Computer Security: Principles and Practice, 2nd Edition

Chapter 2

Chapter 2 – Cryptographic Tools

Answer Key

TRUE/FALSE QUESTIONS:

- 1. T
- 2. T
- 3. F
- 4. T
- 5. F
- 6. T
- 7. F
- 8. T
- 9. F
- 10. T
- 11. T
- 12. F
- 13. F
- 14. T
- 15. T

MULTIPLE CHOICE QUESTIONS:

- 1. D
- 2. A
- 3. B
- 4. B
- 5. C
- 6. A
- 7. C
- 8. D
- 9. B
- 10. A
- 11. C
- 12. B
- 13. D
- 14. A
- 15. B

SHORT ANSWER QUESTIONS:

- 1. symmetric encryption
- 2. brute-force
- 3. decryption
- 4. cryptanalytic
- 5. block cipher
- 6. stream cipher
- 7. Diffie and Hellman
- 8. uniform distribution
- 9. back-end appliance
- 10. Electronic Frontier Foundation (EFF)
- 11. electronic codebook (ECB)
- 12. pseudorandom
- 13. public and private key
- 14. library-based tape encryption
- 15. Diffie-Hellman Key Agreement

Chapter 2 – Cryptographic Tools

TRUE/FALSE QUESTIONS:

- T F 1. Symmetric encryption is used primarily to provide confidentiality.
- T F 2. Two of the most important applications of public-key encryption are digital signatures and key management.
- T F 3. Cryptanalytic attacks try every possible key on a piece of ciphertext until an intelligible translation into plaintext is obtained.
- T F 4. The secret key is input to the encryption algorithm.
- T F 5. Triple DES takes a plaintext block of 64 bits and a key of 56 bits to produce a ciphertext block of 64 bits.
- T F 6. Modes of operation are the alternative techniques that have been developed to increase the security of symmetric block encryption for large sequences of data.
- T F 7. The advantage of a stream cipher is that you can reuse keys.
- T F 8. A message authentication code is a small block of data generated by a secret key and appended to a message.
- T F 9. Like the MAC, a hash function also takes a secret key as input.
- T F 10. The strength of a hash function against brute-force attacks depends solely on the length of the hash code produced by the algorithm.
- T F 11. Public-key cryptography is asymmetric.
- T F 12. Public-key algorithms are based on simple operations on bit patterns.
- T F 13. The purpose of the DSS algorithm is to enable two users to securely reach agreement about a shared secret that can be used as a secret key for subsequent symmetric encryption of messages.
- T F 14. An important element in many computer security services and applications is the use of cryptographic algorithms.
- T F 15. Some form of protocol is needed for public-key distribution.

MULTIPLE CHOICE QUESTIONS:

1.	. The original message or data that is fed into the algorithm is		
	A. encryption algorithm	n B. secret key	
	C. decryption algorithm	n D. plaintext	
2		1	
2.	The is the encryption	algorithm run in reverse.	
	A. decryption algorithm	n B. plaintext	
	C. ciphertext	D. encryption algorithm	
3.	age produced as output.		
	A. Plaintext	B. Ciphertext	
	C. Secret key	D. Cryptanalysis	
4.	On average, of all possuccess with a brute-force attack. A. one-fourth	ssible keys must be tried in order to achieve B. half	
	C. two-thirds	D. three-fourths	
5.	The most important symmetric alg DES, triple DES, and the	orithms, all of which are block ciphers, are the	
	A. SHA	B. RSA	
	C. AES	D. DSS	
6.	If the only form of attack that could be made on an encryption algorithm is brute-force, then the way to counter such attacks would be to		
	A. use longer keys	B. use shorter keys	
	C. use more keys	D. use less keys	

7 is a procedure that allows communicating parties to verify that received or stored messages are authentic.				
	A. Cryptanalysis	B. Decryption		
	C. Message authentication	D. Collision resistance		
8. The purpose of a is to produce a "fingerprint" of a file, message, or other block of data.				
	A. secret key	B. digital signature		
	C. keystream	D. hash function		
9 is a block cipher in which the plaintext and ciphertext are integers between 0 and <i>n</i> -1 for some <i>n</i> .				
	A. DSS	B. RSA		
	C. SHA	C. AES		
10. A is created by using a secure hash function to generate a hash value for a message and then encrypting the hash code with a private key.				
	A. digital signature	B. keystream		
	C. one way hash function	D. secret key		
11. Transmitted data stored locally are referred to as				
	A. ciphertext	B. DES		
	C. data at rest	D. ECC		
12. Digital signatures and key management are the two most important applications of encryption.				
	A. private-key	B. public-key		
	C. preimage resistant	C. advanced		

	A is to try every possible elligible translation into plaintext is ob		ext until an			
	A. mode of operation	B. hash function	l			
	C. cryptanalysis	D. brute-force at	ttack			
14. Combined one byte at a time with the plaintext stream using the XOR operation, a is the output of the pseudorandom bit generator.						
	A. keystream	B. digital signate	ure			
	C. secure hash	D. message auth	entication code			
15. A protects against an attack in which one party generates a message for another party to sign.						
	A. data authenticator	B. strong hash fi	unction			
	C. weak hash function	D. digital signat	ure			
SHOR	SHORT ANSWER QUESTIONS:					
1.	1. Also referred to as single-key encryption, the universal technique for providing confidentiality for transmitted or stored data is					
2.	. There are two general approaches to attacking a symmetric encryption scheme: cryptanalytic attacks and attacks.					
3.	3. The algorithm takes the ciphertext and the secret key and produces the original plaintext.					
4.	4. A attack exploits the characteristics of the algorithm to attempt to deduce a specific plaintext or to deduce the key being used.					
5.	A processes the plaintext input in fixed-size blocks and produces a block of ciphertext of equal size for each plaintext block.					
6.	6. A processes the input elements continuously, producing output one element at a time.					
7.	Public-key encryption was first public	cly proposed by	in 1976.			

Computer Security: Principles and Practice, 2nd Edition

Chapter 2

8.	The two criteria used to validate that a sequence of numbers is random are independence and
9.	A is a hardware device that sits between servers and storage systems and encrypts all data going from the server to the storage system and decrypts data going in the opposite direction.
10.	In July 1998 the announced that it had broken a DES encryption using a special purpose "DES cracker" machine.
11.	The simplest approach to multiple block encryption is known as mode, in which plaintext is handled <i>b</i> bits at a time and each block of plaintext is encrypted using the same key.
12.	A stream is one that is unpredictable without knowledge of the input key and which has an apparently random character.
13.	The is a pair of keys that have been selected so that if one is used for encryption, the other is used for decryption.
14.	is provided by means of a co-processor board embedded in the tape drive and tape library hardware.
15.	The purpose of the algorithm is to enable two users to securely reach agreement about a shared secret that can be used as a secret key for subsequent symmetric encryption of messages.