 0.0458= − = . 

 Using step size 0.01h = , Euler’s method gives 

 ERROR 0.9102 0.9060 0.0043= − = , 

 which is much smaller. Using step size 0.1h =  in Runge-Kutta method gives ERROR 

less then 0.000001. 

(d) The accuracy of Euler’s method can be greatly improved by using a smaller step size, but 
the Runge-Kutta method has much better performance because of higher degree of 
accuracy. 
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 Direction Field Detective 

51. (a) (A) is linear homogeneous, (B) is linear nonhomogeneous, (C) is nonlinear. 

(b) If 1y  and 2y  are solutions of a linear homogeneous equation,  

 ( ) 0y p t y′ + = , 

 then ( )1 1 0y p t y′ + = , and ( )2 2 0y p t y′ + = . We can add these equations, to get 

 ( )( ) ( )( )1 1 2 2 0y p t y y p t y′ ′+ + + = . 

 Because this equation can be written in the equivalent form  

 ( ) ( )( )1 2 1 2 0y y y yp t′+ + + = , 

 then 1 2y y+  is also a solution of the given equation. 

(c) The sum of any two solutions follows the direction field only in (A). For the linear 
homogeneous equation (A) you plot any two solutions 1y  and 2y  by simply following 
curves in the direction field, and then add these curves, you will see that the sum 1 2y y+  

also follows the direction field. 

 However, in equation (B) you can observe a straight line solution, which is 

 1
1 1
2 4

y t= − . 

 If you add this to itself you get 1 1 1
12
2

y y y t+ = = − , which clearly does not follow the 

direction field and hence is not a solution. In equation (C) 1 1y =  is a solution but if you 
add it to itself you can see from the direction field that 1 2 2y y+ =  is not a solution. 

 Recognizing Linear Homogeneous DEs from Direction Fields 

52. For (A) and (D): The direction fields appear to represent linear homogeneous DEs because the 
sum of any two solutions is a solution and a constant times a solution is also a solution. (Just 
follow the direction elements.) 

 For (B) , (C) , and  (E): These direction fields cannot represent linear homogeneous DEs because 
the zero function is a solution of linear homogeneous equations, and these direction fields do not 
indicate that the zero function is a solution.  (B) seems to represent a nonlinear  DE with more 
than one equilibrium, while (C) and (E) represent linear but nonhomogeneous DEs. 

 Note:  It may be helpful to look at textbook Figures 2.1.1 and 2.2.2.  

 Suggested Journal Entry 

53. Student Project 
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2.3 
 

Growth and Decay Phenomena 
 

 

 Half-Life 

1. (a) The half-life ht  is the time required for the solution to reach 0
1
2

y . Hence, 0 0
1
2

kty e y= . 

Solving for ht , yields ln 2hkt = − , or  

 1 ln 2ht k
= − . 

(b) The solution to y ky′ =  is ( ) 0
kty t y e=  so at time 1t t= , we have  

 ( ) 1
1 0

kty t y e B= = .  

 Then at 1 ht t t= +  we have  

 ( ) ( ) ( ) ( )1 1 1 ln 2 ln 1 2ln 2
1 0 0 0

1
2

h hk t t k kktkt kt
hy t t y e y e e y e e Be Be B+ − −+ = = = = = = . 

 Doubling Time 

2. For doubling time dt , we solve 0 02dkty e y= , which yields  

 1 ln 2dt k
= . 

 Interpretation of 1
k

 

3. If we examine the value of the decay curve  

 ( ) 0
kty t y e=  

 we find 

 

( ) ( )1 1
0 0 0

0

1 0.3678794

.
3

k ky y e y e y
k

y

− −⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

≈

…
 

 Hence, 

 1
k

 

 

0

y

t4

0.2

0.4

0.6

0.8

1

1 2

y y ekt= 0

k = Š1

1/e

0
ty e−  falls from 0y  to roughly 0

3
y  

when 1t
k

= −  
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 is a crude approximation of the third-life of a decay curve. In other words, if a substance decays 
and has a decay constant 0.02k = − , and time is measured in years, then the third-life of the 

substance is roughly 1 50
0.02

=  years. That is, every 50 years the substance decays by 2
3

. Note 

that the curve in the figure falls to 1
3

 of its value in approximately 1t =  unit of time. 

 Radioactive Decay  

4. dQ kQ
dt

=  has the general solution  

 ( ) ktQ t ce= . 

 Initial condition ( )0 100Q =  gives ( ) 100 ktQ t e=  where Q is measured in grams. We also have 
the initial condition ( )50 75Q = , from which we find 

 1 3ln 0.0058
50 4

k = ≈ − .  

 The solution is 

 ( ) 0.0058100 tQ t e−≈  

 where t is measured in years. The half-life is 

 ln 2 120
0.0058ht = ≈  years. 

 Determining Decay from Half-Life 

5. dQ kQ
dt

=  has the general solution ( ) ktQ t ce= . With half-life 5ht =  hours, the decay constant has 

the value 1 ln 2 0.14
5

k = − ≈ − . Hence,  

 ( ) 0.14
0

tQ t Q e−= .  

 Calling tt  the time it takes to decay to 1
10

 the original amount, we have  

 0.14
0 0

1
10

ttQ Q e−= , 

 which we can solve for tt  getting  

 5ln10 16.6
ln 2tt = ≈  hours. 



SECTION 2.3     Growth and Decay Phenomena     125 

 Thorium-234 

6. (a) The general decay curve is ( ) ktQ t ce= . With the initial condition ( )0 1Q = , we have 

( ) ktQ t e= . We also are given ( )1 0.8Q =  so 0.8ke = , or ( )ln 0.8 0.22k = ≈ − . Hence, we 

have  

 ( ) 0.22tQ t e−=  

 where Q is measured in grams and t is measured in weeks. 

(b) ln 2 ln 2 3.1
0.22ht k

= − = ≈  weeks (c) ( ) ( )0.22 1010 0.107Q e− ≈  grams 

 Dating Sneferu’s Tomb 

7. The half-life for Carbon-14 is 5600ht =  years, so  

 1 ln 2ln 2 0.000124
5600h

k
t

= − = − ≈ − . 

 Let ct  be the time the wood has been aging, and 0y  be the original amount of carbon. Fifty-five 
percent of the original amount is 00.55y . The length of time the wood has aged satisfies the 

equation  

 0.000124
0 00.55ety e y− = . 

 Solving for ct  gives  

 5600ln 0.55 4830
ln 2ct = − ≈  years. 

 Newspaper Announcement 

8. For Carbon-14, ln 2 ln 2 0.000124
5600h

k
t

− −
= = ≈ − . If 0y  is the initial amount, then the final amount 

of Carbon-14 present after 5000 years will be  

 ( )5000 0.000124
0 00.54y e y− = . 

 In other words, 54% of the original carbon was still present. 

 Radium Decay 

9. 6400 years is 4 half-lives, so that 4
1 6.25%
2

≈  will be present. 
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 General Half-Life Equation 

10. We are given the two equations  

 
1

2

1 0

2 0 .

kt

kt

Q Q e

Q Q e

=

=
 

 If we divide, we get  

 ( )1 21

2

k t tQ e
Q

−=  

 or 

 ( ) 1
1 2

2
ln Qk t t

Q
− =  

 or  

 
1
2

1 2

ln Q
Qk

t t
=

−
. 

 Substituting in 1 ln 2ht k
= −  yields the general half-life of  

 
( ) ( )

1 1
2 2

1 2 2 1ln 2 ln 2
ln lnh Q Q

Q Q

t t t t
t

− −
= − = . 

 Nuclear Waste 

11. We have  

 ln 2 ln 2 0.00268
258h

k
t

= − = − ≈ −  

 and solve for t in 0.00268
0 00.05ty e y− = . Thus  

 258ln 20 1,115
ln 2

t = ≈  years. 

 Bombarding Plutonium 

12. We are given ln 2 4.6209812
0.15

k = − ≈ − . The differential equation for the amount present is 

 0.00002dA kA
dt

= + , ( )0 0A = . 

 Solving this initial-value problem we get the particular solution 

 ( ) 0.00002ktA t ce
k

= −  
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 where 0.00002 0.000004c
k

= ≈ − . Plugging in these values gives the total amount 

 ( ) ( )4.60.000004 1 tA t e−≈ −  

 measured in micrograms. 

 Blood Alcohol Levels 

13. (a) First, because the initial blood-alcohol level is 0.2%, we have ( )0 0.2P = . After one 

hour, the level reduces by 10%, therefore, we have  

 ( ) ( ) ( )1 0.9 0 0.9 0.2P P= = . 

 From the decay equation we have ( )1 0.2 kP e= , hence we have the equation 

 ( )0.2 0.9 0.2ke =  

 from which we find ln 0.9 0.105k = ≈ − . Thus our decay equation is 

 ( ) ( )ln0.9 0.1050.2 0.2t tP t e e−= ≈ . 

(b) The person can legally drive as soon as ( ) 0.1P t < . Setting  

 ( ) 0.1050.2 0.1tP t e−= =  

 and solving for t, yields  

 ln 2 6.6
0.105

t = − ≈
−

 hours. 

 Exxon Valdez Problem 

14. The measured blood-alcohol level was 0.06%, which had been dropping at a rate of 0.015 
percentage points per hour for nine hours. This being the case, the captain’s initial blood-alcohol 
level was  

 ( )0.06 9 0.015 0.195%+ = . 

 The captain definitely could be liable. 

 Sodium Pentathol Elimination 

15. The half-life is 10 hours. The decay constant is  

 ln 2 0.069
10

k = − ≈ − . 

 Ed needs  

 ( )( )50 mg kg 100 kg 5000 mg=  



128     CHAPTER 2     Linearity and Nonlinearity 

 of pentathal to be anesthetized. This is the minimal amount that can be presented in his 
bloodstream after three hours. Hence,  

 ( ) ( )0.069 3
0 03 0.813 5000A A e A−= ≈ = . 

 Solving for 0A  yields 0 6,155.7A =  milligrams or an initial dose of 6.16 grams. 

 Moonlight at High Noon 

16. Let the initial brightness be 0I . At a depth of 25d =  feet, we have that 15% of the light is lost, 
and so we have ( ) 025 0.85I I= . Assuming exponential decay, ( ) 0

kdI d I e= , we have the equation 

 ( ) 25
0 025 0.85kI I e I= =  

 from which we can find  

 ln 0.85 0.0065
25

k = ≈ − . 

 To find d, we use the equation  

 0.0065
0 0

1
300,000

dI e I− = , 

 from which we determine the depth to be 

 ( )1 ln 300,000 1940
0.0065

d = ≈  feet. 

 Tripling Time 

17. Here ln 2
10

k = . We can find the tripling time by solving for t in the equation  

 ( )ln 2 10
0 03ty e y⎡ ⎤⎣ ⎦ = , 

 giving ln 2 ln3
10

t⎛ ⎞ =⎜ ⎟
⎝ ⎠

 or  

 10ln3 15.85
ln 2

t = ≈  hours. 

 Extrapolating the Past 

18. If 0P  is the initial number of bacteria present (in millions), then we are given 6
0 5kP e =  and 

9
0 8kP e = . Dividing one equation by the other we obtain 3 8

5
ke = , from which we find  

 
8
5ln

3
k = . 
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 Substituting this value into the first equation gives ( )2ln 8 5
0 5P e = , in which we can solve for 

 ( )2ln 8 5
0 5 1.95P e−= ≈  million bacteria. 

 Unrestricted Yeast Growth 

19. From Problem 2, we are given  

 ln 2 ln 2
1

k = =  

 with the initial population of 0 5P =  million. The population at time t will be ( )ln 25 te  million, so 
at 4t =  hours, the population will be  

 
4ln 2

5 5 16 80e = ⋅ =  million. 

 Unrestricted Bacterial Growth 

20. From Problem 2, we are given ln 2
12

k =  so the population equation is  

 ( ) ( )ln 2 12
0

tP t P e= . 

 In order to have five times the starting value, we require ( )ln 2 12
0 05tP e P= , from which we can 

find  

 ln512 27.9
ln 2

t = ≈  hours. 

 Growth of Tuberculosis Bacteria 

21. We are given the initial number of cells present is 0 100P = , and that ( )1 150P =  (1.5 times 

larger), then 100 ( )1 150ke = , which yields 3ln
2

k = . Therefore, the population ( )P t  at any time t 

is  

 ( ) ( )ln 3 2 0.405100 100t tP t e e= ≈  cells. 

 Cat and Mouse Problem 

22. (a) For the first 10 years, the mouse population simply had exponential growth  

 ( ) 0
ktM t M e= . 

 Because the mouse population doubled to 50,000 in 10 years, the initial population must 

have been 25,000, hence ln 2
10

k = . For the first 10 years, the mouse population (in 

thousands) was  

 ( ) ( )ln 2 1025 tM t e= . 



130     CHAPTER 2     Linearity and Nonlinearity 

 Over the next 10 years, the differential equation was 6dM kM
dt

= − , where ( )0 50M = ; t 

now measures the number of years after the arrival of the cats. Solving this differential 
equation yields  

 ( ) 6ktM t ce
k

= + . 

 Using the initial condition ( )0 50M = , we find 650c
k

= − . The number of mice (in 

thousands) t years after the arrival of the cats is  

 ( ) 6 650 ktM t e
k k

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 where the constant k is given by ln 2 0.069
10

k = ≈ . We obtain 

 ( ) 0.06937 87tM t e= − + . 

(b) ( ) ( )0.069 1010 87 37 13.2M e= − ≈  thousand mice. 

(c) From part (a), we obtain the value of k for the population growth without harvest, i.e., 
ln 2 0.0693
10

k = ≈ . We obtain the new rate of change M ′  of the mouse population: 

 
0.0307

ln 2 0.10 0.0307
10
25000 t

M M M M

M e−

′ = − ≈ −

=

 

 After 10 years the mouse population will be 18393 (give or take a mouse or two). 

 Banker’s View of e 

23. The amount of money in a bank account that collects compound interest with continuous 
compounding is given by  

 ( ) 0
rtA t A e=  

 where 0A  is the initial amount and r is an annual interest rate. If 0 $1A =  is initially deposited, 

and if the annual interest rate is 0.10r = , then after 10 years the account value will be 

 ( ) ( )0.10 1010 $1 $2.72A e= ⋅ ≈ . 
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 Rule of 70 

24. The doubling time is given in Problem 2 by  

 ln 2 0.70 70
100dt r r r

= ≈ =  

 where 100r is an annual interest rate (expressed as a percentage). The rule of 70 makes sense. 

