Chemistry: The Central Science, 12e (Brown et al.) Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

3.1 Multiple-Choice Questions

1) When the following equation is balanced, the coefficients are _____.

$$C_8H_{18} + O_2 \rightarrow CO_2 + H_2O$$

A) 2, 3, 4, 4 B) 1, 4, 8, 9 C) 2, 12, 8, 9 D) 4, 4, 32, 36 E) 2, 25, 16, 18 Answer: E Diff: 2 Page Ref: Sec. 3.1

2) Of the reactions below, which one is <u>not</u> a combination reaction? A) C + O₂ \rightarrow CO₂ B) $2Mg + O_2 \rightarrow 2MgO$ C) $2N_2 + 3H_2 \rightarrow 2NH_3$ D) CaO + H₂O \rightarrow Ca(OH)₂ E) $2CH_4 + 4O_2 \rightarrow 2CO_2 + 4H_2O$ Answer: E Diff: 2 Page Ref: Sec. 3.2

3) When a hydrocarbon burns in air, what component of air reacts? A) oxygen B) nitrogen C) carbon dioxide D) water E) argon Answer: A Diff: 2 Page Ref: Sec. 3.2 4) When a hydrocarbon burns in air, a component produced is? A) oxygen B) nitrogen

C) carbon D) water

E) argon

Answer: D

Diff: 2 Page Ref: Sec. 3.2

> 1 Copyright © 2012 Pearson Education, Inc.

5) Of the reactions below, which one is a decomposition reaction? A) NH₄Cl \rightarrow NH₃ + HCl B) 2Mg + O₂ \rightarrow 2MgO C) 2N₂ + 3 H₂ \rightarrow 2NH₃ D) 2CH₄ + 4O₂ \rightarrow 2CO₂ + 4H₂O E) Cd(NO₃)O₂ + Na₂S \rightarrow CdS + 2NaNO₃ Answer: A Diff: 3 Page Ref: Sec. 3.2

6) Which one of the following substances is the product of this combination reaction?

 $Al(s) + I_2(s) \rightarrow$

A) All_2 B) AllC) All_3 D) Al_2I_3 E) Al_3I_2 Answer: C Diff: 2 Page Ref: Sec. 3.2

7) Which one of the following is not true concerning automotive air bags?

A) They are inflated as a result of a decomposition reaction

B) They are loaded with sodium azide initially

C) The gas used for inflating them is oxygen

D) The two products of the decomposition reaction are sodium and nitrogen

E) A gas is produced when the air bag activates.

Answer: C

Diff: 2 Page Ref: Sec. 3.2

8) The reaction used to inflate automobile airbags ______.

A) produces sodium gas

B) is a combustion reaction

C) is a combination reaction

D) violates the law of conservation of mass

E) is a decomposition reaction

Answer: E

Diff: 2 Page Ref: Sec. 3.2

9) Which of the following are combination reactions? 1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$ 2) CaO (s) + CO₂ (g) \rightarrow CaCO₃ (s) 3) Mg (s) + O₂ (g) \rightarrow MgO (s) 4) PbCO₃ (s) \rightarrow PbO (s) + CO₂ (g) A) 1, 2, and 3 B) 2 and 3 C) 1, 2, 3, and 4 D) 4 only E) 2, 3, and 4 Answer: B Diff: 3 Page Ref: Sec. 3.2 10) Which of the following are combustion reactions? 1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$ 2) CaO (s) + CO₂ (g) \rightarrow CaCO₃ (s) 3) PbCO₃ (s) \rightarrow PbO (s) + CO₂ (g) 4) CH₃OH (l) + O₂ (g) \rightarrow CO₂ (g) + H₂O (l) A) 1 and 4 B) 1, 2, 3, and 4 C) 1, 3, and 4 D) 2, 3, and 4 E) 3 and 4 Answer: A Diff: 2 Page Ref: Sec. 3.2 11) Which of the following are decomposition reactions? 1) $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$ 2) CaO (s) + CO₂ (g) \rightarrow CaCO₃ (s) 3) Mg (s) + O₂ (g) \rightarrow MgO (s) 4) PbCO₃ (s) \rightarrow PbO (s) + CO₂ (g) A) 1, 2, and 3 B) 4 only C) 1, 2, 3, and 4

D) 2 and 3

E) 2, 3, and 4

Answer: B

Diff: 3 Page Ref: Sec. 3.2

12) The formula of nitrobenzene is $C_6H_5NO_2$. The molecular weight of this compound is amu. A) 107.11 B) 43.03 C) 109.10 D) 123.11 E) 3.06 Answer: D Diff: 2 Page Ref: Sec. 3.3 13) The formula weight of potassium dichromate (K₂Cr₂O₇) is _____ amu. A) 107.09 B) 255.08 C) 242.18 D) 294.18 E) 333.08 Answer: D Diff: 2 Page Ref: Sec. 3.3 14) The formula weight of lead (II) carbonate (PbCO3) is _____ amu. A) 207.2 B) 219.2 C) 235.2 D) 267.2 E) 273.2 Answer: D Diff: 2 Page Ref: Sec. 3.3 15) The formula weight of potassium phosphate (K₃PO₄) is _____ amu. A) 173.17 B) 251.37 C) 212.27 D) 196.27 E) 86.07 Answer: C Diff: 2 Page Ref: Sec. 3.3 16) The formula weight of aluminum sulfate (Al₂(SO₄)₃) is _____ amu. A) 342.15 B) 123.04 C) 59.04 D) 150.14 E) 273.06 Answer: A Diff: 2 Page Ref: Sec. 3.3

17) The formula weight of silver chromate (Ag_2CrO_4) is amu. A) 159.87 B) 223.87 C) 331.73 D) 339.86 E) 175.87 Answer: C Diff: 2 Page Ref: Sec. 3.3 18) The formula weight of ammonium sulfate ((NH₄)O₂SO₄), rounded to the nearest integer, is amu. A) 100 B) 118 C) 116 D) 132 E) 264 Answer: D Diff: 2 Page Ref: Sec. 3.3 19) The molecular weight of the acetic acid (CH₃CO₂H), rounded to the nearest integer, is _____ amu. A) 60 B) 48 C) 44 D) 32 Answer: A Diff: 1 Page Ref: Sec. 3.3 20) The molecular weight of the ethanol (C₂H₅OH), rounded to the nearest integer, is _____ amu. A) 34 B) 41 C) 30 D) 46 E) 92 Answer: D Diff: 1 Page Ref: Sec. 3.3 21) The molecular weight of glucose (C6H12O6), rounded to the nearest integer, is _____ amu. A) 24 B) 96 C) 136 D) 180 E) 224 Answer: D Diff: 1 Page Ref: Sec. 3.3

