## Chemistry: The Central Science, 12e (Brown et al.)

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

### 3.1 Multiple-Choice Questions

1) When the following equation is balanced, the coefficients are $\qquad$ .

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

A) $2,3,4,4$
B) $1,4,8,9$
C) $2,12,8,9$
D) $4,4,32,36$
E) $2,25,16,18$

Answer: E
Diff: 2 Page Ref: Sec. 3.1
2) Of the reactions below, which one is not a combination reaction?
A) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
B) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
C) $2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
D) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
E) $2 \mathrm{CH}_{4}+4 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Answer: E
Diff: $2 \quad$ Page Ref: Sec. 3.2
3) When a hydrocarbon burns in air, what component of air reacts?
A) oxygen
B) nitrogen
C) carbon dioxide
D) water
E) argon

Answer: A
Diff: $2 \quad$ Page Ref: Sec. 3.2
4) When a hydrocarbon burns in air, a component produced is?
A) oxygen
B) nitrogen
C) carbon
D) water
E) argon

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.2
5) Of the reactions below, which one is a decomposition reaction?
A) $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{3}+\mathrm{HCl}$
B) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
C) $2 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
D) $2 \mathrm{CH}_{4}+4 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
E) $\mathrm{Cd}\left(\mathrm{NO}_{3}\right) \mathrm{O}_{2}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{CdS}+2 \mathrm{NaNO}_{3}$

Answer: A
Diff: $3 \quad$ Page Ref: Sec. 3.2
6) Which one of the following substances is the product of this combination reaction?

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow
$$

$\qquad$
A) $\mathrm{AlI}_{2}$
B) AlI
C) $\mathrm{All}_{3}$
D) $\mathrm{Al}_{2} \mathrm{I}_{3}$
E) $\mathrm{Al}_{3} \mathrm{I}_{2}$

Answer: C
Diff: 2 Page Ref: Sec. 3.2
7) Which one of the following is not true concerning automotive air bags?
A) They are inflated as a result of a decomposition reaction
B) They are loaded with sodium azide initially
C) The gas used for inflating them is oxygen
D) The two products of the decomposition reaction are sodium and nitrogen
E) A gas is produced when the air bag activates.

Answer: C
Diff: 2 Page Ref: Sec. 3.2
8) The reaction used to inflate automobile airbags $\qquad$ .
A) produces sodium gas
B) is a combustion reaction
C) is a combination reaction
D) violates the law of conservation of mass

E ) is a decomposition reaction
Answer: E
Diff: 2 Page Ref: Sec. 3.2
9) Which of the following are combination reactions?

1) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (l)
2) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
3) $\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
4) $\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
A) 1,2 , and 3
B) 2 and 3
C) 1,2,3 and 4
D) 4 only
E) 2, 3, and 4

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.2
10) Which of the following are combustion reactions?

1) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (l)
2) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}$ (s)
3) $\mathrm{PbCO}_{3}$ (s) $\rightarrow \mathrm{PbO}(\mathrm{s})+\mathrm{CO}_{2}$ (g)
4) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A) 1 and 4
B) 1,2,3 and 4
C) 1,3 , and 4
D) 2, 3, and 4
E) 3 and 4

Answer: A
Diff: $2 \quad$ Page Ref: Sec. 3.2
11) Which of the following are decomposition reactions?

1) $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (l)
2) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
3) $\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
4) $\mathrm{PbCO}_{3}$ (s) $\rightarrow \mathrm{PbO}(\mathrm{s})+\mathrm{CO}_{2}$ (g)
A) 1,2 , and 3
B) 4 only
C) 1, 2, 3, and 4
D) 2 and 3
E) 2, 3, and 4

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.2
12) The formula of nitrobenzene is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N} \mathrm{O}_{2}$. The molecular weight of this compound is $\qquad$ amu.
A) 107.11
B) 43.03
C) 109.10
D) 123.11
E) 3.06

Answer: D
Diff: 2 Page Ref: Sec. 3.3
13) The formula weight of potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is $\qquad$ amu.
A) 107.09
B) 255.08
C) 242.18
D) 294.18
E) 333.08

Answer: D
Diff: 2 Page Ref: Sec. 3.3
14) The formula weight of lead (II) carbonate $\left(\mathrm{PbCO}_{3}\right)$ is $\qquad$ amu.
A) 207.2
B) 219.2
C) 235.2
D) 267.2
E) 273.2

Answer: D
Diff: 2 Page Ref: Sec. 3.3
15) The formula weight of potassium phosphate $\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)$ is $\qquad$ amu.
A) 173.17
B) 251.37
C) 212.27
D) 196.27
E) 86.07

Answer: C
Diff: 2 Page Ref: Sec. 3.3
16) The formula weight of aluminum sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$ is $\qquad$ amu.
A) 342.15
B) 123.04
C) 59.04
D) 150.14
E) 273.06

Answer: A
Diff: 2 Page Ref: Sec. 3.3
17) The formula weight of silver chromate $\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)$ is $\qquad$ amu.
A) 159.87
B) 223.87
C) 331.73
D) 339.86
E) 175.87

Answer: C
Diff: 2 Page Ref: Sec. 3.3
18) The formula weight of ammonium sulfate $\left(\left(\mathrm{NH}_{4}\right) \mathrm{O}_{2} \mathrm{SO}_{4}\right)$, rounded to the nearest integer, is
$\qquad$ amu.
A) 100
B) 118
C) 116
D) 132
E) 264

