APPENDIX VII

Solutions to selected questions and problems

This Appendix provides suggested solutions to those end-of-chapter numerical questions and problems not marked with an asterisk*. Answers to questions and problems marked * are given in the Lecturer's Guide. Answers to discussion questions, essays and reports questions can be found by reading the text.

Chapter 1

No numerical questions; answers to all questions may be found by reading the text.

Chapter 2

1 Proast ple

a
Project A

Point in time (yearly intervals)	Cash flow	Discount factor	
0	-120	1.0	
1	60	0.8696	
2	45	0.7561	
3	42	0.6575	
4	18	0.5718	

Discounted cash flow	Cash flow	Discount factor	Project B Discounted cash flow
-120.00	-120	1.0	
52.176	15	0.8696	-120.00
34.025	45	0.7561	
27.615	55	0.6575	
10.292	60	0.5718	
4,108			NPV
$\underline{£ 4,108}$			

Advice: Accept project A and reject project B, because A generates a return greater than that required by the firm on projects of this risk class, but B does not.
b The figure of $£ 4,108$ for the NPV of project A can be interpreted as the surplus (in present value terms) above and beyond the required 15 per cent return. Therefore, Proast would be prepared to put up to $£ 120,000+£ 4,108$ into this project at time zero, because it could thereby obtain the required rate of return of 15 per cent. If Proast put in any more than this, it would generate less than the opportunity cost of the finance providers.

Likewise, the maximum cash outflow at time zero (0) for project B which permits the generation of a 15 per cent return is $£ 120,000-£ 2,460=£ 117,540$.

2 Highflyer ple

a First, recognise that annuities are present (to save a lot of time).
Project A : Try $15 \%-420,000+150,000 \times 2.855=+£ 8,250$.
Try $16 \%-420,000+150,000 \times 2.7982=-£ 270$.
$I R R=15+\frac{8,250}{8,250+270} \times(16-15)=15.97 \%$
Project B: Try 31% and 32%.

Point in time (yearly intervals)	Cash flow	Discounted cash flow @ 31\%	Discounted cash flow @ 32\%
0	$-100,000$	$-100,000$	$-100,000$
1	75,000	57,252	56,818
2	75,000	$\underline{43,704}$	$\underline{43,044}$
		-+956	-138

IRR $=31+\frac{956}{956+138} \times(32-31)=31.87 \%$
b NPV: Project A
$-420,000+150,000 \times 3.0373=+£ 35,595$
Project B
$-100,000+75,000 \times 1.6901=+£ 26,758$
c Comparison:

	IRR	NPV
Project A	15.97%	$+£ 35,595$
Project B	31.87%	$+£ 26,758$

If the projects were not mutually exclusive, Highflyer would be advised to accept both. If the firm has to choose between them, on the basis of the IRR calculation it would select B, but, if NPV is used, project A is the preferred choice. In mutually exclusive situations with projects generating more than the required rate of return, NPV is the superior decision-making tool. It measures in absolute amounts of money rather than in percentages and does not have the theoretical doubts about the reinvestment rate of return on intra-project cash inflows.

4

Point in time (yearly intervals)	0	1	2	3
Cash flow	-300	+260	-200	+600
Discount factor	1.0	0.885	0.7831	0.6931
Discounted cash flow	-300	+230.1	-156.62	+415.86

$\mathrm{NPV}=+£ 189.34$

This project presents unconventional cash flows (more than one change in sign). Therefore there is more than one IRR, making a nonsense result.

5 a

| Point in time (yearly intervals) | t_{1} | t_{2} | t_{3} | t_{4} | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cash flow $(£)$ | +200 | +300 | +250 | +400 | |
| Terminal $\left(\mathrm{t}_{4}\right)$ value $(£)$ | +304.2 | +396.8 | +287.5 | +400 | $1,388.5$ |

b
$\sqrt[4]{\frac{1,388.5}{900}}-1=0.1145$ or 11.45%
c Try 10%.
$-900+\frac{200}{1.10}+\frac{300}{(1.10)^{2}}+\frac{250}{(1.10)^{3}}+\frac{400}{(1.10)^{4}}=-9.2$
Try 9\%.
$-900+\frac{200}{1.09}+\frac{300}{(1.09)^{2}}+\frac{250}{(1.09)^{3}}+\frac{400}{(1.09)^{4}}=+12.4$
$\operatorname{IRR}=9+\frac{12.4}{12.4+9.2}(10-9)=9.57 \%$

6 a Modified internal rate of return

Point in time (yearly intervals)	t_{1}	t_{2}	t_{3}	t_{4}	Total
Cash flow (£)	5,400	3,100	2,800	600	
Terminal value	$8,000.3$	$4,028.8$	3,192	600	$15,821.1$

$\sqrt[4]{\frac{15,821.1}{9,300}}-1=0.142$ or 14.2%
This project is accepted under the MIRR decision rule.
b Internal rate of return
Try 14\%.
$-9,300+\frac{5,400}{1.14}+\frac{3,100}{(1.14)^{2}}+\frac{2,800}{(1.14)^{3}}+\frac{600}{(1.14)^{4}}=+67.4$
Try 15\%.
$-9,300+\frac{5,400}{1.15}+\frac{3,100}{(1.15)^{2}}+\frac{2,800}{(1.15)^{3}}+\frac{600}{(1.15)^{4}}=-76.2$
$14+\frac{67.4}{67.4+76.2}(15-14)=14.47 \%$
This project is accepted under the IRR decision rule.