22) What is the mass % of carbon in dimethylsulfoxide (C₂H₆SO) rounded to three significant figures? A) 60.0 B) 20.6 C) 30.7 D) 7.74 E) 79.8 Answer: C Diff: 3 Page Ref: Sec. 3.3 23) The mass % of H in methane (CH_4) is . A) 25.13 B) 4.032 C) 74.87 D) 92.26 E) 7.743 Answer: A Diff: 2 Page Ref: Sec. 3.3 24) The mass % of Al in aluminum sulfate $(Al_2(SO_4)_3)$ is . A) 7.886 B) 15.77 C) 21.93 D) 45.70 E) 35.94 Answer: B Diff: 3 Page Ref: Sec. 3.3 25) The formula weight of a substance is . A) identical to the molar mass B) the same as the percent by mass weight C) determined by combustion analysis D) the sum of the atomic weights of each atom in its chemical formula E) the weight of a sample of the substance Answer: D Diff: 1 Page Ref: Sec. 3.3 26) The formula weight of calcium nitrate $(Ca(NO_3)_2)$, rounded to one decimal place, is amu. A) 102.1 B) 164.0 C) 204.2

- D) 150.1 E) 116.1
- Answer: B
- Diff: 2 Page Ref: Sec. 3.3

27) The formula weight of magnesium fluoride (MgF₂), rounded to one decimal place, is _____ amu. A) 86.6 B) 43.3 C) 62.3 D) 67.6 E) 92.9 Answer: C Diff: 2 Page Ref: Sec. 3.3 28) The formula weight of lead nitrate (Pb(NO3)2) is _____ amu. A) 269.2 B) 285.2 C) 317.2 D) 331.2 E) 538.4 Answer: D Diff: 2 Page Ref: Sec. 3.3 29) The mass % of C in methane (CH₄) is _____. A) 25.13 B) 133.6 C) 74.87 D) 92.26 E) 7.743 Answer: C Diff: 2 Page Ref: Sec. 3.4 30) The mass % of F in the binary compound KrF_2 is _____. A) 18.48 B) 45.38 C) 68.80 D) 81.52 E) 31.20 Answer: E Diff: 2 Page Ref: Sec. 3.4 31) Calculate the percentage by mass of nitrogen in PtCl₂(NH₃)₂. A) 4.67 B) 9.34 C) 9.90 D) 4.95 E) 12.67 Answer: B

Diff: 2 Page Ref: Sec. 3.4

32) Calculate the percentage by mass of lead in Pb(NO3)2.

A) 38.6

B) 44.5

C) 62.6

D) 65.3

E) 71.2

Answer: C

Diff: 2 Page Ref: Sec. 3.4

33) Calculate the percentage by mass of nitrogen in Pb(NO3)2.

A) 4.2

B) 5.2

C) 8.5

D) 10.4

E) 12.6

Answer: C

Diff: 2 Page Ref: Sec. 3.4

34) Calculate the percentage by mass of lead in PbCO3.

A) 17.96

B) 22.46

C) 73.05

D) 77.54

E) 89.22

Answer: D

Diff: 2 Page Ref: Sec. 3.4

35) Calculate the percentage by mass of oxygen in Pb(NO3)2.

A) 9.7

B) 14.5

C) 19.3

D) 29.0

E) 33.4

Answer: D

Diff: 2 Page Ref: Sec 3.4

36) Calculate the percentage by mass of chlorine in PtCl₂(NH₃)₂.

A) 23.63
B) 11.82
C) 25.05
D) 12.53

E) 18.09

Answer: A

Diff: 3 Page Ref: Sec. 3.4

37) Calculate the percentage by mass of hydrogen in PtCl₂(N H₃)₂ A) 1.558 B) 1.008 C) 0.672 D) 0.034 E) 2.016 Answer: E Diff: 3 Page Ref: Sec. 3.4 38) One mole of contains the largest number of atoms. A) S8 B) C₁₀H₈ C) $Al_2(SO_4)_3$ D) Na₃PO₄ E) Cl_2 Answer: B Diff: 2 Page Ref: Sec. 3.4 39) One mole of contains the smallest number of atoms. A) S8 B) C₁₀H₈ C) $Al_2(SO_4)_3$ D) Na₃PO₄ E) NaCl Answer: E Diff: 1 Page Ref: Sec. 3.4 40) One million argon atoms is ______ mol (rounded to two significant figures) of argon atoms. A) 3.0 B) 1.7 × 10⁻¹⁸ C) 6.0×10^{23} D) 1.0 × 10-6 E) $1.0 \times 10^{+6}$ Answer: B Diff: 2 Page Ref: Sec. 3.4 41) There are atoms of oxygen are in 300 molecules of CH₃CO₂H. A) 300 B) 600 C) 3.01 × 10²⁴ D) 3.61 × 10²⁶ E) 1.80 × 1026 Answer: B Page Ref: Sec. 3.4 Diff: 2

42) How many molecules of CH₄ are in 48.2 g of this compound? A) 5.00 × 10²⁴ B) 3.00 C) 2.90 × 10²⁵ D) 1.81 × 10²⁴ E) 4.00 Answer: D Page Ref: Sec. 3.4 Diff: 3 43) A 30.5 gram sample of glucose (C6H12O6) contains _____ mol of glucose. A) 0.424 B) 0.169 C) 5.90 D) 2.36 E) 0.136 Answer: B Diff: 2 Page Ref: Sec. 3.4 44) A 30.5 gram sample of glucose (C₆H₁₂O₆) contains ______ atoms of carbon. A) 1.02 x 1023 B) 6.12 x 1023 C) 6.02 x 1023 D) 2.04 x 1023 E) 1.22 x 1024 Answer: B Diff: 3 Page Ref: Sec 3.4 45) A sample of CH₂F₂ with a mass of 19 g contains atoms of F. A) 2.2×10^{23} B) 38 C) 3.3×10^{24} D) 4.4×10^{23} E) 9.5 Answer: D Diff: 3 Page Ref: Sec. 3.4 46) A sample of CH4O with a mass of 32.0 g contains _____ molecules of CH4O. A) 5.32×10^{-23} B) 1.00 C) 1.88 × 10²² D) 6.02×10^{23} E) 32.0 Answer: D Diff: 2 Page Ref: Sec. 3.4