Answer: D
Diff: 2 Page Ref: Sec. 3.3
19) The molecular weight of the acetic acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$, rounded to the nearest integer, is $\qquad$ amu.
A) 60
B) 48
C) 44
D) 32

Answer: A
Diff: $1 \quad$ Page Ref: Sec. 3.3
20) The molecular weight of the ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$, rounded to the nearest integer, is $\qquad$ amu.
A) 34
B) 41
C) 30
D) 46
E) 92

Answer: D
Diff: $1 \quad$ Page Ref: Sec. 3.3
21) The molecular weight of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, rounded to the nearest integer, is $\qquad$ amu.
A) 24
B) 96
C) 136
D) 180
E) 224

Answer: D
Diff: $1 \quad$ Page Ref: Sec. 3.3
22) What is the mass \% of carbon in dimethylsulfoxide $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)$ rounded to three significant figures?
A) 60.0
B) 20.6
C) 30.7
D) 7.74
E) 79.8

Answer: C
Diff: 3 Page Ref: Sec. 3.3
23) The mass $\%$ of H in methane $\left(\mathrm{CH}_{4}\right)$ is $\qquad$ .
A) 25.13
B) 4.032
C) 74.87
D) 92.26
E) 7.743

Answer: A
Diff: $2 \quad$ Page Ref: Sec. 3.3
24) The mass $\%$ of Al in aluminum sulfate $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$ is $\qquad$ .
A) 7.886
B) 15.77
C) 21.93
D) 45.70
E) 35.94

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.3
25) The formula weight of a substance is $\qquad$ .
A) identical to the molar mass
B) the same as the percent by mass weight
C) determined by combustion analysis
D) the sum of the atomic weights of each atom in its chemical formula
E) the weight of a sample of the substance

Answer: D
Diff: $1 \quad$ Page Ref: Sec. 3.3
26) The formula weight of calcium nitrate $\left(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)$, rounded to one decimal place, is $\qquad$ amu.
A) 102.1
B) 164.0
C) 204.2
D) 150.1
E) 116.1

Answer: B
Diff: 2 Page Ref: Sec. 3.3
27) The formula weight of magnesium fluoride $\left(\mathrm{MgF}_{2}\right)$, rounded to one decimal place, is $\qquad$ amu.
A) 86.6
B) 43.3
C) 62.3
D) 67.6
E) 92.9

Answer: C
Diff: 2 Page Ref: Sec. 3.3
28) The formula weight of lead nitrate $\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)$ is $\qquad$ amu.
A) 269.2
B) 285.2
C) 317.2
D) 331.2
E) 538.4

Answer: D
Diff: 2 Page Ref: Sec. 3.3
29) The mass $\%$ of C in methane $\left(\mathrm{CH}_{4}\right)$ is $\qquad$ .
A) 25.13
B) 133.6
C) 74.87
D) 92.26
E) 7.743

Answer: C
Diff: $2 \quad$ Page Ref: Sec. 3.4
30) The mass $\%$ of F in the binary compound $\mathrm{KrF}_{2}$ is $\qquad$ .
A) 18.48
B) 45.38
C) 68.80
D) 81.52
E) 31.20

Answer: E
Diff: $2 \quad$ Page Ref: Sec. 3.4
31) Calculate the percentage by mass of nitrogen in $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$.
A) 4.67
B) 9.34
C) 9.90
D) 4.95
E) 12.67

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
32) Calculate the percentage by mass of lead in $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
A) 38.6
B) 44.5
C) 62.6
D) 65.3
E) 71.2

Answer: C
Diff: $2 \quad$ Page Ref: Sec. 3.4
33) Calculate the percentage by mass of nitrogen in $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
A) 4.2
B) 5.2
C) 8.5
D) 10.4
E) 12.6

Answer: C
Diff: 2 Page Ref: Sec. 3.4
34) Calculate the percentage by mass of lead in $\mathrm{PbCO}_{3}$.
A) 17.96
B) 22.46
C) 73.05
D) 77.54
E) 89.22

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.4
35) Calculate the percentage by mass of oxygen in $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
A) 9.7
B) 14.5
C) 19.3
D) 29.0
E) 33.4

Answer: D
Diff: $2 \quad$ Page Ref: Sec 3.4
36) Calculate the percentage by mass of chlorine in $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$.
A) 23.63
B) 11.82
C) 25.05
D) 12.53
E) 18.09

Answer: A
Diff: $3 \quad$ Page Ref: Sec. 3.4
37) Calculate the percentage by mass of hydrogen in $\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}$
A) 1.558
B) 1.008
C) 0.672
D) 0.034
E) 2.016

Answer: E
Diff: $3 \quad$ Page Ref: Sec. 3.4
38) One mole of $\qquad$ contains the largest number of atoms.
A) $\mathrm{S}_{8}$
B) $\mathrm{C}_{10} \mathrm{H}_{8}$
C) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
D) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
E) $\mathrm{Cl}_{2}$

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
39) One mole of $\qquad$ contains the smallest number of atoms.
A) $\mathrm{S}_{8}$
B) $\mathrm{C}_{10} \mathrm{H}_{8}$
C) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
D) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
E) NaCl

Answer: E
Diff: $1 \quad$ Page Ref: Sec. 3.4
40) One million argon atoms is $\qquad$ mol (rounded to two significant figures) of argon atoms.
A) 3.0
B) $1.7 \times 10^{-18}$
C) $6.0 \times 10^{23}$
D) $1.0 \times 10^{-6}$
E) $1.0 \times 10^{+6}$