 Power of Continuous Compounding 

25. The future value of the account will be  

 ( ) 0
rtA t A e= , 

 If 0 $0.50A = , 0.06r =  and 160t = , then the value of the account after 160 years will be 

   ( ) ( )( )0.06 160160 0.5 $7,382.39A e= ≈ . 

 Credit Card Debt 

26. If Meena borrows 0 $5000A =  at an annual interest rate of 0.1995r =  (i.e., 19.95%), 

compounded continuously, then the total amount she owes (initial principle plus interest) after t 
years is 

 ( ) 0.1995
0 $5,000rt tA t A e e= = . 

 After 4t =  years, she owes  

 ( ) ( )0.1995 44 $5,000 $11,105.47A e= ≈ . 

 Hence, she pays $11,105.47 $5000 $6,105.74− =  interest for borrowing this money. 

 Compound Interest Thwarts Hollywood Stunt 

27. The growth rate is ( ) 0
rtA t A e= . In this case 0 3A = , 0.08r = , and 320t = . Thus, the total bottles 

of whiskey will be  

 ( ) ( )( )0.08 320320 3 393,600,000,000A e= ≈ . 

 That’s 393.6 billion bottles of whiskey! 

 It Ain’t Like It Use to Be 

28. The growth rate is ( ) 0
rtA t A e= , where 0 1A = , 50t = , and ( )50 18A =  (using thousands of dol-

lars). Hence, we have 5018 re= , from which we can find ln18 0.0578
50

r = ≈ , or 5.78%. 
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 How to Become a Millionaire 

29. (a) From Equation (11) we see that the equation for the amount of money is 

 ( ) ( )0 1rt rtdA t A e e
r

= + − . 

 In this case, 0 0A = , 0.08r = , and $1,000d = . The solution becomes 

 ( ) ( )0.081000 1
0.08

tA t e= − . 

(b) ( ) ( )( )0.08 4040 $1,000,000 1
0.08

dA e= = − . Solving for d, we get that the required annual 

deposit $3,399.55d = . 

(c) ( ) ( )40250040 $1,000,000 1rA e
r

= = − . To solve this equation for r we require a 

computer. Using Maple, we find the interest rates 0.090374r =  ( )9.04%≈ . You can 

confirm this result using direct substitution. 

 Living Off Your Money 

30. ( ) ( )0 1rt rtdA t A e e
r

= − − . Setting ( ) 0A t =  and solving for t gives 

 
0

1 ln dt
r d rA

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 

 Notice that when 0d rA=  this equation is undefined, as we have division by 0; if 0d rA< , this 

equation is undefined because we have a negative logarithm. For the physical translation of these 
facts, you must return to the equation for ( )A t . If 0d rA= , you are only withdrawing the interest, 

and the amount of money in the bank remains constant. If 0d rA< , then you aren’t even 
withdrawing the interest, and the amount in the bank increases and ( )A t  never equals zero. 

 How Sweet It Is 

31. From equation (11), we have 

 ( ) ( )0.08 0.08100,000$1,000,000 1
0.08

t tA t e e= − − . 

 Setting ( ) 0A t = , and solving for t, we have  

 ln5 20.1
0.08

t = ≈  years, 

 the time that the money will last. 
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 The Real Value of the Lottery 

32. Following the hint, we let  

 0.10 50,000A A′ = − . 

 Solving this equation with initial condition ( ) 00A A=  yields 

 ( ) ( ) 0.10
0 500,000 500,000tA t A e= − + . 

 Setting ( )20 0A =  and solving for 0A  we get 

 
( )2

0 2

500,000 1
$432,332

e
A

e

−
= ≈ . 

 Continuous Compounding 

33. (a) After one year compounded continuously the value of the account will be  

 ( ) 01 rS S e= .  

 With 0.08r =  (8%) interest rate, we have the value  

 ( ) 0.08
0 01 $1.083287S S e S= ≈ . 

 This is equivalent to a single annual compounding at a rate 8.329effr = %. 

(b) If we set the annual yield from a single compounding with interest effr , ( )0 eff1S r+  equal 

to the annual yield from continuous compounding with interest r, 0
rS e , we have  

 ( )0 eff 01 rS r S e+ = . 

 Solving for effr  yields eff 1rr e= − . 

(c) 
365

daily
0.081 1 0.0832775
365

r ⎛ ⎞= + − =⎜ ⎟
⎝ ⎠

 (i.e., 8.328%) effective annual interest rate, which is 

extremely close to that achieved by continuous compounding as shown in part (a). 

 Good Test Equation for Computer or Calculator 

34. Student Project. 

 Your Financial Future 

35. We can write the savings equation (10) as 

 ' 0.08 5000A A= + , (0) 0A = . 

 The exact solution by (11) is 

 0.085000 ( 1)
0.08

tA e= − . 
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 We list the amounts, rounded to the nearest dollar, for each of the first 20 years. 

 Year Amount Year Amount 

 1   5,205 11   88,181 

 2 10,844 12 100,731 

 3 16,953 13 114,326 

 4 23,570 14 129,053 

 5 30,739 15 145,007 

 6 38,505 16 162,290 

 7 46,917 17 181,012 

 8 56,030 18 201,293 

 9 65,902 19 223,264 

 10 76,596 20 247,065 

 After 20 years at 8%, contributions deposited have totalled 20 $5,000 $100,000× =  while 

$147,064 has accumulated in interest, for a total account value of $247,064.  

  Experiment will show that the interest is the more important parameter over 20 years. 
This answer can be seen in the solution of the annuity equation 

 ( )0.085000 1
0.08

tA e= − . 

 The interest rate occurs in the exponent and the annual deposit simply occurs as a multiplier. 

 Mortgaging a House 

36. (a) Since the bank earns 1% monthly interest on the outstanding principle of the loan, and 
Kelly’s group make monthly payments of $2500 to the bank, the amount of money A(t) 
still owed the bank at time t, where t is measured in months starting from when the loan 
was made, is given by the savings equation (10) with a = −2500. 

  Thus, we have 

   0.01 2500,    (0) $200,000.dA A A
dt

= − =  
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 (b) The solution of the savings equation in (a) was seen (11) to be  

   0.01 0.01

0.01

( ) (0) ( 1)

2500200,000 ( 1)
0.01

50,000 $250,000.

rt rt

t t

t

aA t A e e
r

e e

e

= + −

= − −

= − +

 

 (c) To find the length of time for the loan to be paid off, we set A(t) = 0, and solve for t. 
Doing this, we have 

   −50,000e0.01t = −$250,000. 

  or 

   0.01t = ln 5 or t = 100 ln 5 ≈ 100(1.609) ≈ 161 months (13 years and 5 months). 

 Suggested Journal Entry 

37. Student Project 
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2.4 
 
Linear Models: Mixing and Cooling 

 

 
 

 Mixing Details 

1. Separating variables, we find  

 2
100

dx dt
x t
=

−
 

 from which we get  

 ln 2ln 100x t c= − + . 

 We can solve for ( )x t  using properties of the logarithm, getting 

 ( ) ( )
2 22ln 100 ln 100 100t tcx e e Ce C t− −= = = −  

 where 0cC e= >  is an arbitrary positive constant. Hence, the final solution is 

 ( ) ( ) ( )2 2
1100 100x t C t c t= ± − = −  

 where 1c  is an arbitrary constant. 

 English Brine 

2. (a) Salt inflow is  

 ( )( )2 lbs gal 3 gal min 6 lbs min= . 

 Salt outflow is 

 ( )Q Qlbs gal 3 gal min  lbs min
300 100

⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

 The differential equation for ( )Q t , the amount of salt in the tank, is 

 6 0.01dQ Q
dt

= − . 

 Solving this equation with initial condition ( )0 50Q =  yields 

 ( ) 0.01600 550 tQ t e−= − . 

(b) The concentration ( )conc t  of salt is simply the amount ( )Q t  divided by the volume 

(which is constant at 300). Hence the concentration at time t is given by the expression 

 ( ) ( ) 0.01112
300 6

tQ t
conc t e−= = − . 
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(c) As t →∞ , 0.01 0te− → . Hence ( ) 600Q t →  lbs of salt in the tank. 

(d) Either take the limiting amount and divide by 300, or take the limit as t →∞  of ( )conc t . 

The answer is 2 lbs gal  in either case. 

(e) Note that the graphs of ( )Q t  and of ( )conc t  differ only in the scales on the vertical axis, 

because the volume is constant. 

  

0 t400

200

300

400

500

600

100 200

100

300

Q t( )

 

Number of lbs of salt in the tank 

 conc t( )

0 t400

1

2

100 200 300

Concentration of salt in the tank 

 Metric Brine 

3. (a) The salt inflow is  

 ( )( )0.1 kg liter 4 liters min 0.4 kg min= . 

 The outflow is 4 kg min
100

Q . Thus, the differential equation for the amount of salt is 

 0.4 0.04dQ Q
dt

= − . 

 Solving this equation with the given initial condition ( )0 50Q =  gives 

 ( ) 0.0410 40 tQ t e−= + . 

(b) The concentration ( )conc t  of salt is simply the amount ( )Q t  divided by the volume 

(which is constant at 100). Hence the concentration at time t is given by 

 ( ) ( ) 0.040.1 0.4
100

tQ t
conc t e−= = − . 

(c) As t →∞ , 0.04 0te− → . Hence ( ) 10 kgQ t →  of salt in the tank. 

(d) Either take the limiting amount and divide by 100 or take the limit as t →∞  of ( )conc t . 

The answer is 0.1 kg liter  in either case. 
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 Salty Goal 

4. The salt inflow is given by  

 ( )( )2 lb gal 3 gal min 6 lbs min= . 

 The outflow is 3
20

Q . Thus,  

 36
20

dQ Q
dt

= − . 

 Solving this equation with the given initial condition ( )0 5Q =  yields the amount 

 ( ) 3 2040 35 tQ t e−= − . 

 To determine how long this process should continue in order to raise the amount of salt in the 
tank to 25 lbs, we set ( ) 25Q t =  and solve for t to get  

 20 7ln 5.6
3 3

t = ≈  minutes. 

 Mysterious Brine 

5. Input in lbs min  is 2x (where x is the unknown concentration of the brine). Output is  

 2 lbs min
100

Q . 

 The differential equation is given by  

 2 0.01dQ x Q
dt

= − , 

 which has the general solution  

 ( ) 0.01200 tQ t x ce−= + . 

 Because the tank had no salt initially, ( )0 0Q = , which yields 200c x= − . Hence, the amount of 

salt in the tank at time t is  

 ( ) ( )0.01200 1 tQ t x e−= − . 

 We are given that  

 ( ) ( )( )120 1.4 200 280Q = = , 

 which we solve for x, to get 2.0 lb galx ≈ . 
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 Salty Overflow 

6. Let x = amount of salt in tank at time t. 

 We have 1 lb 3 gal (  lb) 1 gal/min
gal min (300 (3 1) )gal

dx x
dt t

⋅
= ⋅ −

+ −
 , with initial volume = 300 gal,  capacity = 600 gal. 

 IVP:  3
300 2

dx x
dt t

= −
+

,   x(0) = 0 

 The DE is linear, 

 3
300 2

dx x
dt t

+ =
+

,  

 with integrating factor  

  
1 1 ln(300 2 )

300 2 2
dt t

te eμ
+

+= =∫  = (300 + 2t)1/2 

 Thus,  

 

1/ 2 1/ 2
1/ 2

1/ 2 1/ 2

3/ 2

(300 2 ) 3(300 2 )
(300 2 )

(300 2 ) 3(300 2 )

3 (300 2 ) ,
2 3/ 2

dx xt t
dt t

t x t dt

t c

+ + = +
+

+ = +

+⎛ ⎞= +⎜ ⎟
⎝ ⎠

∫  

 so 

    1/ 2( ) (300 2 ) (300 2 )x t t c t −= + + +  

 The initial condition x(0) = 0 implies 0 = 300 + 
300
c , so  c = 3000 3− . 

 The solution to the IVP is 

    x(t) = 300 + 2t − 1/ 23000 3(300 2 )t −+  

 The tank will be full when 300 + 2t = 600, so t = 150 min. 

 At that time, x(150) = 300 + 2(150) − 1/ 23000 3(300 2(150))−+  ≈ 388 lbs 

 Cleaning Up Lake Erie 

7. (a) The inflow of pollutant is  

 ( )( )3 340 mi yr 0.01% 0.004 mi yr= , 

 and the outflow is  

 ( ) ( ) ( )
3

3 3
3

mi
40 mi yr 0.4 mi yr

100 mi
V t

V t= . 
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 Thus, the DE is  

 0.004 0.4dV V
dt

= −  

 with the initial condition  

 ( ) ( )( )3 30 0.05% 100 mi 0.05 miV = = . 

(b) Solving the IVP in part (a) we get the expression 

 ( ) 0.40.01 0.04 tV t e−= +  

 where V is the volume of the pollutant in cubic miles. 

 Correcting a Goof 

8. Input in lbs min  is 0 (she’s not adding any salt). Output is 0.03  lbs minQ . The differential 

equation is 

 0.03dQ Q
dt

= − , 

 which has the general solution  

 ( ) 0.03tQ t ce−= . 

 Using the initial condition ( )0 20Q = , we get the particular solution  

 ( ) 0.0320 tQ t e−= . 

 Because she wants to reduce the amount of salt in the tank to 10 lbs, we set  

 ( ) 0.0310 20 tQ t e−= = . 

 Solving for t, we get  

 100 ln 2 23
3

t = ≈  minutes. 

(c) A pollutant concentration of 0.02% corresponds to 

 ( )3 30.02% 100 mi 0.02 mi=  

 of pollutant. Finally, setting ( ) 0.02V t =  gives the equation 

 0.40.02 0.01 0.04 te−= + , 

 which yields  

 ( )2.5ln 4 3.5t = ≈  years. 
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 Changing Midstream 

9. Let x = amount of salt in tank at time t. 

 (a) IVP:  1 lb 4 gal  lb 4 gal
gal sec 200 gal sec

dx x
dt

⎛ ⎞= ⋅ − ⎜ ⎟
⎝ ⎠

    x(0) = 0 

 (b) xeq = 1 lb
gal

 ⋅ 200 gal = 200 lb 

 (c) Now let x = amount of salt in tank at time t,  

  but reset t = 0 to be when the second faucet  

  is turned on. This setup gives 

   4 lb 2lb 2 gal lb 4 gal/sec
sec gal sec (200 + 2 )gal

dx x
dt t

⋅
= + ⋅ − ,  

  which gives a new IVP: 

  48
200 2

dx x
dt t

= −
+

 x(0) = xeq = 200 

 (d) To find tf:  200 + 2tf = 1000  tf = 400 sec 

 (e) The DE in the new IVP is 

  2 8
100

dx x
dt t

+ =
+

, which is linear with integrating factor  

μ = 
2

2
ln(100 )100

dt tte e ++ =∫  = (100 + t)2. 