47) How many atoms of nitrogen are in 10 g of NH4NO3? A) 3.5 B) 1.5×10^{23} C) 3.0×10^{23} D) 1.8 E) 2 Answer: B Diff: 3 Page Ref: Sec. 3.4 48) Gaseous argon has a density of 1.40 g/L at standard conditions. How many argon atoms are in 1.00 L of argon gas at standard conditions? A) 4.76×10^{22} B) 3.43 × 10²⁶ C) 2.11 × 10²² D) 1.59 × 10²⁵ E) 6.02×10^{23} Answer: C Diff: 4 Page Ref: Sec. 3.4 49) What is the mass in grams of 9.76×10^{12} atoms of naturally occurring sodium? A) 22.99 B) 1.62 × 10⁻¹¹ C) 3.73 × 10⁻¹⁰ D) 7.05 × 10⁻¹³ E) 2.24 × 10¹⁴ Answer: C Diff: 3 Page Ref: Sec. 3.4 50) How many moles of pyridine (C5H5N) are contained in 3.13 g of pyridine? A) 0.0396 B) 25.3 C) 0.319 D) 0.00404 E) 4.04×10^3 Answer: A Diff: 3 Page Ref: Sec. 3.4

51) How many oxygen atoms are contained in 2.74 g of Al₂(SO₄)₃? A) 12 B) 6.02×10^{23} C) 7.22×10^{24} D) 5.79×10^{22} E) 8.01×10^{-3} Answer: D Diff: 3 Page Ref: Sec. 3.4 52) The total number of atoms in 0.111 mol of Fe(CO)3(PH3)2 is ______.
A) 15.0
B) 1.00 × 10²⁴
C) 4.46 × 10²¹
D) 1.67
E) 2.76 × 10⁻²⁴
Answer: B
Diff: 3 Page Ref: Sec. 3.4

53) How many sulfur dioxide molecules are there in 1.80 mol of sulfur dioxide? A) 1.08×10^{23}

B) 6.02×10^{-2} C) 1.80×10^{-2} D) 1.08×10^{-24} E) 6.02×10^{-24} Answer: D Diff: 2 Page Ref: Sec. 3.4

54) How many sulfur dioxide molecules are there in 0.180 mol of sulfur dioxide?

A) 1.80×10^{23} B) 6.02×10^{24} C) 6.02×10^{23} D) 1.08×10^{24} E) 1.08×10^{23} Answer: E Diff: 2 Page Ref: Sec. 3.4

55) How many carbon atoms are there in 52.06 g of carbon dioxide?

A) 5.206×10^{24} B) 3.134×10^{25} C) 7.122×10^{23} D) 8.648×10^{-23} E) 1.424×10^{24} Answer: C Diff: 3 Page Ref: Sec. 3.4 56) How many oxygen atoms are there in 52.06 g of carbon dioxide? A) 1.424×10^{24} B) 6.022×10^{23} C) 1.204×10^{24} D) 5.088×10^{23} E) 1.018×10^{24} Answer: A Diff: 3 Page Ref: Sec. 3.4

57) How many moles of sodium carbonate contain 1.773×10^{17} carbon atoms? A) 5.890×10^{-7} B) 2.945×10^{-7} C) 1.473×10^{-7} D) 8.836×10^{-7} E) 9.817×10^{-8} Answer: B Diff: 2 Page Ref: Sec. 3.4

58) How many grams of sodium carbonate contain 1.773×10^{17} carbon atoms?

A) 3.121×10^{-5} B) 1.011×10^{-5} C) 1.517×10^{-5} D) 9.100×10^{-5} E) 6.066×10^{-5} Answer: A Diff: 2 Page Ref: Sec. 3.4

59) The compound responsible for the characteristic smell of garlic is allicin, C₆H₁₀OS₂. The mass of 1.00 mol of allicin, rounded to the nearest integer, is ______ g.
A) 34
B) 162
C) 86
D) 61
E) 19
Answer: B
Diff: 1 Page Ref: Sec. 3.4

60) The molecular formula of aspartame, the generic name of NutraSweet[®], is C14H18N2O5. The molar mass of aspartame, rounded to the nearest integer, is _____g. A) 24 B) 156 C) 294 D) 43 E) 39 Answer: C Diff: 1 Page Ref: Sec. 3.4 61) There are oxygen atoms in 30 molecules of $C_{20}H_{42}S_{3}O_{2}$. A) 6.0 x 1023 B) 1.8 x 1025 C) 3.6 x 1025 D) 1.2 x 1024 E) 60 Answer: E Diff: 2 Page Ref: Sec. 3.4 62) A nitrogen oxide is 63.65% by mass nitrogen. The molecular formula could be A) NO B) NO₂ C) N₂O D) N₂O₄ E) either NO₂ or N₂O₄ Answer: C Diff: 3 Page Ref: Sec. 3.5 63) A sulfur oxide is 50.0% by mass sulfur. This molecular formula could be ______. A) SO B) SO₂ C) S₂O D) S₂O₄ E) either SO₂ or S₂O₄ Answer: E Page Ref: Sec. 3.5 Diff: 3 64) Which hydrocarbon pair below have identical mass percentage of C? A) C₃H₄ and C₃H₆ B) C₂H₄ and C₃H₄ C) C₂H₄ and C₄H₂ D) C₂H₄ and C₃H₆ E) none of the above Answer: D Diff: 3 Page Ref: Sec. 3.5

65) Sulfur and oxygen react to produce sulfur trioxide. In a particular experiment, 7.9 grams of SO3 are produced by the reaction of 5.0 grams of O2 with 6.0 grams of S. What is the % yield of SO3 in this experiment?

 $S(s) + O_2(g) \rightarrow SO_3(g)$ (not balanced)

A) 32 B) 63 C) 75 D) 95 E) 99 Answer: D Diff: 4 Page Ref: Sec. 3.7

66) Propane (C₃H₈) reacts with oxygen in the air to produce carbon dioxide and water. In a particular experiment, 38.0 grams of carbon dioxide are produced from the reaction of 22.05 grams of propane with excess oxygen. What is the % yield in this reaction?

A) 38.0 B) 57.6 C) 66.0 D) 86.4 E) 94.5 Answer: B Diff: 5 Page Ref: Sec 3.7

3.2 Bimodal Questions

1) When the following equation is balanced, the coefficients are _____.