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
41) There are $\qquad$ atoms of oxygen are in 300 molecules of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$.
A) 300
B) 600
C) $3.01 \times 10^{24}$
D) $3.61 \times 10^{26}$
E) $1.80 \times 10^{26}$

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
42) How many molecules of $\mathrm{CH}_{4}$ are in 48.2 g of this compound?
A) $5.00 \times 10^{24}$
B) 3.00
C) $2.90 \times 10^{25}$
D) $1.81 \times 10^{24}$
E) 4.00

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.4
43) A 30.5 gram sample of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ contains $\qquad$ mol of glucose.
A) 0.424
B) 0.169
C) 5.90
D) 2.36
E) 0.136

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
44) A 30.5 gram sample of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ contains $\qquad$ atoms of carbon.
A) $1.02 \times 1023$
B) $6.12 \times 1023$
C) $6.02 \times 1023$
D) $2.04 \times 1023$
E) $1.22 \times 1024$

Answer: B
Diff: 3 Page Ref: Sec 3.4
45) A sample of $\mathrm{CH}_{2} \mathrm{~F}_{2}$ with a mass of 19 g contains $\qquad$ atoms of F .
A) $2.2 \times 10^{23}$
B) 38
C) $3.3 \times 10^{24}$
D) $4.4 \times 10^{23}$
E) 9.5

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.4
46) A sample of CH 4 O with a mass of 32.0 g contains $\qquad$ molecules of $\mathrm{CH}_{4} \mathrm{O}$.
A) $5.32 \times 10^{-23}$
B) 1.00
C) $1.88 \times 10^{22}$
D) $6.02 \times 10^{23}$
E) 32.0

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.4
47) How many atoms of nitrogen are in 10 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ ?
A) 3.5
B) $1.5 \times 10^{23}$
C) $3.0 \times 10^{23}$
D) 1.8
E) 2

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.4
48) Gaseous argon has a density of $1.40 \mathrm{~g} / \mathrm{L}$ at standard conditions. How many argon atoms are in 1.00 L of argon gas at standard conditions?
A) $4.76 \times 10^{22}$
B) $3.43 \times 10^{26}$
C) $2.11 \times 10^{22}$
D) $1.59 \times 10^{25}$
E) $6.02 \times 10^{23}$

Answer: C
Diff: 4 Page Ref: Sec. 3.4
49) What is the mass in grams of $9.76 \times 10^{12}$ atoms of naturally occurring sodium?
A) 22.99
B) $1.62 \times 10^{-11}$
C) $3.73 \times 10^{-10}$
D) $7.05 \times 10^{-13}$
E) $2.24 \times 10^{14}$

Answer: C
Diff: $3 \quad$ Page Ref: Sec. 3.4
50) How many moles of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ are contained in 3.13 g of pyridine?
A) 0.0396
B) 25.3
C) 0.319
D) 0.00404
E) $4.04 \times 10^{3}$

Answer: A
Diff: $3 \quad$ Page Ref: Sec. 3.4
51) How many oxygen atoms are contained in 2.74 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right) 3$ ?
A) 12
B) $6.02 \times 10^{23}$
C) $7.22 \times 10^{24}$
D) $5.79 \times 10^{22}$
E) $8.01 \times 10^{-3}$

Answer: D
Diff: 3 Page Ref: Sec. 3.4
52) The total number of atoms in 0.111 mol of $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PH}_{3}\right)_{2}$ is $\qquad$ .
A) 15.0
B) $1.00 \times 10^{24}$
C) $4.46 \times 10^{21}$
D) 1.67
E) $2.76 \times 10^{-24}$

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.4
53) How many sulfur dioxide molecules are there in 1.80 mol of sulfur dioxide?
A) $1.08 \times 10^{23}$
B) $6.02 \times 10^{24}$
C) $1.80 \times 10^{24}$
D) $1.08 \times 10^{24}$
E) $6.02 \times 10^{23}$

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.4
54) How many sulfur dioxide molecules are there in 0.180 mol of sulfur dioxide?
A) $1.80 \times 10^{23}$
B) $6.02 \times 10^{24}$
C) $6.02 \times 10^{23}$
D) $1.08 \times 10^{24}$
E) $1.08 \times 10^{23}$

Answer: E
Diff: $2 \quad$ Page Ref: Sec. 3.4
55) How many carbon atoms are there in 52.06 g of carbon dioxide?
A) $5.206 \times 10^{24}$
B) $3.134 \times 10^{25}$
C) $7.122 \times 10^{23}$
D) $8.648 \times 10^{-23}$
E) $1.424 \times 10^{24}$

Answer: C
Diff: $3 \quad$ Page Ref: Sec. 3.4
56) How many oxygen atoms are there in 52.06 g of carbon dioxide?
A) $1.424 \times 10^{24}$
B) $6.022 \times 10^{23}$
C) $1.204 \times 10^{24}$
D) $5.088 \times 10^{23}$
E) $1.018 \times 10^{24}$

Answer: A
Diff: $3 \quad$ Page Ref: Sec. 3.4
57) How many moles of sodium carbonate contain $1.773 \times 10^{17}$ carbon atoms?
A) $5.890 \times 10^{-7}$
B) $2.945 \times 10^{-7}$
C) $1.473 \times 10^{-7}$
D) $8.836 \times 10^{-7}$
E) $9.817 \times 10^{-8}$

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
58) How many grams of sodium carbonate contain $1.773 \times 10^{17}$ carbon atoms?
A) $3.121 \times 10^{-5}$
B) $1.011 \times 10^{-5}$
C) $1.517 \times 10^{-5}$
D) $9.100 \times 10^{-5}$
E) $6.066 \times 10^{-5}$