  Thus, 2 2(100 ) 2(100 ) 8(100 ) ,   anddxt t x t
dt

+ + + = +  

2 2 38 (100 ) 8(100 ) (100 ) ,
3

t x t dt t c+ = + = + +∫  

  so 

28( ) (100 ) (100 )
3

x t t c t −= + + + . 

  The initial condition x(0) = 200 implies 200 = 2
8 (100)
3 (100)

c
+  or c = 62 10

3
− × . 

  Thus the solution to the new IVP is 

        x = 6 28 1(100 ) (2 10 )(100 )
3 3

t t −+ − × + . 

  When tf = 400, x(400) = 
6

2
8 1 (2 10 )(500)
3 3 (500)

×
−  ≈ 1330.7 lb. 
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 (f) After tank starts to overflow, 

  Inflow:  1 lb 4 gal
gal sec

⋅   + 2 lb 2 gal
gal sec

⋅      = 8 lbs
sec

 

      1st faucet    2nd faucet 

  Outflow: 4 gal 
sec

⎛
⎜
⎝

       + 2 gal  lb
sec 1000 gal

x⎞ ⋅⎟
⎠

 = 6 lbs
1000 sec

x  

      drain          overflow 

  Hence for t > 400 sec, the IVP now becomes 

  68
1000

dx x
dt

= − ,  x(400) = 1330.7 lb. 

 Cascading Tanks 

10. (a) The inflow of salt into tank A is zero because fresh water is added. The outflow of salt is 

 ( ) 1lbs gal 2 gal min  lb min
100 50

A
A

Q Q⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

 Tank A initially has a total of ( )0.5 100 50=  pounds of salt, so the initial-value problem 

is 

 
50

A AdQ Q
dt

= − , ( )0 50AQ =  lbs. 

(b) Solving for AQ  gives  

 ( ) 50t
AQ t ce−=  

 and with the initial condition ( )0 50AQ =  gives  

 ( ) 5050 t
AQ t e−= . 

(c) The input to the second tank is  

 ( ) 501 lb gal 2 gal min  lb min  lb min
100 50

tA
A

Q Q e−⎛ ⎞ = =⎜ ⎟
⎝ ⎠

. 

 The output from tank B is  

 ( ) 1lb gal 2 gal min  lbs min
100 50

B
B

Q Q⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 
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 Thus the differential equation for tank B is  

 50 1
50

tB
B

dQ e Q
dt

−= −  

 with initial condition ( )0 0BQ = . 

(d) Solving the initial-value problem in (c), we get  

 ( ) 50t
BQ t te−=  pounds. 

 More Cascading Tanks 

11. (a) Input to the first tank is  

 ( )( )0 gal alch gal 1 gal min 0 gal alch min= . 

 Output is  

 0
1 gal alch min
2

x . 

 The tank initially contains 1 gallon of alcohol, or ( )0 0 1x = . Thus, the differential 

equation is given by  

 0
0

1
2

dx x
dt

= − . 

 Solving, we get ( ) 2
0

tx t ce−= . Substituting ( )0 0x , we get 1c = , so the first tank’s 

alcohol content is 

 ( ) 2
0

tx t e−= . 

(b) The first step of a proof by induction is to check the initial case. In our case we check 
0n = . For 0n = , 0 1t = , 0! 1= , 02 1= , and hence the given equation yields ( ) 2

0
tx t e−= . 

This result was found in part (a). The second part of an induction proof is to assume that 
the statement holds for case n, and then prove the statement holds for case 1n + . Hence, 

we assume  

 ( )
2

!2

n t

n n
t ex t
n

−

= , 

 which means the concentration flowing into the next tank will be 
2
nx  (because the 

volume is 2 gallons). The input of the next tank is 1
2nx  and the output ( )1

1
2 nx t+ . The 

differential equation for the ( )1n +  tank will be 
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2

1
1 1

1
2 !2

n t
n

n n
dx t ex

dt n

−
+

+ ++ = , ( )1 0 0nx + = . 

 Solving this IVP, we find  

 ( )
( )

1 2

1 11 !2

n t

n n
t ex t

n

+ −

+ +=
+

 

 which is what we needed to verify. The induction step is complete. 

(c) To find the maximum of ( )nx t , we take its derivative, getting 

 
( )

1 2 2

11 !2 !2

n t n t

n n n
t e t ex
n n

− − −

+
′ = −

−
. 

 Setting this value to zero, the equation reduces to 12 0n nnt t− − = , and thus has roots 
0t = , 2n. When 0t =  the function is a minimum, but when 2t n= , we apply the first 

derivative test and conclude it is a local maximum point. Substituting this in ( )nx t  yields 

the maximum value  

 ( ) ( )2
2

!!2

n n n n

n n n

n e n ex n M
nn

− −

≡ = = . 

 We can also see that ( )nx t  approaches 0 as t →∞  and so we can be sure this point is a 
global maximum of ( )nx t . 

(d) Direct substitution of Stirling’s approximation for n! into the formula for nM  in part (c) 

gives ( ) 1/ 22nM nπ −≈ . 

 Three Tank Setup 

12. Let x, y, and z be the amounts of salt in  

 Tanks 1, 2, and 3 respectively. 

 (a) For Tank 1:  0 lbs 5 gal  lbs 5 gal ,
gal sec 200 gal sec

dx x
dt

= ⋅ − ⋅  

  so the IVP for x(t) is 

5
200

dx x
dt

−
= , x(0) = 20. 

  The IVP for the identical Tank 2 is 

5
200

dy y
dt

−
= , y(0) = 20. 
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 (b) For Tank 1,  
40

dx x
dt

−
= , so x = / 4020 te− . 

  For Tank 2,  
40

dy y
dt

−
= , so y = / 4020 te− . 

 (c) 

/ 40 / 40

 lbs 10 gal
40 40 500 gal sec
1 1 .
2 2 50

t t

dz x y z
dt

ze e− −

= + − ⋅

= + −

 

  Again we have a linear equation, / 40

50
tdz z e

dt
−+ = ,  

  with integrating factor 
1/50 / 50dt te eμ = =∫ . 

  Thus 

/50 /50 / 40 /50 / 200

5/50 / 200 / 200

1 ,
50

200 ,

t t t t t

t t

dze e z e e
dt

e z e dt e c

− + −

− −

+ = =

= = − +∫
 

  so  / 40 / 50( ) 200 .t tz t e ce− −= − +  

 Another Solution Method 

13. Separating variables, we get dT kdt
T M

= −
−

. 

 Solving this equation yields  

ln T M kt c− = − + ,  or, c ktT M e e−− = . 

 Eliminating the absolute value, we can write c kt ktT M e e Ce− −− = ± =  

 where C is an arbitrary constant. Hence, we have  ( ) ktT t M Ce−= + . 

 Finally, using the condition ( ) 00T T=  gives ( ) ( )0
ktT t M T M e−= + − . 

 Still Another Approach 

14. If ( ) ( )y t T t M= − , then dy dT
dt dt

= , and ( ) ( )T t y t M= + . 

 Hence the equation becomes  

( )dy k y M M
dt

= − + − , or, dy ky
dt

= − , 

 a decay equation. 



146     CHAPTER 2     Linearity and Nonlinearity 

 Using the Time Constant 

15. (a) ( ) ( )0 1kt ktT t T e M e− −= + − , from Equation (8). In this case, 95M = , 0 75T = , and 

1
4

k = , yielding the expression  

 ( ) ( )4 475 95 1t tT t e e− −= + −  

 where t is time measured in hours. Substituting 2t =  in this case (2 hours after noon), 
yields ( )2 82.9T ≈ °F. 

(b) Setting ( ) 80T t =  and simplifying for ( )T t  yields  

 34ln 1.15
4

t = − ≈  hours, 

 which translates to 1:09 P.M. 

 A Chilling Thought 

16. (a) ( ) ( )0 1kt ktT t T e M e− −= + − , from Equation (8). In this problem, 0 75T = , 10M = , and 

1 50
2

T ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (taking time to be in hours). Thus, we have the equation 250 10 60 ke−= + , 

from which we can find the rate constant 

 22ln 0.81
3

k = − ≈ . 

 After one hour, the temperature will have fallen to  

 ( ) ( )2ln 2 3 41 10 60 10 60 36.7
9

T e ⎛ ⎞≈ + = + ≈⎜ ⎟
⎝ ⎠

° F. 

(b) Setting ( ) 15T t =  gives the equation  

 ( )2 ln 2 315 10 60 te= + . 

 Solving for t gives  

 ( )2
3

ln12 3.06
2ln

t = − ≈  hours (3 hrs, 3.6 min). 
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 Drug Metabolism 

17. The drug concentration ( )C t  satisfies  

 dC a bC
dt

= −  

 where a and b are constants, with ( )0 0C = . Solving this IVP gives  

 ( ) ( )1 btaC t e
b

−= − . 

 As t →∞ , we have 0bte− →  (as long as b is positive), so the limiting concentration of ( )C t  is 
a
b

. Notice that b must be positive or for large t we would have ( ) 0C t < , which makes no sense, 

because ( )C t  is the amount in the body. To reach one-half of the limiting amount of a
b

 we set  

 ( )1
2

bta a e
b b

−= −  

 and solve for t, getting ln 2t
b

= . 

 Warm or Cold Beer? 

18. Again, we use  

 ( ) ( )0
ktT t M T M e−= + − . 

 In this case, 70M = , 0 35T = . If we measure t in minutes, we have ( )10 40T = , giving 

 1040 70 35 ke−= − . 

 Solving for the decay constant k, we find 

 
( )6

7ln
0.0154

10
k = − ≈ . 

 Thus, the equation for the temperature after t minutes is 

 ( ) 0.015470 35 tT t e−≈ − . 

 Substituting 20t =  gives ( )20 44.3T ≈ ° F. 
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 The Coffee and Cream Problem 

19. The basic law of heat transfer states that if two substances at different temperatures are mixed 
together, then the heat (calories) lost by the hotter substance is equal to the heat gained by the 
cooler substance. The equation expressing this law is  

 1 1 1 2 2 2M S t M S tΔ = Δ  

 where 1M  and 2M  are the masses of the substances, 1S  and 2S  are the specific heats, and 1tΔ  
and 2tΔ  are the changes in temperatures of the two substances, respectively.  

 In this problem we assume the specific heat of coffee (the ability of the substance to hold heat) is 
the same as the specific heat of cream. Defining 

 
( )

( )
0 initial temperature of the coffee

room temperature temp of the cream
temperature of the coffee after the cream is added

C

R
T

=

=

=

 

 we have  

 ( )( ) ( )1 20M C T M T R− = − . 

 If we assume the mass 2M  of the cream is 1
10

 the mass Mg of the coffee (the exact fraction does 

not affect the answer), we have 

 ( )( )10 0C T T R− = − . 

 

 The temperature of the coffee after John initially adds the cream is  

 
( )10 0
11

C R
T

+
= . 

 After that John and Maria’s coffee cools according to the basic law of cooling, or  

 John: 
( )10 0
11

ktC R
e

⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠

, Maria: ( )0 ktC e  

 where we measure t in minutes. At time 10t =  the two coffees will have temperature 

 John: 
( ) 1010 0
11

kC R
e

⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠

, Maria: ( ) 100 kC e . 
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 Maria then adds the same amount of cream to her coffee, which means John and Maria’s coffees 
now have temperature 

 John: 
( ) 1010 0
11

kC R
e

⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠

, Maria: 
( ) 1010 0

11

kC e R⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 Multiplying each of these temperatures by 11, subtracting ( ) 1010 0 kC e  and using the fact that 
10Re k R> , we conclude that John drinks the hotter coffee. 

 Professor Farlow’s Coffee 

20. ( ) ( )0 1kt ktT t T e M e− −= + − . For this problem, 70M =  and 0 200T = °F. The equation for the 

coffee temperature is  

 ( ) 70 130 ktT t e−= + . 

 Measuring t in hours, we are given 

 41 120 70 130
4

kT e−⎛ ⎞ = = +⎜ ⎟
⎝ ⎠

; 

 so the rate constant is  

 54ln 3.8
13

k = − ≈ . 

 Hence 

 ( ) 3.870 130 tT t e−= + . 

 Finally, setting ( ) 90T t =  yields  

 3.890 70 130 te−= + , 

 from which we find 0.49t ≈  hours, or 29 minutes and 24 seconds. 

 Case of the Cooling Corpse 

21. (a) ( ) ( )0 1kt ktT t T e M e− −= + − . We know that 50M =  and 0 98.6T = °F. The first 

measurement takes place at unknown time 1t  so  

 ( ) 1
1 70 50 48.6 ktT t e−= = +   

  or 148.6 20kte− = . The second measurement is taken two hours later at 1 2t + , yielding 

 ( )1 260 50 48.6 k te− += +   
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  or ( )1 248.6 10k te− + = . Dividing the second equation by the first equation gives the 

relationship 2 1
2

ke− =  from which ln 2
2

k = . Using this value for k the equation for ( )1T t  

gives 

 1ln 2 270 50 48.6 te−= +   

  from which we find 1 2.6t ≈  hours. Thus, the person was killed approximately 2 hours 

and 36 minutes before 8 P.M., or at 5:24 P.M. 

(b) Following exactly the same steps as in part (a) but with T0 = 98.2° F, the sequence of 
equations is 

  T(t1) = 70 = 50 + 1( )48.2 k te−  ⇒ 148.2 kte−  = 20. 

  T(t1 + 2) = 60 = 50 + 1( 2)48.2 k te− +  ⇒ 1( 2)48.2 k te− +  = 10. 

 Dividing the second equation by the first still gives the relationship e−2k = 1 ,
2

  

 so k = ln 2 .
2

 

 Now we have 

  T(t1) = 70 = 50 + 1 ln 2/ 248.2 te−  

 which gives t1 ≈ 2.54 hours, or 2 hours and 32 minutes. This estimates the time of the 
murder at 5.28 PM, only 4 minutes earlier than calculated in part (a). 

 A Real Mystery 

22. ( ) ( )0 1kt ktT t T e M e− −= + −  

 While the can is in the refrigerator 0 70T =  and 40M = , yielding the equation  

 ( ) 40 30 ktT t e−= + . 