 $NH_3(g) + O_2(g) \rightarrow NO_2(g) + H_2O(g)$

A) 1, 1, 1, 1 B) 4, 7, 4, 6 C) 2, 3, 2, 3 D) 1, 3, 1, 2 E) 4, 3, 4, 3 Answer: B Diff: 1 Page Ref: Sec. 3.1 2) When the following equation is balanced, the coefficients are _____.

 $Al(NO_3)_3 + Na_2S \rightarrow Al_2S_3 + NaNO_3$

A) 2, 3, 1, 6 B) 2, 1, 3, 2 C) 1, 1, 1, 1 D) 4, 6, 3, 2 E) 2, 3, 2, 3 Answer: A Diff: 1 Page Ref: Sec. 3.1

3) When the following equation is balanced, the coefficient of H₂ is _____.

 $K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$

A) 1 B) 2 C) 3 D) 4 E) 5 Answer: A Diff: 1 Page Ref: Sec. 3.1

4) When the following equation is balanced, the coefficient of Al is _____.

 $Al(s) + H_2O(l) \rightarrow Al(OH)_3(s) + H_2(g)$

A) 1 B) 2 C) 3 D) 5 E) 4 Answer: B Diff: 1 Page Ref: Sec. 3.1

5) When the following equation is balanced, the coefficient of H₂O is ______.

 $Ca(s) + H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g)$

A) 1 B) 2 C) 3 D) 5 E) 4 Answer: B Diff: 1 Page Ref: Sec. 3.1 6) When the following equation is balanced, the coefficient of Al₂O₃ is _____.

Al₂O₃ (s) + C (s) + Cl₂ (g) \rightarrow AlCl₃ (s) + CO (g) A) 1 B) 2 C) 3 D) 4

E) 5 Answer: A Diff: 1 Page Ref: Sec. 3.1

7) When the following equation is balanced, the coefficient of H₂S is

```
FeCl_3(aq) + H_2S(g) \rightarrow Fe_2S_3(s) + HCl(aq)
```

A) 1 B) 2 C) 3 D) 5 E) 4 Answer: C Diff: 1 Page Ref: Sec. 3.1

8) When the following equation is balanced, the coefficient of HCl is

 $CaCO_3(s) + HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$

A) 1 B) 2 C) 3 D) 4 E) 0 Answer: B Diff: 1 Page Ref: Sec. 3.1

9) When the following equation is balanced, the coefficient of HNO3 is ______.

HNO₃ (aq) + CaCO₃ (s) \rightarrow Ca(NO₃)₂ (aq) + CO₂ (g) + H₂O (l)

A) 1 B) 2 C) 3 D) 5 E) 4 Answer: B Diff: 1 Page Ref: Sec. 3.1 10) When the following equation is balanced, the coefficient of H3PO4 is ______.

H3PO4 (aq) + NaOH (aq) \rightarrow Na3PO4 (aq) + H2O (l)

A) 1 B) 2 C) 3 D) 4 E) 0 Answer: A Diff: 1 Page Ref: Sec. 3.1

11) When the following equation is balanced, the coefficient of C3H8O3 is _____.

$$C_{3}H_{8}O_{3}(g) + O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(g)$$

A) 1 B) 2 C) 3 D) 7 E) 5 Answer: B Diff: 1 Page Ref: Sec. 3.1

12) When the following equation is balanced, the coefficient of O₂ is _____.

 $C_{2}H_{4}O(g) + O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(g)$ A) 2 B) 3 C) 4 D) 5 E) 1 Answer: D Diff: 1 Page Ref: Sec. 3.1

13) When the following equation is balanced, the coefficient of H₂ is ______.

 $CO(g) + H_2(g) \rightarrow H_2O(g) + CH_4(g)$

A) 1 B) 2 C) 3 D) 4 E) 0 Answer: C Diff: 1 Page Ref: Sec. 3.1

14) When the following equation is balanced, the coefficient of H₂SO₄ is _____.

18

Copyright © 2012 Pearson Education, Inc.

```
H<sub>2</sub>SO<sub>4</sub> (aq) + NaOH (aq) \rightarrow Na<sub>2</sub>SO<sub>4</sub> (aq) + H<sub>2</sub>O (l)
A) 1
B) 2
C) 3
D) 4
E) 0.5
Answer: A
Diff: 1 Page Ref: Sec. 3.1
```

15) When the following equation is balanced, the coefficient of water is _____.

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

A) 1 B) 2 C) 3 D) 4 E) 5 Answer: B Diff: 1 Page Ref: Sec. 3.1

16) When the following equation is balanced, the coefficient of hydrogen is ______.

$$K(s) + H_2O(l) \rightarrow KOH(aq) + H_2(g)$$

A) 1 B) 2 C) 3 D) 4 E) 5 Answer: A Diff: 1 Page Ref: Sec. 3.1

17) When the following equation is balanced, the coefficient of oxygen is ______.

 $PbS(s) + O_2(g) \rightarrow PbO(s) + SO_2(g)$

A) 1 B) 3 C) 2 D) 4 E) 5 Answer: B Diff: 1 Page Ref: Sec. 3.1 18) When the following equation is balanced, the coefficient of sulfur dioxide is ______.

$$PbS(s) + O_2(g) \rightarrow PbO(s) + SO_2(g)$$

A) 5 B) 1 C) 3 D) 2 E) 4 Answer: D Diff: 1 Page Ref: Sec. 3.1

19) When the following equation is balanced, the coefficient of dinitrogen pentoxide is ______.

$$N_{2}O_{5}(g) + H_{2}O(l) \rightarrow HNO_{3}(aq)$$

A) 1 B) 2 C) 3 D) 4 E) 5 Answer: A Diff: 1 Page Ref: Sec. 3.1

20) When the following equation is balanced, the coefficient of water is _____.

 $N_2O_5(g) + H_2O(l) \rightarrow HNO_3(aq)$

A) 5 B) 2 C) 3 D) 4 E) 1 Answer: E Diff: 1 Page Ref: Sec. 3.1

21) When the following equation is balanced, the coefficient of nitric acid is _____.

$$N_2O_5(g) + H_2O(l) \rightarrow HNO_3(aq)$$

A) 5 B) 2 C) 3 D) 4 E) 1 Answer: B Diff: 1 Page Ref: Sec. 3.1 22) Write the balanced equation for the reaction that occurs when methanol, CH₃OH (l), is burned in air. What is the coefficient of methanol in the balanced equation?

A) 1 B) 2 C) 3 D) 4 E) 3/2 Answer: B Diff: 2 Page Ref: Sec. 3.2

23) Write the balanced equation for the reaction that occurs when methanol, CH₃OH (l), is burned in air. What is the coefficient of oxygen in the balanced equation?