Answer: A
Diff: $2 \quad$ Page Ref: Sec. 3.4
59) The compound responsible for the characteristic smell of garlic is allicin, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OS}_{2}$. The mass of 1.00 mol of allicin, rounded to the nearest integer, is $\qquad$ g .
A) 34
B) 162
C) 86
D) 61
E) 19

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.4
60) The molecular formula of aspartame, the generic name of NutraSweet ${ }^{\circledR}$, is $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} 5$. The molar mass of aspartame, rounded to the nearest integer, is $\qquad$ g.
A) 24
B) 156
C) 294
D) 43
E) 39

Answer: C
Diff: $1 \quad$ Page Ref: Sec. 3.4
61) There are $\qquad$ oxygen atoms in 30 molecules of $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{~S}_{3} \mathrm{O}_{2}$.
A) $6.0 \times 10^{23}$
B) $1.8 \times 10^{25}$
C) $3.6 \times 10^{25}$
D) $1.2 \times 1024$
E) 60

Answer: E
Diff: $2 \quad$ Page Ref: Sec. 3.4
62) A nitrogen oxide is $63.65 \%$ by mass nitrogen. The molecular formula could be $\qquad$ .
A) NO
B) $\mathrm{NO}_{2}$
C) $\mathrm{N}_{2} \mathrm{O}$
D) $\mathrm{N}_{2} \mathrm{O}_{4}$
E) either $\mathrm{NO}_{2}$ or $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: C
Diff: 3 Page Ref: Sec. 3.5
63) A sulfur oxide is $50.0 \%$ by mass sulfur. This molecular formula could be $\qquad$ .
A) SO
B) $\mathrm{SO}_{2}$
C) $\mathrm{S}_{2} \mathrm{O}$
D) $\mathrm{S}_{2} \mathrm{O}_{4}$
E) either $\mathrm{SO}_{2}$ or $\mathrm{S}_{2} \mathrm{O}_{4}$

Answer: E
Diff: 3 Page Ref: Sec. 3.5
64) Which hydrocarbon pair below have identical mass percentage of C ?
A) $\mathrm{C}_{3} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$
B) $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{4}$
C) $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{4} \mathrm{H}_{2}$
D) $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{6}$
E) none of the above

Answer: D
Diff: 3 Page Ref: Sec. 3.5
65) Sulfur and oxygen react to produce sulfur trioxide. In a particular experiment, 7.9 grams of $\mathrm{SO}_{3}$ are produced by the reaction of 5.0 grams of $\mathrm{O}_{2}$ with 6.0 grams of S . What is the $\%$ yield of $\mathrm{SO}_{3}$ in this experiment?

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})(\text { not balanced) }
$$

A) 32
B) 63
C) 75
D) 95
E) 99

Answer: D
Diff: 4 Page Ref: Sec. 3.7
66) Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ reacts with oxygen in the air to produce carbon dioxide and water. In a particular experiment, 38.0 grams of carbon dioxide are produced from the reaction of 22.05 grams of propane with excess oxygen. What is the $\%$ yield in this reaction?
A) 38.0
B) 57.6
C) 66.0
D) 86.4
E) 94.5

Answer: B
Diff: $5 \quad$ Page Ref: Sec 3.7

### 3.2 Bimodal Questions

1) When the following equation is balanced, the coefficients are $\qquad$ .

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) $1,1,1,1$
B) $4,7,4,6$
C) $2,3,2,3$
D) $1,3,1,2$
E) $4,3,4,3$

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
2) When the following equation is balanced, the coefficients are $\qquad$ .

$$
\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}+\mathrm{NaNO}_{3}
$$

A) 2, 3, 1, 6
B) 2, 1, 3, 2
C) $1,1,1,1$
D) $4,6,3,2$
E) 2, 3, 2, 3

Answer: A
Diff: $1 \quad$ Page Ref: Sec. 3.1
3) When the following equation is balanced, the coefficient of $\mathrm{H}_{2}$ is $\qquad$ .

$$
\mathrm{K}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 4
E) 5

Answer: A
Diff: 1 Page Ref: Sec. 3.1
4) When the following equation is balanced, the coefficient of Al is $\qquad$ .

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Al}(\mathrm{OH}) 3(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 5
E) 4

Answer: B
Diff: 1 Page Ref: Sec. 3.1
5) When the following equation is balanced, the coefficient of $\mathrm{H}_{2} \mathrm{O}$ is $\qquad$ .

$$
\mathrm{Ca}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 5
E) 4

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
6) When the following equation is balanced, the coefficient of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is $\qquad$ .

$$
\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 4
E) 5

Answer: A
Diff: $1 \quad$ Page Ref: Sec. 3.1
7) When the following equation is balanced, the coefficient of $\mathrm{H}_{2} \mathrm{~S}$ is $\qquad$ .

$$
\mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{~S} 3(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq})
$$

A) 1
B) 2
C) 3
D) 5
E) 4

Answer: C
Diff: $1 \quad$ Page Ref: Sec. 3.1
8) When the following equation is balanced, the coefficient of HCl is

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) 1
B) 2
C) 3
D) 4
E) 0

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
9) When the following equation is balanced, the coefficient of $\mathrm{HNO}_{3}$ is $\qquad$ .

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) 1
B) 2
C) 3
D) 5
E) 4

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
10) When the following equation is balanced, the coefficient of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is $\qquad$ .