 Measuring time in minutes, we have  

 ( ) 1515 40 30 60kT e−= + = , 

 which gives 1 2ln 0.027
15 3

k ⎛ ⎞ ⎛ ⎞= − ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. Letting 1t  denote the time the can was removed from the 

refrigerator, we know that the temperature at that time is given by 

 ( ) 1
1 40 30 ktT t e−= + , 
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 which would be the 0W  for the warming equation ( )W t , the temperature after the can is removed 

from the refrigerator  

 ( ) ( )070 70 ktW t W e−= + −  

 (the k of the can doesn’t change). Substituting 0W  where 1t t=  and simplifying, we have  

 ( ) ( )170 30 1kt ktW t e e− −= + − . 

 The initial time for this equation is 1t  (the time the can was taken out of the refrigerator), so the 
time at 2 P.M. will be 160 t−  minutes yielding the equation in 1t : 

 ( )160W t− = ( ) ( )11 6060 70 30 1 k tkte e− −−= + − . 

 This simplifies to  

 ( )160601
3

k tke e− −−= − , 

 which is relatively easy to solve for 1t  (knowing that 0.027k ≈ ). The solution is 1 37t ≈ ; hence 

the can was removed from the refrigerator at 1:37 P.M. 

 Computer Mixing 

23. 1 2
1

y y
t

′ + =
−

, ( )0 0y =  

 When the inflow is less than the outflow, 
we note that the amount of salt ( )y t in the 

tank becomes zero when 1t = , which is 

also when the tank is emptied. 

 
0

1
y

10
t

 

 24. 1 2
1

y y
t

′ + =
+

, ( )0 0y =  

 When the inflow is greater than the out-
flow, the amount of dissolved substance 
keeps growing without end. 

 

y

0

4

t
30

 Suggested Journal Entry 

25. Student Project 
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2.5 
 
Nonlinear Models: Logistic Equation 

 

 
 

 Equilibria 

Note: Problems 1–6 are all autonomous s equations, so lines of constant slope (isoclines) are horizontal 
lines. 

1. 2y ay by′ = + , ( )0,  0a b> >  

 We find the equilibrium points by solving  

 2 0y ay by′ = + = , 

 getting 0y = , a
b

− . By inspecting 

 ( )y y a by′ = + , 

 we see that solutions have positive slope ( )0y′ >  when 0y >  or ay
b

< −  and negative slope 

( )0y′ <  for 0a y
b

− < < . Hence, the equilibrium solution ( ) 0y t ≡  is unstable, and the 

equilibrium solution ( ) ay t
b

≡ −  is stable. 

 

y

y = 0

y = –a/b
stable equilibrium

unstable equilibriumt

 

2. 2y ay by′ = − , ( )0,  0a b> >  

 We find the equilibrium points by solving 

 2 0y ay by′ = − = , 

 getting 0y = , a
b

. By inspecting 

 ( )y y a by′ = − , 
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 we see that solutions have negative slope ( )0y′ <  when 0y <  or ay
b

>  and positive slope 

( )0y′ >  for 0 ay
b

< < . Hence, the equilibrium solution ( ) 0y t ≡  is unstable, and the equilibrium 

solution ( ) ay t
b

≡  is stable. 

 

 

y

y = 0

y = a/b
stable equilibrium

unstable equilibrium
t

 

3. 2y ay by′ = − + , ( )0,  0a b> >  

 We find the equilibrium points by solving 

 2 0y ay by′ = − + = , 

 getting 0y = , a
b

. By inspecting 

 ( )y y a by′ = − + , 

 we see that solutions have positive slope when 0y <  or ay
b

>  and negative slope for 0 ay
b

< < . 

Hence, the equilibrium solution ( ) 0y t ≡  is stable, and the equilibrium solution ( ) ay t
b

≡  is 

unstable. 

 

y

y = 0

y = a/b unstable equilibrium

stable equilibrium
t
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4. 
2y ay by′ = − − , ( )0,  0a b> >  

We find the equilibrium points by solving 
2 0y ay by′ = − − = ,  

getting 0y = , a
b

− . By inspecting 

( )y y a by′ = − + , 

 y

ty = 0

y = –a/b

stable equilibrium

unstable equilibrium

 we see that solutions have negative slope when 0y >  or ay
b

< −  and positive slope for 

0a y
b

− < < . Hence, the equilibrium solution ( ) 0y t ≡  is stable, and the equilibrium solution 

( ) ay t
b

≡ −  is unstable. 

 

5. 1yy e′ = −  

Solving for y in the equation 

1 0yy e′ = − = , 

we get 0y = , hence we have one equilibrium
(constant) solution ( ) 0y t ≡ . Also 0y′ >  for y

positive, and 0y′ <  for y negative. This says that
( ) 0y t ≡  is an unstable equilibrium point. 

 

 y

y = 0
unstable equilibrium

t

6. y y y′ = −  

Setting 0y′ =  we find equilibrium points at 

0y =  and 1. 

The equilibrium at 0y =  is stable; that at 1y = is 

unstable. Note also that the DE is only defined
when 0y ≥ . 

 

stable equilibriumy = 0

y = 1
unstable equilibrium

DE not defined

–2

2
y

2–2
t

 



SECTION 2.5     Nonlinear Models: Logistic Equation     155 

 

 Nonautonomous Sketching 

For nonautonomous equations, the lines of constant slope are not horizontal lines as they were in the 
autonomous equations in Problems 1–6. 

7. ( )y y y t′ = −  

 In this equation we observe that 0y′ =  when 0y = , and when y t= ; 0y ≡  is equilibrium, but 
y t=  is just an isocline of horizontal slopes. We can draw these lines in the ty-plane with 

horizontal elements passing through them.  

  We then observe from the DE that when 

 0y >  and y t>  the slope is positive 

 0y >  and y t<  the slope is negative 

 0y <  and y t>  the slope is negative 

 0y <  and y t<  the slope is positive. 

 From the preceding facts, we surmise that the solutions behave according to our simple analysis 
of the sign y′ . As can be seen from this figure, the equilibrium 0y ≡  is stable at 0t >  and 

unstable at 0t < . 
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8. ( )2y y t′ = −  

 In this equation we observe that 0y′ =  when y t= . We can draw isoclines y t c− =  and 
elements with slope 2y c′ =  passing through them. Note that the solutions for 1c = ±  are also 

solutions to the DE. Note also that for this DE the slopes are all positive. 

  
9. ( )siny yt′ =  

 Isoclines of horizontal slopes (dashed) are hyper-
bolas yt nπ= ±  for 0,  1,  2,  n = …  . On the com-

puter drawn graph you can sketch the hyperbolas
for isoclines and verify the alternating occurrence 
of positive and negative slopes between them as
specified by the DE. 

 

 

  Only 0y ≡  is an equilibrium (unstable for 0t < , stable for 0t > ). 

 Inflection Points 

10. 1 yy r y
L

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

 We differentiate with respect to t (using the chain rule), and then substitute for dy
dt

 from the DE. 

This gives 

 
2

2
1 21 1d y d dy dy y dy ry yry r r ry

dt dt L dt L dt L Ldt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − + − = − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 Setting 
2

2 0d y
dt

=  and solving for y yields 0y = , L, 
2
L . Values 0y =  and y L=  are equilibrium 

points; 
2
Ly =  is an inflection point. See text Figure 2.5.8. 
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11. 1 yy r y
T

⎛ ⎞′ = − −⎜ ⎟
⎝ ⎠

 

 We differentiate with respect to t (using the chain rule), and then substitute for dy
dt

 from the DE. 

This gives 

 
2

2
1 21 1d y d dy dy y dy ry yry r r r y

dt dt T dt T dt T Tdt
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = − − − − = − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

 Setting 
2

2 0d y
dt

=  and solving for y yields 0y = , T, 
2
T . Values 0y =  and y T=  are equilibrium 

points; 
2
Ty =  is an inflection point. See text Figure 2.5.9. 

12. ( )cosy y t′ = −  

 We differentiate y′  with respect to t (using the chain rule), and then substitute for dy
dt

 from the 

DE. This gives 

 ( ) ( ) ( )
2

2 sin sin cosd y d dy dyy t y t y t
dt dt dtdt
⎛ ⎞= = − − = − − −⎜ ⎟
⎝ ⎠

. 

 Setting 
2

2 0d y
dt

=  and solving for y yields y t nπ− = , 
2

ny t nπ π− = +  for 0, 1, 2,n = ± ± … . 

Note the inflection points change with t in this nonautonomous case. See text Figure 2.5.3, graph 
for (2), to see that the inflection points occur only when 1y = − , so they lie along the lines 
y t mπ= +  where m is an odd integer. 

 Logistic Equation 1 yy r y
L

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

13. (a) We rewrite the logistic DE by separation of variables and partial fractions to obtain 

 
11

1
L

y
L

dy rdt
y

⎛ ⎞
+ =⎜ ⎟⎜ ⎟−⎝ ⎠

. 

 Integrating gives 

 ln ln 1 yy rt c
L

− − = + . 
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 If 0y L> , we know by qualitative analysis (see text Figure 2.5.8) that y L>  for all 

future time. Thus ln 1 ln 1y y
L L

⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 in this case, and the implicit solution (8) becomes 

 
1

rt
y
L

y Ce=
−

, with 
0

0

1y
L

yC =
−

. 

 Substitution of this new value of C and solving for y gives 0y L>  gives 

 ( ) ( )0
1 1 rtL

y

Ly t
e−

=
+ −

 

 which turns out (surprise!) to match (10) for 0y L< . You must show the algebraic steps 

to confirm this fact. 

(b) The derivation of formula (10) required ln 1 y
L

− , which is undefined if y L= . Thus, 

although formula (10) happens to evaluate also to y L≡  if y L≡ , our derivation of the 

formula is not legal in that case, so it is not legitimate to use (10). 

  However the original logistic DE 1 yy r y
L

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 is fine if y L≡  and reduces in 

that case to 0dy
dt

= , so a constanty =  (which must be L if ( )0y L= ). 

(c) The solution formula (10) states 

 ( ) ( )0
1 1 rtL

y

Ly t
e−

=
+ −

. 

 If 00 y L< < , the denominator is greater than 1 and as t increases, ( )y t  approaches L 

from below. 

  If 0y L> , the denominator is less than 1 and as t increases, ( )y t  approaches L 

from above. 

  If 0y L= , ( )y t L= . These implications of the formula are confirmed by the 

graph of Figure 2.5.8. 

(d) By straightforward though lengthy computations, taking the second derivative of 

( ) ( )0
1 1 rtL

y

Ly t
e−

=
+ −

 (10) 
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 gives 

 
( ) ( ) ( ){ }

( )
0 0 0

0

2

3

1 2 1 1 1

1 1

rt rt rtL L L
y y y

rtL
y

L r e e e
y

e

− − −

−

⎡ ⎤− − − + −⎣ ⎦′′ =
⎡ ⎤+ −⎣ ⎦

. 

 Setting 0y′′ = , we get 

 
0 0

2 1 1 1 0rt rtL Le e
y y

− −⎡ ⎤⎛ ⎞ ⎛ ⎞
− − + − =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 or 

 
0

1 1rtL e
y

−⎛ ⎞
− =⎜ ⎟

⎝ ⎠
. 

 Solving for t, we get *

0

1 ln 1Lt
r y

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. Substituting this value into the analytical solution 

for the logistic equation, we get ( )*
2
Ly t = . 

  At *t  the rate y′  is 

 21
2 2 2 4

L L r L rLr
L

⎛ ⎞⎛ ⎞ ⎛ ⎞− = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

 Fitting the Logistic Law 

14. The logistic equation is  

 1 yy ry
L

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

. 

 If initially the population doubles every hour, we have 

 ln 2 1dt r
= =  

 which gives the growth rate 1 1.4
ln 2

r = ≈ . We are also given 95 10L = × . The logistic curve after 

4 hrs is calculated from the analytic solution formula, 

 ( ) ( ) ( ) ( )9

9
0

9 9
9

5.61.4 45 10
10

5 10 5 10 4.9 10
1 41 11 1 rtL

y

Ly t
eee −−− ×

× ×
= = = ≈ ×

++ −+ −
. 
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 Culture Growth 

15. Let y = population at time t, so y(0) = 1000 and L = 100,000. 

 The DE solution, from equation (10), is 

  y = 100,000
100,0001 1

1000
rte−⎛ ⎞+ −⎜ ⎟

⎝ ⎠

. 

 To evaluate r, substitute the given fact that when t = 1, population has doubled. 

                        y(1) =  2(1000) = 100,000
1 (100 1) re−+ −

 

        2(1 + 99e−r) = 100 

                 198e−r = 98 

                      e−r = 98
198

 

                       −r  = 98ln
198
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

      r  = .703 

 Thus y(t) = .703
100,000

1 99 te−+
. 

 (a) After 5 days:  y(5) = (.703)5
100,000

1 99e−+
 = 25,348 cells 

 (b) When y = 50,000, find t: 

   50,000 = .703
100,000

1 99 te−+
 

          1+ 99e−.703t = 2 

            t ≈ 6.536 days 
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 Logistic Model with Harvesting 

16. ( )1 yy ry h t
L

⎛ ⎞′ = − −⎜ ⎟
⎝ ⎠

 

 (a) Graphs of y′  versus y for different val-

ues of harvesting h are shown. Feasible
harvests are those values of h that keep 
the slope y′  positive for some  

 0 y L< < . 

 Because the curve y′  versus y is always 

a maximum at  

 
2
Ly = , 

 

y0.8

–0.2

0.2

0.2 0.4 0.6 1

y'
r
L
=
=
1
1

h = 0

′ = −( ) −y y y1 h

h = 0.1

h = 0.2
h = 0.25

 we find the value of h that gives 0
2
Ly ⎛ ⎞′ =⎜ ⎟

⎝ ⎠
; this will be the maximum sustainable 

harvesting value maxh . By setting 0
2
Ly ⎛ ⎞′ =⎜ ⎟

⎝ ⎠
, we find max .

4
rLh =  

(b) As a preliminary to graphing, we find the equilibrium solutions under harvesting by 
setting 0y′ =  in the equation 

 1 yy r y h
L

⎛ ⎞′ = − −⎜ ⎟
⎝ ⎠

 

 getting 

 2 0hy Ly L
R

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

. 

 Solving for y, we get 

 
( )2 4

1 2,
2

hL
rL L

y y
± −

=  

 where both roots are positive. The smaller root represents the smaller equilibrium 
(constant) solution, which is unstable, and the larger root is the larger stable equilibrium 
solution. As we say in part (a), harvesting (measured in fish/day or some similar unit) 

must satisfy 
4
rLh < . 