A) 1 B) 2 C) 3 D) 4 E) 3/2 Answer: C Diff: 2 Page Ref: Sec. 3.2

24) What is the coefficient of O₂ when the following equation is completed and balanced?

 $C_{4}H_{8}O_{2} + O_{2} \rightarrow \underline{\qquad}$ A) 2 B) 3 C) 5 D) 6 E) 1 Answer: C Diff: 3 Page Ref: Sec. 3.2

25) Predict the product in the combination reaction below.

Al (s) + N₂ (g) \rightarrow ______ A) AlN B) Al₃N C) Al N₂ D) Al₃N₂ E) AlN₃ Answer: A Diff: 3 Page Ref: Sec. 3.2

26) The balanced equation for the decomposition of sodium azide is . A) $2NaN_3$ (s) $\rightarrow 2Na$ (s) $+ 3N_2$ (g) B) $2NaN_3$ (s) $\rightarrow Na_2$ (s) + 3 N₂ (g) C) NaN₃ (s) \rightarrow Na (s) + N₂ (g) D) NaN₃ (s) \rightarrow Na (s) + N₂ (g) + N (g) E) $2NaN_3$ (s) $\rightarrow 2Na$ (s) $+ 2N_2$ (g) Answer: A Diff: 2 Page Ref: Sec. 3.2 27) There are _____ mol of carbon atoms in 4 mol $C_4H_8O_2$. A) 4 B) 8 C) 16 D) 20 E) 32 Answer: C Diff: 1 Page Ref: Sec. 3.4 28) There are sulfur atoms in 25 molecules of $C_4H_4S_2$. A) 1.5×10^{25} B) 4.8×10^{25} C) 3.0×10^{25} D) 50 E) 6.02×10^{23} Answer: D Diff: 2 Page Ref: Sec. 3.4 29) There are hydrogen atoms in 25 molecules of $C_4H_4S_2$. A) 25 B) 3.8×10^{24} C) 6.0×10^{25} D) 100 E) 1.5×10^{25} Answer: D Diff: 2 Page Ref: Sec. 3.4 30) A sample of C₃H₈O that contains 200 molecules contains carbon atoms. A) 600 B) 200 C) 3.61 × 10²⁶ D) 1.20 × 10²⁶ E) 4.01 × 10²⁵ Answer: A Diff: 2 Page Ref: Sec. 3.4

31) How many moles of carbon monoxide are there in 36.55 g of carbon monoxide? A) 0.8452 B) 1.305 C) 0.9291 D) 2.589 E) 3.046 Answer: B Diff: 2 Page Ref: Sec. 3.4 32) How many moles of carbon dioxide are there in 52.06 g of carbon dioxide? A) 0.8452 B) 1.183 C) 6.022×10^{23} D) 8.648 × 10²³ E) 3.134 × 10²⁵ Answer: B Diff: 2 Page Ref: Sec. 3.4 33) There are molecules of methane in 0.123 mol of methane (CH4). A) 5 B) 2.46 × 10-2 C) 2.04 × 10-25 D) 7.40 × 1022 E) 0.615 Answer: D Diff: 2 Page Ref: Sec. 3.4 34) What is the empirical formula of a compound that contains 27.0% S, 13.4% O, and 59.6% Cl by mass? A) SOC1 B) SOCl₂ C) S₂OCl D) SO₂Cl E) ClSO₄ Answer: B Diff: 3 Page Ref: Sec. 3.5 35) What is the empirical formula of a compound that contains 29% Na, 41% S, and 30% O by mass? A) $Na_2S_2O_3$ B) NaSO₂ C) NaSO D) NaSO34

E) $Na_2S_2O_6$

Answer: A

Diff: 3 Page Ref: Sec. 3.5

36) What is the empirical formula of a compound that contains 49.4% K, 20.3% S, and 30.3% O by mass?

A) KSO_2 B) KSO_3 C) K_2SO_4 D) K_2O_3 E) KSO_4 Answer: D Diff: 3 Page Ref: Sec. 3.5

37) A compound contains 40.0% C, 6.71% H, and 53.29% O by mass. The molecular weight of the compound is 60.05 amu. The molecular formula of this compound is _____.

A) $C_2H_4O_2$ B) C H_2O C) $C_2H_3O_4$ D) $C_2H_2O_4$ E) CHO₂ Answer: A Diff: 3 Page 1

Diff: 3 Page Ref: Sec. 3.5

38) A compound that is composed of carbon, hydrogen, and oxygen contains 70.6% C, 5.9% H, and 23.5% O by mass. The molecular weight of the compound is 136 amu. What is the molecular formula? A) C₈H₈O₂
B) C₈H₄O
C) C₄H₄O
D) C₉H₁₂O
E) C₅H₆O₂
Answer: A
Diff: 3 Page Ref: Sec. 3.5
39) A compound that is composed of only carbon and hydrogen contains 85.7% C and 14.3% H by mass. What is the empirical formula of the compound?
A) CH₂

B) C₂H₄

C) C H42

 $\mathrm{D})\,\mathrm{C}_{4}\mathrm{H}_{8}$

E) C₈₆H₁₄

Answer: A

Diff: 3 Page Ref: Sec. 3.5

40) A compound that is composed of only carbon and hydrogen contains 80.0% C and 20.0% H by mass. What is the empirical formula of the compound?

A) $C_{20}H_{60}$ B) C7H20 C) C H₃ D) C_2H_6 E) CH₄ Answer: C Diff: 3 Page Ref: Sec. 3.5 41) A compound contains 38.7% K, 13.9% N, and 47.4% O by mass. What is the empirical formula of the compound? A) KNO3 B) $K_2N_2O_3$ C) KNO₂ D) K_2NO_3 E) K₄NO₅ Answer: A Page Ref: Sec. 3.5 Diff: 3

42) A compound is composed of only C, H, and O. The combustion of a 0.519-g sample of the compound yields 1.24 g of CO_2 and 0.255 g of H_2O . What is the empirical formula of the compound?

A) C_6H_6O B) C_3H_3O C) CH_3O D) $C_2H_6O_5$ E) $C_2H_6O_2$ Answer: B Diff: 4 Page Ref: Sec. 3.5

43) Combustion of a 1.031-g sample of a compound containing only carbon, hydrogen, and oxygen produced 2.265 g of CO₂ and 1.236 g of H₂O. What is the empirical formula of the compound?