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) 1
B) 2
C) 3
D) 4
E) 0

Answer: A
Diff: $1 \quad$ Page Ref: Sec. 3.1
11) When the following equation is balanced, the coefficient of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ is $\qquad$ .
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A) 1
B) 2
C) 3
D) 7
E) 5

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
12) When the following equation is balanced, the coefficient of $\mathrm{O}_{2}$ is $\qquad$ .
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A) 2
B) 3
C) 4
D) 5
E) 1

Answer: D
Diff: $1 \quad$ Page Ref: Sec. 3.1
13) When the following equation is balanced, the coefficient of $\mathrm{H}_{2}$ is $\qquad$ .

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 4
E) 0

Answer: C
Diff: $1 \quad$ Page Ref: Sec. 3.1
14) When the following equation is balanced, the coefficient of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $\qquad$ .

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) 1
B) 2
C) 3
D) 4
E) 0.5

Answer: A
Diff: $1 \quad$ Page Ref: Sec. 3.1
15) When the following equation is balanced, the coefficient of water is $\qquad$ .

$$
\mathrm{K}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 4
E) 5

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
16) When the following equation is balanced, the coefficient of hydrogen is $\qquad$ .

$$
\mathrm{K}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 1
B) 2
C) 3
D) 4
E) 5

Answer: A
Diff: $1 \quad$ Page Ref: Sec. 3.1
17) When the following equation is balanced, the coefficient of oxygen is $\qquad$ .

$$
\mathrm{PbS}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{PbO}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

A) 1
B) 3
C) 2
D) 4
E) 5

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
18) When the following equation is balanced, the coefficient of sulfur dioxide is $\qquad$ .

$$
\mathrm{PbS}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{PbO}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

A) 5
B) 1
C) 3
D) 2
E) 4

Answer: D
Diff: 1 Page Ref: Sec. 3.1
19) When the following equation is balanced, the coefficient of dinitrogen pentoxide is $\qquad$ .

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})
$$

A) 1
B) 2
C) 3
D) 4
E) 5

Answer: A
Diff: $1 \quad$ Page Ref: Sec. 3.1
20) When the following equation is balanced, the coefficient of water is $\qquad$ .

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})
$$

A) 5
B) 2
C) 3
D) 4
E) 1

Answer: E
Diff: 1 Page Ref: Sec. 3.1
21) When the following equation is balanced, the coefficient of nitric acid is $\qquad$ .

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HNO}_{3}(\mathrm{aq})
$$

A) 5
B) 2
C) 3
D) 4
E) 1

Answer: B
Diff: $1 \quad$ Page Ref: Sec. 3.1
22) Write the balanced equation for the reaction that occurs when methanol, $\mathrm{CH}_{3} \mathrm{OH}(1)$, is burned in air. What is the coefficient of methanol in the balanced equation?
A) 1
B) 2
C) 3
D) 4
E) $3 / 2$

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.2
23) Write the balanced equation for the reaction that occurs when methanol, $\mathrm{CH}_{3} \mathrm{OH}(1)$, is burned in air. What is the coefficient of oxygen in the balanced equation?
A) 1
B) 2
C) 3
D) 4
E) $3 / 2$

Answer: C
Diff: 2 Page Ref: Sec. 3.2
24) What is the coefficient of $\mathrm{O}_{2}$ when the following equation is completed and balanced?

$$
\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow
$$

A) 2
B) 3
C) 5
D) 6
E) 1

Answer: C
Diff: 3 Page Ref: Sec. 3.2
25) Predict the product in the combination reaction below.

$$
\mathrm{Al}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow
$$

A) AlN
B) $\mathrm{Al}_{3} \mathrm{~N}$
C) $\mathrm{Al} \mathrm{N}_{2}$
D) $\mathrm{Al}_{3} \mathrm{~N}_{2}$
E) $\mathrm{AlN}_{3}$

Answer: A
Diff: 3 Page Ref: Sec. 3.2
26) The balanced equation for the decomposition of sodium azide is $\qquad$ .
A) $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
B) $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
C) $\mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})$
D) $\mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{N}(\mathrm{g})$
E) $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{~N}_{2}(\mathrm{~g})$

Answer: A
Diff: 2 Page Ref: Sec. 3.2
27) There are $\qquad$ mol of carbon atoms in $4 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$.
A) 4
B) 8
C) 16
D) 20
E) 32

Answer: C
Diff: $1 \quad$ Page Ref: Sec. 3.4
28) There are $\qquad$ sulfur atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
A) $1.5 \times 10^{25}$
B) $4.8 \times 10^{25}$
C) $3.0 \times 10^{25}$
D) 50
E) $6.02 \times 10^{23}$

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.4
29) There are $\qquad$ hydrogen atoms in 25 molecules of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}_{2}$.
A) 25
B) $3.8 \times 10^{24}$
C) $6.0 \times 10^{25}$
D) 100
E) $1.5 \times 10^{25}$

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.4
30) A sample of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ that contains 200 molecules contains $\qquad$ carbon atoms.
A) 600
B) 200
C) $3.61 \times 10^{26}$
D) $1.20 \times 10^{26}$
E) $4.01 \times 10^{25}$

Answer: A
Diff: 2 Page Ref: Sec. 3.4
31) How many moles of carbon monoxide are there in 36.55 g of carbon monoxide?
A) 0.8452
B) 1.305
C) 0.9291
D) 2.589
E) 3.046

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
32) How many moles of carbon dioxide are there in 52.06 g of carbon dioxide?
A) 0.8452
B) 1.183
C) $6.022 \times 10^{23}$
D) $8.648 \times 10^{23}$
E) $3.134 \times 10^{25}$