162     CHAPTER 2     Linearity and Nonlinearity 
 

  y

20
t
y = 0

y = 1
stable equilibrium

unstable equilibrium

Straight logistic  

( )1y y y′ = −  

0

2
y

20
t

semistable equilibrium y = 0

Logistic with maximum sustainable 
harvesting  

( )1 0.25y y y′ = − −  

 Note that the equilibrium value with harvesting 0.25h =  is lower than the equilibrium 
value without harvesting. Note further that maximum harvesting has changed the phase 
line and the direction of solutions below equilibrium. The harvesting graph implies that 
fishing is fine when the population is above equilibrium, but wipes out the population 
when it is below equilibrium. 

 Campus Rumor 

17. Let x = number in thousands of people who have heard the rumor. 

 (80 )dx kx x
dt

= −   x(0) = 1  x(1) = 10 

 Rearranging the DE to standard logistic form (6) gives 80 1 .
80

dx xk x
dt

⎛ ⎞= −⎜ ⎟
⎝ ⎠

  

 With r =  80k, the solution, by equation (10), is x(t) = 80 .
801 1
1

rte−⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

 To evaluate r, substitute the given fact that when t = 1, ten thousand people have heard the rumor. 

  10 = 80
1 79 re−+

 

  1 + 79e−r = 8 ⇒ e−r = 7
79

     ⇒    r ≈ 2.4235. 

  Thus x(t) = 2.4235
80 .

1 79 te−+
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 Water Rumor 

18. Let N be the number of people who have heard the rumor at time t 

 (a) (200,000 ) 200,000 1
200,000

dN NkN N k N
dt

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

 (b) Yes, this is a logistic model. 

 (c) Set 0.dN
dt

=  Equilibrium solutions: N = 0, N = 200,000. 

 (d) Let r = 200,000k. Assume N(0) = 1.  

  Then 

N = 200,000
200,0001 1

1
rte−⎛ ⎞+ −⎜ ⎟

⎝ ⎠

 

  At t = 1 week,  

   1000 = 200,000
1 199,999 re−+

 

  
1 199,999 200

199 6.913.
199,999

r

r

e

e r

−

−

+ =

= ⇒ =
 

  Thus 

6.913
200,000( ) .

1 199,999 tN t
e−

=
+

 

  To find t when N = 100,000: 

     100,000 = 6.913
200,000

1 199,999 te−+
 

       ⇓ 

  1+199,999e−6.913t  = 2,  e−6.913t = 1
199,999

, and  t = 1.77 weeks = 12.4 days. 

 (e) We assume the same population. Let tN > 0 be the time the article is published. 

  Let P = number of people who are aware of the counterrumor. 

  Let P0 be the number of people who became aware of the counterrumor at time tN. 

  (200,000 )dP aP P
dt

= −   P(tN) = P0, and a is a constant of proportionality. 
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 Semistable Equilibrium 

19. ( )21y y′ = −  

 We draw upward arrows on the y-axis for  

 1y ≠  

 to indicate the solution is increasing. When  

 1y =  

 we have a constant solution.  

 

–1

2
y

6
t

y = 1semistable equilibrium

 

  Because the slope lines have positive slope both above and below the constant solution 
( ) 1y t ≡ , we say that the solution ( ) 1y t ≡ , or the point 1, is semistable (stable from below, 

unstable from above). In other words, if a solution is perturbed from the value of 1 to a value 
below 1, the solution will move back towards 1, but if the constant solution ( ) 1y t ≡  is perturbed 

to a value larger than 1, it will not move back towards 1. Semistable equilibria are customarily 
noted with half-filled circles. 

 Gompertz Equation ( )1 lndy y b y
dt

= −  

20. (a) Letting lnz y=  and using the chain rule we get  

 1dz dz dy dy
dt dy dt y dt

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

 Hence, the Gompertz equation becomes 

 dz a bz
dt

= − . 

(b) Solving this DE for z we find 

 ( ) bt az t Ce
b

−= + . 

 Substituting back lnz y=  gives 

 ( ) bta b Cey t e e
−

= . 

 Using the initial condition ( ) 00y y= , we finally get 0ln aC y
b

= − . 

(c) From the solution in part (b), ( )lim a b

t
y t e

→∞
= when 0b > , ( )y t →∞  when 0b < . 
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 Fitting the Gompertz Law 

21. (a) From Problem 20,  

 ( ) bta b cey t e e
−

=  

 where 0ln ac y
b

= − . In this case ( )0 1y = , ( )2 2y = . We note ( ) ( )24 28 10y y≈ ≈  

means the limiting value a be  has been reached. Thus  

 10a be = , 

 so 

 ln10 2.3a
b
= ≈ . 

 The constant ln1 0 2.3 2.3ac
b

= − = − = − . Hence,  

 ( ) 2.310
btey t e

−−=  

 and 

 ( ) 22.32 10 2
bey e

−−= = . 

 Solving for b: 

 

( )

2

2

22.3 ln 1.609
10
1.609 0.6998

2.3
2 ln 0.6998 0.357

0.1785

b

b

e

e

b
b

−

−

− = ≈ −

≈ − ≈

− = ≈ −

≈

 

 and 2.3a b=  gives 0.4105a ≈ . 

 (b) The logistic equation 

1 yy ry
L

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

has solution 

( )

0
1 1 rt

Ly t
L e
y

−

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

. 

0

y

t12

10

24

logistic

Gompertz

y 2 2( ) =

y = 10

y 0 1( ) =
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 We have 10L =  and 0 1y = , so 

 ( ) 10
1 9 rty t

e−
=

+
 

 and  

 ( ) 2
102 2

1 9 ry
e−

= =
+

. 

 Solving for r 

 

2 109 1 4
2

42 ln 0.8109
9

0.8109 0.405.
2

re

r

r

− = − =

− = ≈ −

−
= ≈

−

 

 Autonomous Analysis 

22. (a) 2y y′ =  

(b) One semistable equilibrium at ( ) 0y t ≡

is stable from below, unstable from
above. 

 

–4

4
y

semistable equilibrium

4–4
t

23. (a) ( )1y y y′ = − −  

(b) The equilibrium solutions are ( ) 0y t ≡ , ( ) 1y t ≡ . The solution ( ) 0y t ≡  is stable. The 
solution ( ) 1y t ≡  is unstable. 

 –4

4
y

y = 1
y = 0 stable equilibrium

unstable equilibrium

4–4 t
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24. (a) 1 1y yy y
L M

⎛ ⎞⎛ ⎞′ = − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, ( )( )1 1 0.5y y y y′ = − − −  

(b) The equilibrium points are 0y = , L, M. 0y =  is stable. y M= is stable if M L>  and 
unstable if M L< . y L= is stable if M L<  and unstable if M L> . 

 

y

t

stable equilibrium
unstable equilibrium

stable equilibrium
y = 0
y = L
y = M

 

25. (a) y y y′ = −  

 Note that the DE is only defined for  

 0y ≥ . 

(b) The constant solution ( ) 0y t ≡ is stable, 
the solution ( ) 1y t ≡  is unstable. 

 

–4

4
y

–2 stable equilibrium

unstable equilibrium

y = 0 t
y = 1

2

26. (a) ( )21y k y′ = − , 0k >  

(b) The constant solution ( ) 1y t ≡  is semi-stable (unstable above, stable below). 

 –4

4
y

4–4
t

semistable equilibriumy = 1

 

27. (a) ( )2 24y y y′ = −  

(b) The equilibrium solution ( ) 2y t ≡  is stable, the solution ( ) 2y t ≡ −  is unstable and the 
solution ( ) 0y t ≡  is semistable. 
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 Stefan’s Law Again 

28. ( )4 4T k M T′ = −  

 The equation tells us that when  

 0 T M< < , 

 the solution ( )T T t=  increases because 0T ′ > ,

and when M T<  the solution decreases because
0T ′ < . Hence, the equilibrium point ( )T t M≡  is

stable. We have drawn the directional field of
Stefan’s equation for 3M = , 0.05k = . 

 

 

( )4 40.05 3dT T
dt

= −  

 To M>  gives solutions falling to M. 

 To M<  gives solutions rising to M. 

 These observations actions match intuition and experiment. 

 Hubbert Peak 

29. (a) From even a hand-sketched logistic 
curve you can graph its slope y′  and 

find a roughly bell-shaped curve for 
( )y t′ . Depending on the scales used, 

it may be steeper or flatter than the 
bell curve shown in Fig. 1.3.5. 
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 (b) For a pure logistic curve, the inflection 

point always occurs when 
2
Ly = . 

However, if we consider models 
different from the logistic model that 
still show similar solutions between 0 
and the nonzero equilibrium, it is 
possible for the inflection point to be 
closer to 0. When this happens oil 
recovery reaches the maximum 
production rate much earlier. 

 

  Of course the logistic model is a crude model of oil production. For example it 
doesn’t take into consideration the fact that when oil prices are high, many oil wells are 
placed into production. 

  If the inflection point is lower than halfway on an approximately logistic curve, the 
peak on the y′  curve occurs sooner and lower creating an asymmetric curve for y′ . 

(c) These differences may or may not be significant to people studying oil production; it 
depends on what they are looking for. The long-term behavior, however, is the same; the 
peak just occurs sooner. After the peak occurs, if the model holds, it is downhill insofar 
as oil production is concerned. Typical skew of peak position is presented on the figures 
above. 

 Useful Transformation 

30. ( )1y ky y′ = −  

 Letting  
1

yz
y

=
−

yields   

( )2
1

1
dz dz dy dy
dt dy dt dty

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠−⎝ ⎠

. 

 Substituting for dy
dt

 from the original DE yields a new equation 

 ( ) ( )21 1dzy ky y
dt

− = − , 

 which gives the result 

 
1

dz ky kz
dt y

= =
−

. 

inflection point for dashed  
                               y curve. 

inflection point for solid  
y curve. 



170     CHAPTER 2     Linearity and Nonlinearity 
 
 Solving this first-order equation for ( )z z t= , yields ( ) ktz t ce=  and substituting this in the 

transformation 
1

yz
y

=
−

, we get 
1

kty ce
y
=

−
. 

 Finally, solving this for y gives ( ) 1
1

1 1 ,
1 1kt kt

c

y t
e c e− −= =

+ +
 

 where 1
0

1 1c
y

= − . 

 Chemical Reactions 

31. ( )( )100 50x k x x= − −  

 The solutions for the given initial conditions
are shown on the graph. Note that all behaviors
are at equilibrium or flown off scale before

0.1t = !  

 

 The solution curve for ( )0 150x = is almost 

vertical. 

 

0

200
y

0.50
t

stable equilibrium

unstable equilibrium

 
Direction field and equilbrium 

 (a) A solution starting at ( )0 0x =  

increases and approaches 50. 

(b) A solution starting at ( )0 75x =  

decreases and approaches 50. 

(c) A solution starting at ( )0 150x =  

increases without bound. 

 

 

0

200
y

0.50
t

Solutions for three given initial conditions. 

 Noting the location of equilibrium and the direction field as shown in a second graph leads to the 
following conclusions: Any (0) 100x >  causes ( )x t  to increase without bound and fly off scale 
very quickly. On the other hand, for any ( ) ( )0 0,100x ∈  the solution will approach an equilibrium 

value of 50, which implies the tiniest amount is sufficient to start the reaction.  

  If you are looking for a different scenario, you might consider some other modeling 
options that appear in Problem 32. 
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 General Chemical Reaction of Two Substances ( ) ( ) ,m ndx k a x b x a b
dt

= − − <  

32. (a), (b) We consider the four cases when the exponents are even positive integers and/or odd 
positive integers. In each case, we analyze the sign of the derivative for different values 
of x. For convenience we pick 1a = , 2b = , k = 1.  

 

  • ( ) ( )even even1 2dx x x
dt

= − − . 

We have drawn a graph of dx
dt

 versus x. 

By drawing arrows to the right when  

dx
dt

 is positive  

and arrows to the left when  

dx
dt

 is negative,  

 

2 x1 3
semistable semistable

dx dt

 

Both even exponents 

 we have a horizontal phase line for ( )x t . We also see that both equilibrium solutions 

( ) 1x t ≡ , ( ) 2x t ≡  are unstable; although both are semistable; stable from below and 

unstable from above. 

 

  • ( ) ( )even odd1 2dx x x
dt

= − − . 

Here ( ) 1x t ≡  is unstable although it is 
stable from below. The solution ( ) 2x t ≡

is stable. 

 

2 x

1

–1

1 3
semistable

stable

dx dt

 
Even and odd exponents 
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  • ( ) ( )odd even1 2dx x x

dt
= − − . 

Here ( ) 2x t ≡  is semistable, stable from 

above and unstable from below. The
solution ( ) 1x t ≡  is stable. 

 

2 x

1

–1

1 3
stable

semistable

dx dt

 
Odd and even exponents 

 
  • ( ) ( )odd odd1 2dx x x

dt
= − − . 

Here the smaller of the two solutions, 
( ) 1x t ≡ , is stable; the larger solution,

( ) 2x t ≡ , is unstable. 

 

2 x

1

–1

1 3
stable unstable

dx dt

 
Both odd exponents 

 Solving the Threshold Equation 

33. 1 yy ry
T

⎛ ⎞′ = − −⎜ ⎟
⎝ ⎠

 

 Introducing backwards time tτ = − , yields 

 dy dy d dy
dt d dt d

τ
τ τ

= = − . 

 Hence, if we run the threshold equation 

 1dy yry
dt T

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 backwards, we get 

 1dy yry
d Tτ

⎛ ⎞− = − −⎜ ⎟
⎝ ⎠

. 

 Equivalently it also yields the first-order equation  

 1dy yry
d Tτ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 
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 which is the logistic equation with L T=  and t τ= . We know the solution of this logistic 

equation to be  

 ( ) ( )0
1 1 rT

y

Ty
e τ

τ
−

=
+ −

. 

 We can now find the solution of the threshold equation by replacing τ  by t− , yielding 

 ( ) ( )0
1 1 rtT

y

Ty t
e

=
+ −

. 

   

 Limiting Values for the Threshold Equation 

34. 1 yy ry
T

⎛ ⎞′ = − −⎜ ⎟
⎝ ⎠

 

(a) For 00 y T< <  as t →∞  the denominator of 

 ( ) ( )0
1 1 rtT

y

Ty t
e

=
+ −

 

 goes to plus infinity and so ( )y t  goes to zero. 