A) $C_{3}H_{8}O$ B) $C_{3}H_{5}O$ C) $C_{6}H_{16}O_{2}$ D) $C_{3}H_{9}O_{3}$ E) $C_{3}H_{6}O_{3}$ Answer: A Diff: 4 Page Ref: Sec. 3.5 44) Combustion of a 0.9835-g sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO₂ and 1.070 g of H₂O. What is the empirical formula of the compound? A) C₂ H₅O B) C₄ H₁₀O₂ C) C₄ H₁₁O₂ D) C₄ H₁₀O E) C₂ H₅O₂ Answer: C Diff: 4 Page Ref: Sec. 3.5

45) The combustion of ammonia in the presence of excess oxygen yields NO₂ and H₂O:

 $4 \text{ NH}_3(g) + 7 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(g)$

The combustion of 43.9 g of ammonia produces _____ g of NO₂.

A) 2.58 B) 178 C) 119 D) 0.954 E) 43.9 Answer: C Diff: 3 Page Ref: Sec. 3.6

46) The combustion of propane (C₃H₈) in the presence of excess oxygen yields CO₂ and H₂O:

 $C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3CO_{2}(g) + 4 H_{2}O(g)$

When 2.5 mol of O_2 are consumed in their reaction, _____ mol of CO_2 are produced. A) 1.5 B) 3.0 C) 5.0 D) 6.0 E) 2.5 Answer: A

Diff: 2 Page Ref: Sec. 3.6

47) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

 $CaC_2(s) + 2H_2O(g) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$

Production of 13 g of C₂H₂ requires consumption of ______ g of H₂O. A) 4.5 B) 9.0 C) 18 D) 4.8×10^2 E) 4.8×10^{-2} Answer: C Diff: 3 Page Ref: Sec. 3.6

48) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

 $CaC_2(s) + 2H_2O(g) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$

The complete reaction of 57.4 g of CaC₂ requires consumption of _____ g of H₂O.

A) 0.895 B) 64.1 C) 32.3 D) 1.79 E) 18.0 Answer: C Diff: 4 Page Ref: Sec. 3.6

49) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

 $N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$

A 7.1-g sample of N_2 requires _____ g of H_2 for complete reaction.

A) 0.51 B) 0.76 C) 1.2 D) 1.5 E) 17.2 Answer: D Diff: 3 Page Ref: Sec. 3.6 50) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

 $N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$

A _____ g sample of N₂ requires 3.0 g of H_2 for complete reaction. A) 0.51 B) 0.76 C) 1.2 D) 14.0 E) 17.2 Answer: D Diff: 3 Page Ref: Sec. 3.6

51) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

 $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$

How many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate?

A) 0.41 B) 2.50 C) 0.00936 D) 2.09 E) 2.61 Answer: D Diff: 3 Page Ref: Sec. 3.6

52) The combustion of propane (C₃H₈) produces CO₂ and H₂O:

 $C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3CO_{2}(g) + 4 H_{2}O(g)$

The reaction of 2.5 mol of O_2 with 4.6 mol of C_3H_8 will produce _____ mol of H_2O . A) 4.0 B) 3.0 C) 2.5 D) 2.0

E) 1.0 Answer: D

Diff: 2 Page Ref: Sec. 3.7

53) GeF₃H is formed from GeH₄ and GeF₄ in the combination reaction:

 $GeH_4 + 3GeF_4 \rightarrow 4GeF_3H$

If the reaction yield is 92.6%, how many moles of GeF₄ are needed to produce 8.00 mol of GeF₃H? A) 3.24 B) 5.56 C) 6.48 D) 2.78 E) 2.16 Answer: C Diff: 4 Page Ref: Sec. 3.7

54) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

 $N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$

If the reaction yield is 87.5%, how many moles of N2 are needed to produce 3.00 mol of NH3?.

A) 0.166 B) 1.00 C) 1.5 D) 1.71 E) 2.32 Answer: D Diff: 4 Page Ref: Sec. 3.7

55) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

 $PbCO_3$ (s) $\rightarrow PbO$ (s) + CO_2 (g)

If the reaction yield is 95.7%, how many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate? A) 1.04 B) 1.55 C) 2.09 D) 4.00

E) 5.55 Answer: C

Diff: 4 Page Ref: Sec. 3.7

56) The combustion of ammonia in the presence of oxygen yields NO₂ and H₂O:

 $4 \text{ NH}_3(g) + 7 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(g)$

 The combustion of 43.9 g of ammonia with 258 g of oxygen produces ______ g of NO2.

 A) 212

 B) 178

 C) 119

 D) 0.954

 E) 43.9

 Answer: C

 Diff: 4
 Page Ref: Sec. 3.7

57) What mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?

Mg (s) + 2 H₂O (l) → Mg(OH)₂ (s) + H₂ (g) A) 0.102 B) 0.0162

C) 0.0485 D) 0.219 E) 0.204 Answer: A Diff: 4 Page Ref: Sec. 3.7

58) If the reaction yield is 94.4%, what mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?

 $Mg(s) + 2 H_2O(l) \rightarrow Mg(OH)_2(s) + H_2(g)$

A) 0.0962 B) 0.0162 C) 0.0485 D) 0.219 E) 0.204 Answer: A Diff: 4 Page Ref: Sec. 3.7 59) Silver nitrate and aluminum chloride react with each other by exchanging anions:

 $3AgNO_3(aq) + AlCl_3(aq) \rightarrow Al(NO_3)_3(aq) + 3AgCl(s)$

What mass in grams of AgCl is produced when 4.22 g of AgNO₃ react with 7.73 g of AlCl₃? A) 17.6 B) 4.22 C) 24.9 D) 3.56 E) 11.9 Answer: D Diff: 4 Page Ref: Sec. 3.7

60) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride with 7.73 g of water?

 $Mg_{3}N_{2} + 3 H_{2}O \rightarrow 2NH_{3} + 3MgO$ A) 0.114 B) 0.0378 C) 0.429 D) 0.0756 E) 4.57 Answer: A Diff: 4 Page Ref: Sec. 3.7

61) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water. Mg₃N₂ + 3 H₂O \rightarrow 2NH₃ + 3MgO

The yield of MgO is 3.60 g. What is the percent yield in the reaction? A) 94.5 B) 78.4 C) 46.6 D) 49.4 E) 99.9 Answer: B Diff: 4 Page Ref: Sec. 3.7 62) Pentacarbonyliron (Fe(CO)₅) reacts with phosphorous trifluoride (PF₃) and hydrogen, releasing carbon monoxide:

 $Fe(CO)_5 + PF_3 + H_2 \rightarrow Fe(CO)_2(PF_3)_2(H)_2 + CO \text{ (not balanced)}$

The reaction of 5.0 mol of Fe(CO)5, 8.0 mol of PF3 and 6.0 mol of H2 will release _____ mol of CO. A) 15 B) 5.0 C) 24 D) 6.0 E) 12 Answer: E Diff: 3 Page Ref: Sec. 3.7

63) What is the maximum mass in grams of NH3 that can be produced by the reaction of 1.0 g of N_2 with 3.0 g of H_2 via the equation below?