Answer: B
Diff: $2 \quad$ Page Ref: Sec. 3.4
33) There are $\qquad$ molecules of methane in 0.123 mol of methane (CH4).
A) 5
B) $2.46 \times 10-2$
C) $2.04 \times 10-25$
D) $7.40 \times 1022$
E) 0.615

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.4
34) What is the empirical formula of a compound that contains $27.0 \% \mathrm{~S}, 13.4 \% \mathrm{O}$, and $59.6 \% \mathrm{Cl}$ by mass?
A) SOCl
B) $\mathrm{SOCl}_{2}$
C) $\mathrm{S}_{2} \mathrm{OCl}$
D) $\mathrm{SO}_{2} \mathrm{Cl}$
E) $\mathrm{ClSO}_{4}$

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.5
35) What is the empirical formula of a compound that contains $29 \% \mathrm{Na}, 41 \% \mathrm{~S}$, and $30 \% \mathrm{O}$ by mass?
A) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
B) $\mathrm{NaSO}_{2}$
C) NaSO
D) $\mathrm{NaSO}_{4}$
E) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$

Answer: A
Diff: 3 Page Ref: Sec. 3.5
36) What is the empirical formula of a compound that contains $49.4 \% \mathrm{~K}, 20.3 \% \mathrm{~S}$, and $30.3 \% \mathrm{O}$ by mass?
A) $\mathrm{KSO}_{2}$
B) $\mathrm{KSO}_{3}$
C) $\mathrm{K}_{2} \mathrm{SO}_{4}$
D) $\mathrm{K}_{2} \mathrm{O}_{3}$
E) $\mathrm{KSO}_{4}$

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.5
37) A compound contains $40.0 \% \mathrm{C}, 6.71 \% \mathrm{H}$, and $53.29 \% \mathrm{O}$ by mass. The molecular weight of the compound is 60.05 amu . The molecular formula of this compound is $\qquad$ .
A) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
B) $\mathrm{CH}_{2} \mathrm{O}$
C) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{4}$
D) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
E) $\mathrm{CHO}_{2}$

Answer: A
Diff: $3 \quad$ Page Ref: Sec. 3.5
38) A compound that is composed of carbon, hydrogen, and oxygen contains $70.6 \% \mathrm{C}, 5.9 \% \mathrm{H}$, and $23.5 \% \mathrm{O}$ by mass. The molecular weight of the compound is 136 amu . What is the molecular formula?
A) $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$
B) $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}$
C) $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$
D) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$
E) $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}$

Answer: A
Diff: 3 Page Ref: Sec. 3.5
39) A compound that is composed of only carbon and hydrogen contains $85.7 \% \mathrm{C}$ and $14.3 \% \mathrm{H}$ by mass. What is the empirical formula of the compound?
A) $\mathrm{CH}_{2}$
B) $\mathrm{C}_{2} \mathrm{H}_{4}$
C) $\mathrm{CH}_{2}$
D) $\mathrm{C}_{4} \mathrm{H}_{8}$
E) $\mathrm{C}_{86} \mathrm{H}_{14}$

Answer: A
Diff: 3 Page Ref: Sec. 3.5
40) A compound that is composed of only carbon and hydrogen contains $80.0 \% \mathrm{C}$ and $20.0 \% \mathrm{H}$ by mass. What is the empirical formula of the compound?
A) $\mathrm{C}_{20} \mathrm{H}_{60}$
B) $\mathrm{C}_{7} \mathrm{H}_{20}$
C) $\mathrm{CH}_{3}$
D) $\mathrm{C}_{2} \mathrm{H}_{6}$
E) $\mathrm{CH}_{4}$

Answer: C
Diff: 3 Page Ref: Sec. 3.5
41) A compound contains $38.7 \% \mathrm{~K}, 13.9 \% \mathrm{~N}$, and $47.4 \% \mathrm{O}$ by mass. What is the empirical formula of the compound?
A) $\mathrm{KNO}_{3}$
B) $\mathrm{K}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$
C) $\mathrm{KNO}_{2}$
D) $\mathrm{K}_{2} \mathrm{NO}_{3}$
E) $\mathrm{K}_{4} \mathrm{NO}_{5}$

Answer: A
Diff: 3 Page Ref: Sec. 3.5
42) A compound is composed of only $\mathrm{C}, \mathrm{H}$, and O . The combustion of a $0.519-\mathrm{g}$ sample of the compound yields 1.24 g of $\mathrm{CO}_{2}$ and 0.255 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$
B) $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$
C) $\mathrm{CH}_{3} \mathrm{O}$
D) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{5}$
E) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$

Answer: B
Diff: 4 Page Ref: Sec. 3.5
43) Combustion of a 1.031 -g sample of a compound containing only carbon, hydrogen, and oxygen produced 2.265 g of $\mathrm{CO}_{2}$ and 1.236 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
B) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$
C) $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{O}_{2}$
D) $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}_{3}$
E) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$

Answer: A
Diff: 4 Page Ref: Sec. 3.5
44) Combustion of a $0.9835-\mathrm{g}$ sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of $\mathrm{CO}_{2}$ and 1.070 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
B) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
C) $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{O}_{2}$
D) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
E) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}$

Answer: C
Diff: 4 Page Ref: Sec. 3.5
45) The combustion of ammonia in the presence of excess oxygen yields $\mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ :

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The combustion of 43.9 g of ammonia produces $\qquad$ g of $\mathrm{NO}_{2}$.
A) 2.58
B) 178
C) 119
D) 0.954
E) 43.9