(b) For 0y T>  the denominator of 

 ( ) ( )0
1 1 rtT

y

Ty t
e

=
+ −

 

 will reach zero (causing the solution to “blow up”) when  

 
0

1 1 0rtT e
y

⎛ ⎞
+ − =⎜ ⎟
⎝ ⎠

. 

 Solving for t gives the location of a vertical asymptote on the ty graph 

 * 0

0

1 ln yt
r y T

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

. 
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 Pitchfork Bifurcation 

35. ( )3 2y y y y yα α′ = − = −  

(a) For 0α ≤  the only real root of ( )2 0y yα − =  is 0y = . Because  

( )2 0y y yα′ = − <  for 0y >   

 and 

 ( )2 0y y yα′ = − >  for 0y < ,  

 the equilibrium solution 0y =  is stable. 

 (b) When 0α >  the equation  

 ( )2 0y y yα′ = − =   

 has roots  

 0y = , α± .  

 The points y α= ±  are stable,
but 0y =  is unstable as illustrated

by graphing a phase line or
direction field of ( )21y y y′ = − − .

 (c) 

1 2–1

–1

–2

1

y

α
unstable equilibriastable equilibria

 
Pitchfork bifurcation at ( )0,  0  

 Another Bifurcation 

36. 2 1y y by′ = + +  

(a) We find the equilibrium points of the equation by setting 0y′ =  and solving for y. Doing 

this we get 

 
2 4

2
b by − ± −

= . 

 We see that for 2 2b− < <  there are no (real) solutions, and thus no equilibrium solutions. 
For 2b = −  we have the equilibrium solution +1, and for 2b = +  we have equilibrium 
solution –1. For each 2b ≥  we have two equilibrium solutions. 

(b) The bifurcation points are at 2b = −  and 2b = + . As b passes through –2 (increasing), the 

number of equilibrium solutions changes from 2 to 1 to 0, and when b passes through +2, 
the number of equilibrium solutions changes from 0 to 1 to 2. 
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(c) We have drawn some solution for each of the values 3b = − , –2, –1, 0, 1, 2, and 3. 

 

b = –3

1
t

unstable equilibrium

stable equilibrium

–3

3
y

 

 

b = –2

1
t

se

–3

3
y

 

 

1
t

–3

3
y b = –1

no equilibrium points

 

 

1
t

–3

3
y b = 0

no equilibrium points

 

1
t

–3

3
y b = 1

no equilibrium points

 

 

b = 2

1
t

sem

–3

3
y

 

1
t

–3

3
y

s

u

b = 3

  

(d) For 2b =  and 2b = −  the single equilibrium is semistable. (Solutions above are repelled; 
those below are attracted.) For 2b >  there are two equilibria; the larger one is unstable 
and the smaller one is stable. For 2b <  there are no equilibria. 

0 

0 

0 

0 

0 

semistable equilbrium0 
0 

unstable equilbrium

stable equilbrium 

semistable equilbrium
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 (e) The bifurcation diagram shows the loca-

tion of equilibrium points for y versus the 
parameter value b. Solid circles represent 
stable equilibria; open circles represent 
unstable equilibria. 

 

2 4–2

–2

–4

–4

2

4
y

t

unstable

unstablestable

stable

semistable

semistable

b

 

Equilibria of 2 1y y by′ = + +  versus b 

 Computer Lab: Bifurcation 

37. 2 1y ky y′ = + +  

(a) Setting 0y′ =  yields two equilibria,  

 1 1 4
2e

ky
k

− ± −
=  

 for 1
4

k < ; none for 1
4

k > ; one for 1
4

k = .  

(b) The following phase-plane graphs illustrate the bifurcation. 
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38. 2y y y k′ = + +  

(a) Setting 0y′ =  yields two equilibria,  

 1 1 4
2e

ky − ± −
= ,  

 for 1
4

k < ; none for 1
4

k > ; one for 1
4

k = .  

(b) The following phase-plane graphs illustrate the bifurcation. 

  

–4

4
y

4–4
t

k = 1

no equilibrium points

 

  

–4

4
y k = 1/4

semistable equilibrium4–4
t

 

  

–4

4
y

4–4
t

k = –1

stable equilibrium

unstable equilibrium

  

 



178     CHAPTER 2     Linearity and Nonlinearity 
 

 Computer Lab: Growth Equations 

39. 1 yy ry
L

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

 We graph the direction field of this equation for 1L = , 0.5r = , 1, 2, and 5. We keep L fixed 
because all it does is raise or lower the steady-state solution to y L= . We see that the larger the 

parameter r, the faster the solution approaches the steady-state L. 

 

r = 0.5

stable equilibrium

unstable equilibrium

2
y

3–1
t

 

 

r = 1

stable equilibrium

unstable equilibrium

2
y

3–1
t

 

 

r = 2

stable equilibrium

unstable equilibrium

2
y

3–1
t

 

 continued on next page 
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unstable equilibrium

r = 3

stable equilibrium

unstable equilibrium

2
y

3–1
t

 

40. 1 yy r y
T

⎛ ⎞′ = − −⎜ ⎟
⎝ ⎠

 

 See text Figure 2.5.9. 

 The parameter r governs the steepness of the solution curves; the higher r the more steeply y 
leaves the threshold level T. 

41. ln1 yy r y
L

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

 Equilibrium at Ly e= ; higher r values give 

steeper slopes. 

 
 
 

 

 

 

42. ty re yβ−′ =  

 For larger β or for larger r, solution curves fall 
more steeply. Unstable equilibrium 1r = , 1β =  

 

–100

100
y

2–2
t

 

 Suggested Journal Entry 

43. Student Project 
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2.6 
 
Systems of DEs: A First Look  

 

 Predicting System Behavior 

1. (a) 
3

x y
y x y
′ =
′ = −

 

 This (linear) system has one equilibrium point at the origin, ( ) ( ), 0, 0x y = , as do all 

linear systems. The υ- and h-nullclines are respectively, as shown in part (b). 

 (b) 

h

–2

2
y

2–2
x

-nullcline
υ -nullcline

 

 (c) A few solutions along with the vertical
and horizontal nullclines are drawn. 

 

–2

2
y

2–2
x

 

(d) The equilibrium point (0, 0) is unstable. 

  All solutions tend quickly to 
3
xy =  then move gradually towards +∞  or −∞  

asymptotically along that line. Whether the motion is left or right depends on the initial 
conditions. 

2. (a) 
2

1x x y

y x y

′ = − −

′ = −
 

 Setting 0x′ =  and 0y′ =  gives 

 2

-nullcline 1 0

-nullcline 0.

x y

h x y

υ − − =

− =
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 From the intersection of the two nullclines we find two equilibrium points shown in the 
following figures. We can locate them graphically far more easily than algebraically! 

 (b) 

2–2
x

–2

2
y

h -nullclineυ  -nullcline

 

 (c) 

2–2
x

–2

2
y

 

(d) The lower equilibrium point at  

 21 1(1 5) , ( 1 5)
4 2
⎡ ⎤+ − −⎢ ⎥⎣ ⎦

  

 is unstable and the upper equilibrium at  

 21 1(1 5) , ( 5 1)
4 2
⎡ ⎤− −⎢ ⎥⎣ ⎦

  

 is stable. 

  Most trajectories spiral counterclockwise toward the first quadrant equilibrium 
point. However, if the initial condition is somewhat left or below the 4th quadrant 
equilibrium, they shoot down towards −∞ . We suspect a dividing line between these 
behaviors, and we will find it in Chapter 6. 

3. (a) 
2 2

1

1

x x y

y x y

′ = − −

′ = − −
 

 Setting 0x′ =  and 0y′ =  gives 

 
2 2-nullcline 1

-nullcline 1.
h x y

x yυ
+ =
+ =

 

 From the intersection of the two nullclines we find two equilibrium points (0, 1), (1, 0). 
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 (b) 

2–2
x

–2

2
y

h-nullcline υ -nullcline

 

(c) 

2–2
x

–2

2
y

 

(d) The equilibrium at (1, 0) is unstable; the equilibrium at (0, 1) is stable. Most trajectories 
seem to be attracted to the stable equilibrium, but those that approach the lower unstable 
equilibrium from below or form the right will turn down toward the lower right. 

4. 
2 2

x x y
y x y
′ = +
′ = +

 

 (a) This (singular) system has an entire line
of equilibrium points on the line  

 0x y+ = . 

(b) The direction field and the line of unsta-
ble equilibrium points are shown at the
right.  

(c) We superimpose on the direction field a
few solutions. 

 

–2

2
y

2–2
x

 

(d) From part (c) we see the equilibrium points on the line 0x y+ =  are all unstable. 

  All nonequilibrium trajectories shoot away from the equilibria along straight 
lines (of slope 2), towards +∞  if the IC is above the line 0x y+ =  and toward −∞  if the 
IC is below 0x y+ = . 

5. (a) 
2 2

4

3

x x y

y x y

′ = − −

′ = − −
 

 Setting 0x′ =  and 0y′ =  gives the intersection of the nullclines: 

 
2 2-nullcline 3

-nullcline 4 .
h x y

y xυ
+ =

= −
 

 We find no equilibria because the nullclines do not intersect. 
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 (b) 

–4

4
y

4–4
x

h-nullcline υ -nullcline

 

 (c) 

–4

4
y

4–4
x

 

(d) There are no equilibria—all solutions head down to lower right. 

6. (a) 
5 3

x y
y x y
′ =
′ = +

 

 This (linear) system has one equilibrium point at ( ) ( ), 0, 0x y =  as do all linear systems. 

The 64-dollar question is: Is it stable? The υ- and h-nullclines: 0y = , 5 3 0x y+ = , are 

shown following and indicate that the origin (0, 0) is unstable. Hence, points starting near 
the origin will leave the origin. We will see later other ways for showing that (0, 0) is 
unstable. 

 (b) 

–2

2
y

2–2
x

h-nullcline

υ -nullcline
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 (c) The direction field and a few solutions

are drawn. Note how the solutions cross
the vertical and horizontal nullclines 

 

–2

2
y

2–2
x

 

(d) We see from the preceding figure that solutions come from infinity along a line (that is, 
not a nulllcline), and then if they are not exactly on the line head off either upwards and 
to the left or downwards and go to the left on another line. Whether they go up or down 
depends on whether they initially start above or below the line. It appears that points that 
start exactly on the line will go to (0, 0). We will see later in Chapter 6 when we study 
linear systems using eigenvalues and eigenvectors that the solutions come from infinity 
on one eigenvector and go to infinity on another eigenvector. 

7. (a) 1x x y
y x y

′ = − −

′ = −
 

 Setting 0x y′ ′= =  and finding the intersection of the nullclines: 

 
-nullcline
-nullcline 1

h y x
y xυ

=
= −

 

 we find one equilibrium point 1 1,  
2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The arrows indicate that it is a stable equilib-

rium. 

 (b) 

2–2
x

–2

2
y

 

(c) 

2–2
x

–2

2
y

 

(d) The equilibrium is stable; all other solutions spiral into it. 
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8. (a) 2x x y
y x
′ = +
′ =

 

 This (linear) system has one equilibrium point at the origin (0, 0), as do all linear 
systems. The υ- and h-nullclines: 2 0x y+ = , 0x = , are shown in part (b) and indicate 

that the origin (0, 0) is unstable. We will see later other ways to show that the system is 
unstable. 

 (b) 

–2

2
y

2–2
x

h-nullcline

υ -nullcline

(c) 

–2

2
y

2–2
x

 

(d) The equilibrium point (0, 0) is unstable. Other solutions come from upper left or the 
lower right, heading toward origin but veers off towards ±∞  in the upper right or lower 
left. 

 Creating a Predator-Prey Model 

9. (a) dR
dt

 = 0.15R − 0.00015RF 

  dF
dt

 = −0.25F + 0.00003125RF 

 The rabbits reproduce at a natural rate of 15%; their population is diminished by meetings 
with foxes. The fox population is diminishing at a rate of 25%; this decline is mitigated 
only slightly by meeting rabbits as prey. Comparing the predator-prey rates in the two 
populations shows a much larger effect on the rabbit population, which is consistent with 
the fact that each fox needs several rabbits to survive. 

 (b) dR
dt

 = 0.15R − 0.00015RF − 0.1R = 0.05R − 0.00015RF 

  dF
dt

 = −0.25F + 0.00003125RF − 0.1F = −0.35F + 0.00003125RF 

 Both populations are diminished by the harvesting. The equilibrium populations move 
from (8000, 1000) in Part (a) to (11200, 333) in Part (b), i.e., more rabbits and fewer 
foxes if both populations are harvested at the same rate. Figures on the next page. 
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 In figures, x and y are measured in thousands. Note that the vertical axes have different 

scales from the horizontal axes. 

        
  9(a)  Equilbrium at (8, 1)  9(b) Equilbrium at (11.2, 0.3) 

 

 Sharks and Sardines with Fishing 

10. (a) With fishing the equilibrium point of the system  

 
( )
( )

x x a by f

y y c dx f

′ = − −

′ = − + −
 

 is  

 
.

e

e

c f c fx
d d d

a f a fy
b b b

+
= = +

−
= = −

 

 With fishing we increase the equilibrium of the prey ex  by f
d

 and decrease the equilib-

rium of the predator ey  by f
b

. 
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   Using the parameters from Ex-
ample 3 we set  

2a = , 1b = , 3c = , 0.5d = ;  

the new equilibrium point of the fished
model is 

6 2

2 .

e

e

c f c fx f
d d d

a f a fy f
b b b

+
= = + = +

−
= = − = −

 

 

0

4
y

150
x

 

Shark (y) and sardine (x) trajectories 

 The trajectories are closed curves representing periodic motion of both sharks and 
sardines. The trajectories look like the trajectories of the unfished case in Example 3 
except the equilibrium point has moved to the right (more prey) and down (fewer 
predators). 

(b) With the parameters in part (a) and 0.5f =  the equilibrium point is (7, 1.5). This 

compares with the equilibrium point (6, 2) in the unfished case. 

   As the fishing rate f increases 
from 0 to 2, the equilibrium point moves
along the line from the unfished equilib-
rium at (6, 2) to (10, 0). Hence, the fish-
ing of each population at the same rate
benefits the sardines (x) and drives the 
sharks (y) to extinction. This is illustrated 
in the figure. 

 

84

y

x1262 10

2 (6, 2)

(10, 0)

(sharks)

(sardines)

1

(7, 1.5)

 

(c) You should fish for sardines when the sardine population is increasing and sharks when 
the shark population is increasing. In both cases, more fishing tends to move the 
populations closer to equilibrium while maintaining higher populations in the low parts 
of the cycle. 