 $N_2(g) + H_2(g) \rightarrow NH_3(g) \text{ (not balanced)}$ A) 2.0 B) 1.2 C) 0.61 D) 17 E) 4.0 Answer: B Diff: 3 Page Ref: Sec. 3.7

64) What is the maximum amount in grams of SO₃ that can be produced by the reaction of 1.0 g of S with 1.0 g of O_2 via the equation below?

 $S(s) + O_2(g) \rightarrow SO_3(g)$ (not balanced)

A) 0.27 B) 1.7 C) 2.5 D) 3.8 E) 2.0 Answer: B Diff: 3 Page Ref: Sec. 3.7 65) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

 $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$

The maximum amount of Al₂O₃ that can be produced from 2.5 g of Al and 2.5 g of O₂ is ______ g. A) 9.4 B) 7.4 C) 4.7 D) 5.3 E) 5.0 Answer: C Diff: 3 Page Ref: Sec. 3.7 66) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

 $S(s) + 3F_3(g) \rightarrow SF_6(g)$

The maximum amount of SF₆ that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of fluorine is ______ g. A) 12 B) 3.2 C) 5.8 D) 16 E) 8.0 Answer: C

67) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

 $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$

Page Ref: Sec. 3.7

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of O₂ produced 3.5 g of Al₂O₃. The % yield of the reaction is _____.

A) 74 B) 37 C) 47 D) 66 E) 26 Answer: A Diff: 4 Page Ref: Sec. 3.7

Diff: 3

68) Sulfur and oxygen react in a combination reaction to produce sulfur trioxide, an environmental pollutant:

 $2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$

In a particular experiment, the reaction of 1.0 g S with 1.0 g O₂ produced 0.80 g of SO₃. The % yield in this experiment is ______.

A) 30 B) 29 C) 21 D) 88 E) 48 Answer: E Diff: 4 Page Ref: Sec. 3.7

69) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

 $S(s) + 3F_2(g) \rightarrow SF_6(g)$

In a particular experiment, the percent yield is 79.0%. This means that in this experiment, a 7.90-g sample of fluorine yields ______ g of SF_6 .

A) 30.3 B) 10.1 C) 7.99 D) 24.0 E) 0.110 Answer: C Diff: 4 Page Ref: Sec. 3.7

3.3 Algorithmic Questions

The molecular weight of acetic acid (HC2H3O2), the acid in vinegar, is ______ amu (rounded to one decimal place).
 A) 59.0
 B) 29.0
 C) 60.1
 D) 8.0
 E) 32.0
 Answer: C
 Diff: 1 Page Ref: Sec. 3.3

2) Determine the mass percent (to the hundredths place) of Na in sodium bicarbonate (NaHCO₃).
Answer: 27.36
Diff: 2 Page Ref: Sec. 3.3

3) There are mol of carbon atoms in 3 mol of dimethylsulfoxide (C_2H_6SO). A) 2 B) 4 C) 6 D) 8 E) 10 Answer: C Diff: 1 Page Ref: Sec. 3.4 4) How many grams of hydrogen are in 23 g of CH₄O? A) 2.9 B) 4.6 C) 2.3 D) 4.0 E) 5.8 Answer: A Page Ref: Sec. 3.4 Diff: 3 5) How many grams of oxygen are in 45 g of $C_2H_2O_2$? A) 8.3 B) 9.3 C) 17 D) 25 E) 31 Answer: D Diff: 3 Page Ref: Sec. 3.4 6) A 3.92-g sample of magnesium nitrate, Mg(NO₃)₂, contains _____ mol of this compound. A) 2.32 B) 1.65 C) 0.111 D) 0.0529 E) 0.0264 Answer: E Diff: 2 Page Ref: Sec. 3.4 7) A 17.6-g sample of ammonium carbonate contains _____ mol of ammonium ions. A) 0.366 B) 0.183 C) 0.176 D) 2.14 E) 3.47 Answer: A Diff: 4 Page Ref: Sec. 3.4

8) What is the empirical formula of a compound that is 52.1% C, 13.1% H, and 34.7% O by mass? A) C₂HO B) C₂HO₃ C) C₄H₁₂O₂ D) C₄H₁₃O₂ E) C₂H₆O Answer: E Diff: 4 Page Ref: Sec. 3.5

9) A certain alcohol contains only three elements, carbon, hydrogen, and oxygen. Combustion of a 30.00 gram sample of the alcohol produced 57.30 grams of CO₂ and 35.22 grams of H₂O. What is the empirical formula of the alcohol?
Answer: C₂H₆O
Diff: 4 Page Ref: Sec. 3.5

10) Lithium and nitrogen react to produce lithium nitride:

 $6\text{Li}(s) + N_2(g) \rightarrow 2\text{Li}_3N(s)$

How many moles of N₂ are needed to react with 0.710 mol of lithium?

A) 4.26 B) 0.710 C) 0.237 D) 2.13 E) 0.118 Answer: E Diff: 2 Page Ref: Sec. 3.6

11) The combustion of propane (C₃H₈) produces CO₂ and H₂O:

 $C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3CO_{2}(g) + 4 H_{2}O(g)$

The reaction of 5.5 mol of O_2 will produce _____ mol of H_2O . A) 5.5 B) 5.0 C) 2.0 D) 4.4 E) 1.0 Answer: D Diff: 2 Page Ref: Sec. 3.6 12) Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

 $3 \text{ Mg} + \text{N}_2 \rightarrow \text{Mg}_3\text{N}_2$

In a particular experiment, a 10.1-g sample of N2 reacts completely. The mass of Mg consumed is

g. A) 8.76 B) 26.3 C) 35.1 D) 0.92 E) 13.9 Answer: B Diff: 3 Page Ref: Sec. 3.6

13) The combustion of ammonia in the presence of excess oxygen yields NO_2 and H_2O :

 $4 \text{ NH}_3(g) + 7 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(g)$

The combustion of 57.6 g of ammonia consumes ______ g of oxygen. A) 27.0 B) 28.8 C) 54.1 D) 189 E) 94.6 Answer: D Diff: 3 Page Ref: Sec. 3.6

14) Lithium and nitrogen react to produce lithium nitride:

 $6\text{Li}(s) + N_2(g) \rightarrow 2\text{Li}_3N(s)$

How many moles of lithium nitride are produced when 0.400 mol of lithium react in this fashion? A) 0.133 B) 0.800 C) 0.0667 D) 1.20 E) 0.200 Answer: A Diff: 2 Page Ref: Sec. 3.6 15) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

 $6\text{Li}(s) + N_2(g) \rightarrow 2\text{Li}_3N(s)$

How many moles of lithium are needed to produce 0.20 mol of Li₃N when the reaction is carried out in the presence of excess nitrogen?