Answer: C
Diff: $3 \quad$ Page Ref: Sec. 3.6
46) The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ in the presence of excess oxygen yields $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ :

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When 2.5 mol of $\mathrm{O}_{2}$ are consumed in their reaction, $\qquad$ mol of $\mathrm{CO}_{2}$ are produced.
A) 1.5
B) 3.0
C) 5.0
D) 6.0
E) 2.5

Answer: A
Diff: 2 Page Ref: Sec. 3.6
47) Calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with water to produce acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ :

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

Production of 13 g of $\mathrm{C}_{2} \mathrm{H}_{2}$ requires consumption of $\qquad$ g of $\mathrm{H}_{2} \mathrm{O}$.
A) 4.5
B) 9.0
C) 18
D) $4.8 \times 10^{2}$
E) $4.8 \times 10^{-2}$

Answer: C
Diff: $3 \quad$ Page Ref: Sec. 3.6
48) Calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with water to produce acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ :

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

The complete reaction of 57.4 g of $\mathrm{CaC}_{2}$ requires consumption of $\qquad$ g of $\mathrm{H}_{2} \mathrm{O}$.
A) 0.895
B) 64.1
C) 32.3
D) 1.79
E) 18.0

Answer: C
Diff: 4 Page Ref: Sec. 3.6
49) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A 7.1-g sample of $\mathrm{N}_{2}$ requires $\qquad$ g of $\mathrm{H}_{2}$ for complete reaction.
A) 0.51
B) 0.76
C) 1.2
D) 1.5
E) 17.2

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.6
50) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A $\qquad$ g sample of $\mathrm{N}_{2}$ requires 3.0 g of $\mathrm{H}_{2}$ for complete reaction.
A) 0.51
B) 0.76
C) 1.2
D) 14.0
E) 17.2

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.6
51) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

$$
\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

How many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate?
A) 0.41
B) 2.50
C) 0.00936
D) 2.09
E) 2.61

Answer: D
Diff: 3 Page Ref: Sec. 3.6
52) The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ produces $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ :

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The reaction of 2.5 mol of $\mathrm{O}_{2}$ with 4.6 mol of $\mathrm{C}_{3} \mathrm{H}_{8}$ will produce $\qquad$ mol of $\mathrm{H}_{2} \mathrm{O}$.
A) 4.0
B) 3.0
C) 2.5
D) 2.0
E) 1.0

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.7
53) $\mathrm{GeF}_{3} \mathrm{H}$ is formed from $\mathrm{GeH}_{4}$ and $\mathrm{GeF}_{4}$ in the combination reaction:

$$
\mathrm{GeH}_{4}+3 \mathrm{Ge} \mathrm{~F}_{4} \rightarrow 4 \mathrm{GeF}_{3} \mathrm{H}
$$

If the reaction yield is $92.6 \%$, how many moles of $\mathrm{GeF}_{4}$ are needed to produce $8.00 \mathrm{~mol}^{2} \mathrm{GeF}_{3} \mathrm{H}$ ?
A) 3.24
B) 5.56
C) 6.48
D) 2.78
E) 2.16

Answer: C
Diff: $4 \quad$ Page Ref: Sec. 3.7
54) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If the reaction yield is $87.5 \%$, how many moles of $\mathrm{N}_{2}$ are needed to produce 3.00 mol of $\mathrm{NH}_{3}$ ?.
A) 0.166
B) 1.00
C) 1.5
D) 1.71
E) 2.32

Answer: D
Diff: 4 Page Ref: Sec. 3.7
55) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

$$
\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

If the reaction yield is $95.7 \%$, how many grams of lead (II) oxide will be produced by the decomposition of 2.50 g of lead (II) carbonate?
A) 1.04
B) 1.55
C) 2.09
D) 4.00
E) 5.55

Answer: C
Diff: 4 Page Ref: Sec. 3.7
56) The combustion of ammonia in the presence of oxygen yields $\mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ :

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The combustion of 43.9 g of ammonia with 258 g of oxygen produces $\qquad$ g of $\mathrm{NO}_{2}$.
A) 212
B) 178
C) 119
D) 0.954
E) 43.9

Answer: C
Diff: $4 \quad$ Page Ref: Sec. 3.7
57) What mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 0.102
B) 0.0162
C) 0.0485
D) 0.219
E) 0.204

Answer: A
Diff: 4 Page Ref: Sec. 3.7
58) If the reaction yield is $94.4 \%$, what mass in grams of hydrogen is produced by the reaction of 4.73 g of magnesium with 1.83 g of water?

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

A) 0.0962
B) 0.0162
C) 0.0485
D) 0.219
E) 0.204

Answer: A
Diff: 4 Page Ref: Sec. 3.7
59) Silver nitrate and aluminum chloride react with each other by exchanging anions:

$$
3 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{AgCl}(\mathrm{~s})
$$

What mass in grams of AgCl is produced when 4.22 g of $\mathrm{AgNO}_{3}$ react with 7.73 g of $\mathrm{AlCl}_{3}$ ?
A) 17.6
B) 4.22
C) 24.9
D) 3.56
E) 11.9

Answer: D
Diff: $4 \quad$ Page Ref: Sec. 3.7
60) How many moles of magnesium oxide are produced by the reaction of 3.82 g of magnesium nitride with 7.73 g of water?