(d) If we look at the insecticide model and assume both the good guys (predators) and bad 
guys (prey) are harvested at the same rate, the good guys will also be diminished and the 
bad guys peak again. As 1f →  (try 0.8f = ) the predators get decimated first, then the 

prey can peak again. If you look at part (a), you see that the predator/prey model does not 
allow either population to go below zero, as the x- and y-axes are solutions and the 
solutions move along the axes, thus it is impossible for other solutions to cross either of 
these axes. You might continue this exploration with the IDE tool, Lotka-Volterra with 
Harvest, as in Problem 24. 
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 Analyzing Competition Models 

11. (1200 2 3 )dR R R S
dt

= − − ,  (500 )dS S R S
dt

= − −  

 Rabbits are reproducing at the astonishing rate of 1200 per rabbit per unit time, in the absence of 
competition. However, crowding of rabbits decreases the population at a rate double the 
population. Furthermore, competition by sheep for the same resources diminishes the rabbit 
population by three times the number of sheep! 

 Sheep on the other hand reproduce at a far slower (but still astonishing) rate of 500 per sheep per 
unit time. Competition among themselves and with rabbits diminishes merely one to one with the 
number of rabbits and sheep. 

 Equilibria occur at 
0 0 600 300

, , ,  and 
0 500 0 200
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

 The equilibria on the axes that are not the origin are the points toward which the populations 
head. Which species dies out depends on where they start. See Figure, where x and y are 
measured in hundreds. 

 

12. (1200 3 2 )dR R R S
dt

= − −  

 (500 )dS S R S
dt

= − −  

 The explanations of the equations are the same as those in Problem 11 except that the rabbit 
population is affected more by the crowding of its own population, less by the number of sheep. 

 Equilibria occur at 
0 0 400 200

, , ,  or 
0 500 0 300
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 
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 In this system the equilibria on the axes are all unstable, so the populations always head toward a 

coexistence equilibrium at 
200
300
⎡ ⎤
⎢ ⎥
⎣ ⎦

.  See Figure, where x and y are measured in hundreds. 

 

 Finding the Model  

Example of appropriate models are as follows, with real positive coefficients. 

13. 
2x ax bx dxy fx

y cy dxy
′ = − − −
′ = − +

 14. 

2

x ax bxy
y cy dxy eyz

z fz gx hyz

′ = +
′ = − +

′ = − −

 

15. 
2

2

x ax bx cxy dxz

y ey fy gxy
z hz kxz

′ = − − −

′ = − +
′ = − +

 
  

 Host-Parasite Models 

16. (a) A suggested model is  

 1
HH aH c

P
P bP dHP

′ = −
+

′ = − +
 

 where a, b, c, and d are positive parameters. Here a species of beetle (parasite) depends 
on a certain species of tree (host) for survival. Note that if the beetle were so effective as 
to wipe out the entire population of trees, then it would die out itself, which is reflected in 
our model (note the differential equation in P). On the other hand, in the absence of the 
beetle, the host tree may or may not die out depending on the size of the parameters a and 
c. We would probably pick a c> , so the host population would increase in the absence of 

the parasite. Note too that model says that when the parasite (P) population gets large, it 
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will not destroy the host entirely, as 
1

H
P+

 becomes small. The modeler might want to 

estimate the values of parameters a, b, c, d so the solution fits observed data. The modeler 
would also like to know the qualitative behavior of ( ),P H  in the PH plane. 

 Professor Larry Turyn of Wright State University argues for a different model, 

CHH
HP

′ = − , 

 to better account for the case of very small P. 

(b) Many bacteria are parasitic on external and internal body surfaces; some invading inner 
tissue causing diseases such as typhoid fever, tuberculosis, and pneumonia. It is 
important to construct models of the dynamics of these complex organisms. 

 Competition 

17. (a) (4 2 )
(4 2 )

x x x y
y y x y
′ = − −
′ = − −

 

Setting 0x′ =  and 0y′ =  we find  

-nullclines 2 4,  0
-nullclines 2 4,  0.

x y x
h x y y
υ + = =

+ = =
 

Equilibrium points: (0, 0), (0, 2), (2, 0), 
4 4,  
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The directions of the solution

curves are shown in the figure. 

 

50
x

y

 

(b) It can be seen from the figure, that the equilibrium points (0, 0), (0, 2) and (2, 0) are 

unstable. Only the point 4 4,  
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is stable because all solution curves nearby point 

toward it. 

(c) Some solution curves are shown in the figure. 

(d) Because all the solution curves eventually reach the stable equilibrium at 4 4,  
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

, the 

two species described by this model can coexist. 
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18. (a) (1 )
(2 )

x x x y
y y x y
′ = − −
′ = − −

 

Setting 0x′ =  and 0y′ =  we find  

-nullclines 1,  0
-nullclines 2,  0.

x y x
h x y y
υ + = =

+ = =
 

Equilibrium points: (0, 0), (0, 2), (1, 0). 
The directions of the solution curves are 
shown in the figure. 

 

30
x

y

 

(b) It can be seen from the figure, that the equilibrium points (0, 0) and (1, 0) are unstable; 
the point (0, 2) is stable because all solution curves nearby point toward it. 

(c) Some solution curves are shown in the figure. 

(d) Because all the solution curves eventually reach the stable equilibrium at (0, 2), the x 
species always die out and the two species described by this model cannot coexist. 

19. (a) (4 2 )
(1 2 )

x x x y
y y x y
′ = − −
′ = − −

 

Setting 0x′ =  and 0y′ =  we find  

-nullclines 2 4,  0
-nullclines 2 1,  0.

x y x
h x y y
υ + = =

+ = =
 

Equilibrium points: (0, 0), (0, 1), (4, 0). 
The directions of the solution curves are
shown in the figure. 

 

50
x

y

 

(b) It can be seen from the figure, that the equilibrium points (0, 0) and (0, 1) are unstable; 
the point (4, 0) is stable because all solution curves nearby point toward it. 

(c) Some solution curves are shown in the figure. 

(d) Because all the solution curves eventually reach the stable equilibrium at (4, 0), the y 
species always die out and the two species described by this model cannot coexist. 
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20. (a) (2 2 )
(2 2 )

x x x y
y y x y
′ = − −
′ = − −

 

Setting 0x′ =  and 0y′ =  we find  

-nullclines 2 2,  0
-nullclines 2 2,  0.

x y x
h x y y
υ + = =

+ = =
 

Equilibrium points: (0, 0), (0, 2), (2, 0), 
2 2,  
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The directions of the solution

curves are shown in the figure. 

 

30
x

y

 

(b) It can be seen from the figure, that the equilibrium points (0, 0) and 2 2,  
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are unstable; 

the points (0, 2) and (2, 0) are stable because all nearby arrows point toward them. 

(c) Some solution curves are shown in the figure. 

(d) Because all the solution curves eventually reach one of the stable equilibria at (0, 2) or 
(2, 0), the two species described by this model cannot coexist, unless they are exactly at 

the unstable equilibrium point 2 2,  
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Which species dies out is determined by the 

initial conditions. 

 Simpler Competition 

21. ( )x x a by′ = −  

 ( )y y c dx′ = −  

 Setting 0x′ = , we find the υ-nullclines are the vertical line 0x =  and the horizontal line ay
b

= . 

Setting 0y′ = , we find the h-nullclines are the horizontal 0y =  and vertical line cx
d

= . The 

equilibrium points are (0, 0) and ,  c a
d b

⎛ ⎞
⎜ ⎟
⎝ ⎠

. By observing the signs of x′ , y′  we find 

 0, 0x y′ ′> >  when ,c ax y
d b

< <  

 0, 0x y′ ′< <  when ,c ax y
d b

> >  

 0, 0x y′ ′< >  when ,c ax y
d b

> <  

 0, 0x y′ ′> <  when ,c ax y
d b

< >  
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 Hence, both equilibrium points are unstable. We
can see from the following direction field (with

1a b c d= = = = ) that one of two species,

depending on the initial conditions, goes to 
infinity and the other toward extinction. 

 

 

2

4
y

x4

2

 

 One can get the initial values for these curves directly from the graph. 

 Nullcline Patterns 

22. (a–e) When the υ-nullcline lies above the h-nullcline, there are three equilibrium points in the 

first quadrant: (0, 0), ,  0 d
f

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and ,  0a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The points (0, 0), ,  0 d
f

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are unstable and 

,  0a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is stable. Hence, only population x survives. 

 (a)–(b) y

x

a/c

d/f

d/e a/b

h-nullcline
υ -nullcline

 

Nullclines and equilibria 

(c)–(d) y

x

a/c

d/f

d/e a/b

h-nullcline

υ -nullcline

 

Sample trajectories when the  
υ-nullcline is above the h-nullcline 
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23. (a–e) When the h-nullcline lies above the υ-nullcline, there are three equilibrium points in the 

first quadrant: (0, 0), ,  0a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and ,  0 d
f

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The points (0, 0), ,  0a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are unstable and 

,  0 d
f

⎛ ⎞
⎜ ⎟
⎝ ⎠

 stable. Hence, only population y survives. 

 (a)–(b) y

xa/b d/e

d/f

a/c
h-nullclineυ -nullcline

 

Nullclines 

(c)–(d) y

x

d/f

a/c

a/b d/e

h-nullclineυ -nullcline

 

Sample trajectories when the  
h-nullcline is above the υ-nullcline 

24. (a–e) When the two nullclines intersect as they do in the figure, then there are four equilibrium 

points in the first quadrant: (0, 0), ,  0a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

, ,  0 d
f

⎛ ⎞
⎜ ⎟
⎝ ⎠

, and ( ),e ex y , where ( ),e ex y  is the 

intersection of the lines bx cy a+ = , ex fy d+ = . Analyzing the sign of the derivatives in 
the four regions of the first quadrant, we find that ( ),e ex y  is stable and the others 

unstable. Hence, the two populations can coexist. 

 (a)–(b) y

x

d/f

a/b d/e

a/c

h-nullcline

υ -nullcline

 

Nullclines and equilibria 

(c)–(d) y

x

a/c

d/f

a/b d/e

h-nullcline

υ -nullcline

 

Typical trajectories when the nullclines 
intersect and the slope of the vertical 

nullcline is more negative. 
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25. (a–e) When the two nullclines intersect as they do in the figure, then there are four equilibrium 

points in the first quadrant: (0, 0), ,  0a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

, ,  0 d
f

⎛ ⎞
⎜ ⎟
⎝ ⎠

, and ( ),e ex y , where ( ),e ex y  is the 

intersection of the lines bx cy a+ = , ex fy d+ = . Analyzing the sign of the derivatives in 

the four regions of the first quadrant, we find ,  0a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and ,  0 d
f

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are stable and the 

other two unstable. Hence, only one of the two populations survives, and which survives 
depends on the initial conditions.  See Figures.  For initial conditions in the upper region 
y survives; for initial conditions in the lower region, x survives. 

 (a)–(b) y

x

a/c

d/e a/b

d/f

h-nullcline

υ -nullcline

 

Nullclines and equilibria 

(c)–(d) y

x

d/f

a/c

d/e a/b

h-nullcline

υ -nullcline

 

Typical trajectories when the nullclines 
intersect and the slope of the h-nullcline 

is more negative. 

 Unfair Competition 

26. ( )1x ax bx cxy
y dy exy

′ = − −

′ = −
 

 Setting 0x y′ ′= = , we find three equilibrium points:  

 ( )0, 0 , 1 ,  0
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

, and ,  d e bda
e ce

−⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 The point (0, 0) corresponds to both populations becoming extinct, the point 1 ,  0
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 corresponds 

to the second population becoming extinct, and the point ,  d e bda
e ce

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 corresponds to either a 

stable coexistent point or an unstable point. If we take the special case where 1 d
b e
> , e.g.,  

 
( )1

0.5
x x x xy
y y xy

′ = − −

′ = −
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 where 1a b c e= = = = , 0.5d = , we have the equilibrium points (0, 0), (1, 0), and (0.5, 0.5). If we 

draw two nullclines; v-nullcline: 1y x= − , h-nullcline: 0.5x = , as shown following we see that 

the equilibrium point (0.5, 0.5) is unstable. Hence, the two species cannot coexist. 

 

1.50
x0

1.5
y

d/e 1/b

h-nullcline

υ -nullcline

 

Nullclines and equilibria for 1 d
b e
>  

 

1.50
x0

1.5
y

d/e 1/b  

Sample trajectories for 1 d
b e
>  

 The reader must check separately the cases where 1 d
b e
=  or 1 d

b e
< . 

 Basins of Attraction 

27. Adding shading to the graph obtained in Problem 2 
shows the basis of the stable equilibrium at 

 ( ) ( )21 11 5 , 5 1 (0.38,0.60).
4 2

⎛ ⎞− − ≈⎜ ⎟
⎝ ⎠
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28. Adding shading to the graph obtained in Problem 3 
shows the basis of the stable equilibrium at 

 (0, 1). 

 

 

 

 

 

29. Adding shading to the graph obtained in Problem 18 
shows that the entire first and second quadrants are the 
basin of attraction for the stable equilbrium at  

 (0, 2). 

 

 

 

 

 

30. The graph obtained in Problem 21 has no stable 
equilibrium, but we say that there are three basins:  

 For x > y and y > 0, trajectories are attracted 
to (0, ∞). 

 For x > 0 and x < y, trajectories are attracted 
to (∞, 0). 

 For x < 0 and y < 0, trajectories are attracted 
to (−∞, −∞). 
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 Computer Lab: Parameter Investigation 

31. Hold three of the parameters constant and observe how the fourth parameter affects the behavior 
of the two species. See if the behavior makes sense in your understanding of the model. Keep in 
mind that parameter Ra  is a measure of how well the prey grows in the absence of the predator 
(large Ra  for rabbits), Fa  is a measure of how fast the predator population will decline when the 
prey is absent (large Fa  if the given prey is the only source of food for the predator), Rc  is a 
measure of how fast the prey’s population declines per number of prey and predators, and Fc  is a 

measure of how fast the predator’s population increases per number of prey and predators. Even 
if you are not a biology major, you may still ponder the relative sizes of the four parameters in the 
two predator–prey systems: foxes and rabbits, and ladybugs and aphids. You can use these 
explanations to reach the same conclusions as in Problem 9. 

 Computer Lab: Competition Outcomes 

32. (a) Using the IDE software, hold all parameters fixed except one and observe how the last 
parameters affects the solution. See if the behavior of the two species makes sense in 
your understanding of the model. Play a mind game and predict if there will be 
coexistence between the species, whether one becomes extinct, and so on, before you 
make the parameter change. 