A) 0.10 B) 0.60 C) 0.067 D) 0.13 E) 1.2 Answer: B Diff: 2 Page Ref: Sec. 3.6

16) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

 $2\text{NaN}_3(s) \rightarrow 2\text{Na}(s) + 3\text{N}_2(g)$

How many moles of H₂ are produced by the decomposition of 3.55 mol of sodium azide?

A) 2.37 B) 10.7 C) 5.33 D) 1.18 E) 1.78 Answer: C Diff: 2 Page Ref: Sec. 3.6

17) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

 $2\text{NaN}_3(s) \rightarrow 2\text{Na}(s) + 3\text{N}_2(g)$

How many grams of sodium azide are required to produce 30.5 g of nitrogen?

A) 1.63 B) 0.726 C) 70.8 D) 47.2 E) 106.2 Answer: D Diff: 3 Page Ref: Sec. 3.6 18) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

 $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

How many moles of O₂ are consumed when 4.11 mol of magnesium burns? A) 0.169 B) 0.487 C) 4.11 D) 8.22 E) 2.06 Answer: E Diff: 2 Page Ref: Sec. 3.6

19) Calcium carbide (CaC₂) reacts with water to produce acetylene (C₂H₂):

 $CaC_2(s) + 2H_2O(g) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$

Production of 3.3 g of C_2H_2 requires consumption of ______ g of H_2O . A) 1.2 B) 2.3 C) 4.6 D) 480 E) 0.048 Answer: C Diff: 3 Page Ref: Sec. 3.6

20) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

 $PbCO_3(s) \rightarrow PbO(s) + CO_2(g)$

grams of lead (II) oxide will be produced by the decomposition of 7.50 g of lead (II) carbonate? A) 0.41 B) 2.50 C) 0.00936 D) 6.26 E) 7.83 Answer: D Diff: 3 Page Ref: Sec. 3.6 21) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

 $6\text{Li}(s) + N_2(g) \rightarrow 2\text{Li}_3N(s)$

In a particular experiment, 5.50-g samples of each reagent are reacted. The theoretical yield of lithium nitride is ______ g.

A) 5.53 B) 4.60 C) 27.6 D) 9.20 E) 13.7 Answer: D Diff: 3 Page Ref: Sec. 3.7

22) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

 $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

When 2.00 g of magnesium burns, the theoretical yield of magnesium oxide is ______ g. A) 2.00 B) 3.32 C) 0.0823 D) 1.66 E) 6.63 Answer: B Diff: 3 Page Ref: Sec. 3.7

23) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

A 4.00-g sample of CaO is reacted with 3.86 g of H_2O . How many grams of water remains after completion of reaction?

A) 0.00 B) 0.00793 C) 2.57 D) 1.04 E) 0.143 Answer: C Diff: 4 Page Ref: Sec. 3.7 24) If 2352 grams of FeS₂ is allowed to react with 1408 grams of O₂ according to the following equation, how many grams of Fe₂O₃ are produced?

 $FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$

Answer: 1280 Diff: 4 Page Ref: Sec. 3.7

25) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

In a particular experiment, a 1.50-g sample of CaO is reacted with excess water and 1.48 g of Ca(OH)₂ is recovered. What is the percent yield in this experiment?

A) 99 B) 0.99 C) 2.16 D) 74.8 E) 101.2 Answer: D Diff: 4 Page Ref: Sec. 3.7

3.4 Short Answer Questions

1) Complete and balance the following reaction, given that elemental rubidium reacts with elemental sulfur to form Rb₂S (s).

Na (s) + S (s) \rightarrow _____

Answer: \rightarrow Na₂S (s) Diff: 3 Page Ref: Sec. 3.2

2) A compound was found to contain 90.6% lead (Pb) and 9.4% oxygen. The empirical formula for this compound is ______. Answer: Pb3O4

Diff: 3 Page Ref: Sec. 3.5

3) The combustion of propane (C_3H_8) in the presence of excess oxygen yields CO_2 and H_2O :

 $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$

When 7.3 g of C3H8 burns in the presence of excess O_2 , _____ g of CO_2 is produced.Answer:22Diff: 3Page Ref: Sec. 3.6

4) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

 $N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g)$

A 9.3-g sample of hydrogen requires _____ g of N₂ for a complete reaction.

Answer: 43 Diff: 3 Page Ref: Sec. 3.6

5) Water can be formed from the stoichiometric reaction of hydrogen with oxygen:

 $2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{H}_{2}\operatorname{O}(g)$

A complete reaction of $5.0 \text{ g of } O_2$ with excess hydrogen produces ______ g of H₂O.

Answer: 5.6

Diff: 3 Page Ref: Sec. 3.6

6) The combustion of carbon disulfide in the presence of excess oxygen yields carbon dioxide and sulfur dioxide:

 $CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$

 The combustion of 15 g of CS2 in the presence of excess oxygen yields ______ g of SO2.

 Answer:
 25

 Diff: 3
 Page Ref: Sec. 3.6

3.5 True/False Questions

The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1 mole of that element.
 Answer: TRUE
 Diff: 2 Page Ref: Sec. 3.4

2) The molecular weight is ALWAYS a whole-number multiple of the empirical formula weight.Answer: TRUEDiff: 1 Page Ref: Sec. 3.5

3) A great deal of the carbon dioxide produced by the combustion of fossil fuels is absorbed into the oceans.
Answer: TRUE
Diff: 2 Page Ref: Sec. 3.6

4) The quantity of product that is calculated to form when all of the limiting reagent reacts is called the actual yield.Answer: FALSEDiff: 1 Page Ref: Sec. 3.7

Copyright © 2012 Pearson Education, Inc.