  Note that in the IDE tool, Competitive Exclusion, there are six parameters; 1K , 

1B , 1r , 2K , 2B , and 2r . The parameters in our text called Ra , Rb , Rc , Fa , Fb , and Fc  

and enter the equations slightly differently. The reason for this discrepancy is due to the 
way the parameters in the IDE software affect the two isoclines, called the 1N  and 2N  

isoclines in the IDE software. 

  By changing the parameters 1K  and 2K  in the IDE software, you simply move 
the respective isoclines in a parallel direction. The parameters 1B , 2B  change the slopes 
of the nullclines. And finally, the parameters 1 2,r r  do not affect the nullclines, but affect 

the direction field or the transient part of the solution. 

  Your hand-sketched phase plane for the four cases should qualitatively look like 
the following four pictures, with the basins of attraction colored for each equilibrium. 
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0

3
y

50
x

 

Case 1: Population x dies out 
( )
( )
1

2

x x x y

y y x y

′ = − −

′ = − −
 

0

3
y

50
x

 

Case 2: Population y dies out 
( )
( )
4 2

1 2

x x x y

y y x y

′ = − −

′ = − −
 

 

 

20
x0

2
y

 

Case 3: Populations coexist 
( )
( )
2 2

2 2

x x x y

y y x y

′ = − −

′ = − −
 

20
x0

2
y

 

Case 4: One of the populations dies out 
( )
( )
2 2

2 2

x x x y

y y x y

′ = − −

′ = − −
 

  Of the four different scenarios to the competitive model, in only one (Case 3) can 
both species coexist. In the other three cases one of the two dies out. In Case 4 the species 
that dies out depends on the initial conditions, and in Case 1 and 2 one species will die 
out regardless of the initial condition. Note too that in all four cases if one population 
initially starts at zero, it remains at zero. 
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(b) The basins of attraction for each stable equilibrium are shown for each of the four cases. 
Compare with the figures in part (a). 

 y

x  

Case 1 

y

x  

Case 2 

 
 y

x  

Case 3 

y

x  

Case 4 

 Suggested Journal Entry 

33. Student Project 



CAS Project 2A Heating and Cooling: Transient and Steady-State Solutions

In this project you will use your CAS to study solution curves when Newton’s Law of Cooling is used to
model temperature changes inside a house. A useful solution formula is derived and then used to illustrate
the notions of transient and steady-state temperature and the time constant associated with the model.
Using Maple the relevant concepts and commands are function definitions and fine tuning of plots.

User defined functions
A function f is defined using the arrow construct as in f := x -> x*sin(x) which defines
f(x) = x sinx. One can also use the unapply command to convert, say, an expression
named “Harry” into a function of x named “f” as in f := unapply( Harry, x) which
constructs f(x) = Harry.

Newton’s Law of Cooling models temperature change using the differential equation y′(t) = k[A(t) − y(t)].
Here y(t) is the temperature inside the house at time t and A(t) is the ambient temperature, i.e. the
temperature outside the house. The letter k represents a positive constant. If there is a heat source (or sink)
in the house that causes a change in the temperature at the rate H(t) the model is

y′(t) = k[A(t)− y(t)] + H(t).

The Solution Formula. This is a linear equation:

y′(t) + ky(t) = kA(t) + H(t).

The integrating factor is µ = ekt so, after multiplying the model equation by ekt, it simplifies to

d

dt

[
ekty(t)

]
= ekt

[
kA(t) + H(t)

]
.

Integrate with respect to t to obtain

ekty(t) =
∫

ekt
[
kA(t) + H(t)

]
dt + C

and the general solution is

y(t) = Ce−kt + e−kt

∫
ekt

[
kA(t) + H(t)

]
dt.

For our purposes it will be convenient to make the antiderivative explicit and write the general solution in
the form y(t) = Ce−kt +

∫ t

0
e−k(t−τ)

[
kA(τ) + H(τ)

]
dτ . This is especially nice because substitution of t = 0

reveals that C = y(0). Denoting y(0) as y0 we have arrived at a solution formula that is as useful as it is
beautiful.

y(t) = y0e
−kt +

∫ t

0

e−k(t−τ)
[
kA(τ) + H(τ)

]
dτ.

The Time Constant. The first term in the solution formula is there to satisfy the initial condition. It is
referred to as a transient term because every 1/k seconds it decreases by 37% (e−1 = 0.368). In 5 · 1

k seconds
this term will be less than 0.7% of its initial value, eventually disappearing altogether. The number 1/k is
called the time constant. In any plot the transients in the solution will disappear in about 5 · 1

k seconds.

Example. It’s a cold winter evening. At midnight the house temperature is 25◦ F. Assume that the outside
temperature varies daily from a low of 15◦ at midnight to a high of 35◦ at 12 noon. The furnace is set to
cycle on and off periodically providing enough heat to make the temperature inside the house increase at
the rate of 12◦ an hour at midnight and at the rate of 4◦ an hour at noon. Use the solution formula derived
above to obtain plots of the inside temperature over a 72 hour period beginning at 12 midnight (t = 0).
Assume that k = 0.2.

The first entry defines the functions A(t) and H(t) and plots them over a 24 hour period.



> A := t -> 25 - 10*cos(2*Pi*t/24):
H := t -> 8 + 4*cos(2*Pi*t/24):
plot( [A(t),H(t)], t=0..24, 0..40, color=[blue,red], thickness=[2,1],

tickmarks=[[4*n $ n=0..6],[5*n $ n=0..8]] );

0

201612

10

84

30

0

t

5

35

24

25

15

40

20

The ambient temperature is the upper (blue) curve. The lower (red) curve
is the rate of change of the inside temperature over a 24 hour time period.

Now define y0 and k and evaluate the solution formula. The unapply command makes the solution ex-
pression into the function y. The solution formula is then displayed using 3 digit approximations for the
constants. The graph of the inside temperature follows. We have also included the graph of the outside
temperature and the curve showing the furnace’s contribution to rate of change of y(t).

> y0 := 25: k := 0.2:
> y0*exp(-k*t) + int(exp(-k*(t-tau))*(k*A(tau) + H(tau)),tau=0..t):
y := unapply(%,t): #The percent sign refers to the last output.
’y(t)’ = evalf[3](y(t));

y(t) = 25e−0.2t − 68.7e−0.200t + 65.0 + 3.69 cos(0.262t) + 4.84 sin(0.262t)

> plot( [y(t),A(t),H(t)], t=0..72, 0..80, color=[green,blue,red],
thickness=[2,2,1], tickmarks=[[4*n $ n=0..18],[10*n $ n=0..8]]);

4

70

60

20

48 646012 4024
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40
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0
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t

44320
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56 68

50

725236

30

208

The highest (green) curve is y(t), the temperature inside the house at time t.
The middle (blue) and lowest (red) curves are as above.

Observe that

� Integration produced another transient in the solution formula. It is also there to accommodate initial
conditions and has the same time constant: 1

0.2 = 5 hours. The transients vanish in about 25 hours.

� The terms that remain after the transients are gone are referred to as the steady-state terms in the
solution. In this example we see a sinusoid oscillating around 65◦ with an amplitude of

√
3.692 + 4.842 =

6.07. Thus the inside steady-state temperature varies from a high of 71◦ at hour 28 (4 AM) to a low
of 59◦ 12 hours later (4 PM).

Things for you to do.

1. Get the code working. The cycling of the furnace was set up to make the house warm quickly.

a) It is clear from the solution curve that once steady-state is attained, the house will be too warm



at night and too cold during the day. Change the furnace cycle to start at 4◦ per hour at
midnight (t = 0) and cycle to 12◦ per hour at noon. Comment on the effect this has on the house
temperature, both transient and steady-state.

b) Experiment with the timing of the furnace cycling (always between 12 and 4 degrees per hour) to
attain a steady-state house temperature that is maximum close to 12 noon and minimum close to
12 midnight. Are the maximum and the minimum values for y(t) always the same? Hint. This
process will require a time shift in the formula for H(t).

2. Change the initial house temperature to 70◦. What effect does this change have on the steady-state
temperature? What effect does it have on the time it takes for y(t) to reach steady-state?

3. Return to y0 = 25 and the original H(t). There are furnace cycling parameters (max/min) that
yield a constant steady-state house temperature. They can be found experimentally or by making
a careful analysis of the integral formula for the solution that is obtained by substituting H(t) =
8 + b0 cos(2πt/24). Find these parameters and display the solution curve.

4. Try to obtain a furnace schedule that will bring the house to a constant temperature of 68 degrees. Do
it by experimentation (CAS), then verify by obtaining the solution formula for this cycling schedule
(paper and pencil).

5. Explore solution curves when the ambient temperature has a varying average value. That is, A(t) =
a(t)− 10 cos(2πt/24) for some function a(t). For example, start by assuming that a(t) is increasing at
the rate of 2 degrees per day: a(t) = 25 + 2

24 t. What effect does this have on the behavior of y(t)?



CAS Project 2B Growth Equations and Bifurcations

In this project you will use your CAS to study growth equations and the effect of parameters on the solutions
of first-order, non-linear equations. See Exercises 35–42 in Section 2.5 of the text. Using Maple the relevant
concepts and commands are

DEplot
The procedure that draws direction fields and numerically generated solution curves. See
CAS Project 1A.

for..do loops
Simple looping constructs can be made easily. The data that is created in a for..do loop
can be stored in a table. The syntax is self-explanatory.

dsolve
The command that finds symbolic solutions for a differential equation and numeric solutions
for an initial value problem. See CAS Project 1B.

Example 1. Consider the Gompertz growth equation y′ = r
(
1 − ln y

L

)
y. Use direction fields and solution

curves to determine the significance of the parameters r and L. Obtain a symbolic solution, if possible.

Observe that y(t) > 0 for all t. It can be seen by inspection that there is one equilibrium solution, y(t) ≡ eL.
Thus the value of the parameter L determines the position of the equilibrium. We investigate the effect
of the parameter r by examining the direction fields and solution curves corresponding to y(0) = 0.25 and
y(0) = 5 when r = 1 and when r = 0.5. In both cases, L = ln 3, so y(t) ≡ 3 is the equilibrium solution.

The first entries below load the DEplot package, define the DE, then define L and r for the first plot. The
second plot was created after changing r to 0.5. The two plots are placed side by side for easy comparison.
From the graph we see that the value of r determines the rate at which the solutions approach the equilibrium
point.

> with(DEtools):
> DE := diff(y(t),t) = r*(1-ln(y(t))/L)*y(t);

DE :=
d

dt
y(t) = r

(
1− ln(y(t))

L

)
y(t)

> L := ln(3): r := 1:
DEplot( DE, y(t), t=0..8, y=0..5, arrows=line,

dirgrid=[18,11], color=black, scaling=constrained,
[[y(0)=0.25],[y(0)=5]], linecolor=black);

3
y(t)

2

5

4

1

0

86420

3
y(t)

2

5

4

1

0

86420

Direction field and solution, r = 1. Direction field and solution, r = 0.5.

Symbolic solutions can be found. Maple’s solution for the initial value y(0) = 0.25, arbitrary r, and L = ln 3
is displayed below. Check it by substituting into the differential equation.

> unassign(’r’);
dsolve( {DE,y(0)=0.25} );



y(t) = 3e−e
− r t

ln(3) +ln(ln(12))

Example 2. Consider the differential equation y′ = ky2+y+1. Determine the significance of the parameter
k on the nature of the equilibrium points. Obtain symbolic solutions, if possible.

For a fixed k solve the equation ky2 + y + 1 = 0 for y to see that if k 6= 0, then the equilibrium points are
y = −1±

√
1−4k

2k .

� If k > 1/4, then there are no equilibrium solutions. All solutions increase without bound as t→∞.

� If k = 1/4, then y(t) ≡ −2 is the only equilibrium solution. Moreover, the differential equation is
y′ = 1

4 (y +2)2 so all other solutions are increasing and this is a semistable equilibrium point. Solutions
approach y = −2 from below and flow away from above.

� If 1/4 > k > 0, then there are two equilibrium points, y1 < y2 < 0. Since the differential equation has
the form y′ = k(y − y1)(y − y2) with k positive, y1 is a stable equilibrium and y2 is unstable.

� If k = 0, there is one equilibrium, y0 = −1. Since the differential equation is y′ = y+1, this equilibrium
is unstable.

� If 0 > k > −∞, then there are two equilibrium points once more, y1 < 0 < y2. The differential
equation has the form y′ = k(y − y1)(y − y2) with k negative, so y1 is an unstable equilibrium and y2

is stable.

The plot below, called a bifurcation diagram, shows where these points are for each k value. Note that the
curve is simply the implicit plot of the equation ky2 + y + 1 = 0 in the (k, y)-plane. To interpret this plot,
sketch a vertical line at any k-value. Where that line intersects the curves you will find the y-values that are
the equilibria for the DE with that k-value.

> with(plots):
> display( implicitplot( k*y^2 + y + 1 = 0, k=-3..1, y=-4..4, color=black),

plot( [[0,t,t=-4..4],[t,0,t=-4..1],[[0.25,-2]],[[0,-1]]],
style=[line,line,point,point], symbolsize=18, color=black),
view=[-3..1,-4..4], tickmarks=[4,4], axes=boxed,
labels=["PARAMETER VALUE, k","EQUILIBRIA, y"],
labeldirections=[horizontal,vertical]);
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The bifurcation diagram for y′ = ky2 + y + 1.

Since the number and the nature of the equilibrium points changes at the values k = 0 and k = 1/4, these
are the bifurcation points. See the corresponding points in the diagram. The following table summarizes
this information.



Interval Number of Equilibria Nature
∞ > k > 1

4 none
k = 1

4 one semistable
1
4 > k > 0 two stable < unstable

k = 0 one unstable
0 > k > −∞ two unstable < stable

Maple’s dsolve procedure comes up with the following symbolic solution to this equation.

> dsolve( diff(y(t),t) = k*y(t)^2 + y(t) + 1 );

y(t) =
1
2
−1 + tan

(
1
2 t
√

4k − 1 + 1
2 C1

√
4k − 1

)√
4k − 1

k

Things for you to do.

1. Use direction fields and solution curves similar to the ones shown in Example 1 to determine the
significance of the parameters in the threshold equation and the equation for decaying exponential rate
in Exercises 40 and 42 of Section 2.5. Obtain symbolic solutions if you can.

2. Make a bifurcation analysis for the parameter k in the equation y′ = y2 + y +k (Exercise 38 in Section
2.5). Include the calculation of the equilibrium solutions for each k, a bifurcation diagram, and a
bifurcation table similar to the ones shown in Example 2. Obtain a symbolic solution if you can.
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