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+3 \mathrm{MgO}
$$

A) 0.114
B) 0.0378
C) 0.429
D) 0.0756
E) 4.57

Answer: A
Diff: $4 \quad$ Page Ref: Sec. 3.7
61) A $3.82-\mathrm{g}$ sample of magnesium nitride is reacted with 7.73 g of water. $\mathrm{Mg}_{3} \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+3 \mathrm{MgO}$

The yield of MgO is 3.60 g . What is the percent yield in the reaction?
A) 94.5
B) 78.4
C) 46.6
D) 49.4
E) 99.9

Answer: B
Diff: $4 \quad$ Page Ref: Sec. 3.7
62) Pentacarbonyliron $\left(\mathrm{Fe}(\mathrm{CO})_{5}\right)$ reacts with phosphorous trifluoride $\left(\mathrm{PF}_{3}\right)$ and hydrogen, releasing carbon monoxide:

$$
\mathrm{Fe}(\mathrm{CO})_{5}+\mathrm{PF}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{PF}_{3}\right)_{2}(\mathrm{H})_{2}+\mathrm{CO} \text { (not balanced) }
$$

The reaction of 5.0 mol of $\mathrm{Fe}(\mathrm{CO})_{5}, 8.0 \mathrm{~mol}$ of $\mathrm{PF}_{3}$ and $6.0 \mathrm{~mol} \mathrm{of}_{2}$ will release $\qquad$ mol of CO.
A) 15
B) 5.0
C) 24
D) 6.0
E) 12

Answer: E
Diff: 3 Page Ref: Sec. 3.7
63) What is the maximum mass in grams of NH 3 that can be produced by the reaction of 1.0 g of $\mathrm{N}_{2}$ with 3.0 g of $\mathrm{H}_{2}$ via the equation below?

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})(\text { not balanced })
$$

A) 2.0
B) 1.2
C) 0.61
D) 17
E) 4.0

Answer: B
Diff: 3 Page Ref: Sec. 3.7
64) What is the maximum amount in grams of $\mathrm{SO}_{3}$ that can be produced by the reaction of 1.0 g of S with 1.0 g of $\mathrm{O}_{2}$ via the equation below?

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})(\text { not balanced })
$$

A) 0.27
B) 1.7
C) 2.5
D) 3.8
E) 2.0

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.7
65) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

The maximum amount of $\mathrm{Al}_{2} \mathrm{O}_{3}$ that can be produced from 2.5 g of Al and 2.5 g of $\mathrm{O}_{2}$ is $\qquad$ g .
A) 9.4
B) 7.4
C) 4.7
D) 5.3
E) 5.0

Answer: C
Diff: $3 \quad$ Page Ref: Sec. 3.7
66) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$
\mathrm{S}(\mathrm{~s})+3 \mathrm{~F}_{3}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})
$$

The maximum amount of $\mathrm{SF}_{6}$ that can be produced from the reaction of 3.5 g of sulfur with 4.5 g of
fluorine is $\qquad$ g.
A) 12
B) 3.2
C) 5.8
D) 16
E) 8.0

Answer: C
Diff: 3 Page Ref: Sec. 3.7
67) Solid aluminum and gaseous oxygen react in a combination reaction to produce aluminum oxide:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

In a particular experiment, the reaction of 2.5 g of Al with 2.5 g of $\mathrm{O}_{2}$ produced 3.5 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$. The $\%$ yield of the reaction is $\qquad$ .
A) 74
B) 37
C) 47
D) 66
E) 26

Answer: A
Diff: $4 \quad$ Page Ref: Sec. 3.7
68) Sulfur and oxygen react in a combination reaction to produce sulfur trioxide, an environmental pollutant:

$$
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

In a particular experiment, the reaction of 1.0 g S with $1.0 \mathrm{~g} \mathrm{O}_{2}$ produced 0.80 g of $\mathrm{SO}_{3}$. The $\%$ yield in this experiment is $\qquad$ .
A) 30
B) 29
C) 21
D) 88
E) 48

Answer: E
Diff: 4 Page Ref: Sec. 3.7
69) Sulfur and fluorine react in a combination reaction to produce sulfur hexafluoride:

$$
\mathrm{S}(\mathrm{~s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})
$$

In a particular experiment, the percent yield is $79.0 \%$. This means that in this experiment, a $7.90-\mathrm{g}$ sample of fluorine yields $\qquad$ g of $\mathrm{SF}_{6}$.
A) 30.3
B) 10.1
C) 7.99
D) 24.0
E) 0.110

Answer: C
Diff: 4 Page Ref: Sec. 3.7

### 3.3 Algorithmic Questions

1) The molecular weight of acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$, the acid in vinegar, is $\qquad$ amu (rounded to one decimal place).
A) 59.0
B) 29.0
C) 60.1
D) 8.0
E) 32.0

Answer: C
Diff: $1 \quad$ Page Ref: Sec. 3.3
2) Determine the mass percent (to the hundredths place) of Na in sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$.

Answer: 27.36
Diff: 2 Page Ref: Sec. 3.3
3) There are $\qquad$ mol of carbon atoms in 3 mol of dimethylsulfoxide $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)$.
A) 2
B) 4
C) 6
D) 8
E) 10

Answer: C
Diff: $1 \quad$ Page Ref: Sec. 3.4
4) How many grams of hydrogen are in 23 g of $\mathrm{CH}_{4} \mathrm{O}$ ?
A) 2.9
B) 4.6
C) 2.3
D) 4.0
E) 5.8

Answer: A
Diff: $3 \quad$ Page Ref: Sec. 3.4
5) How many grams of oxygen are in 45 g of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$ ?
A) 8.3
B) 9.3
C) 17
D) 25
E) 31

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.4
6) A 3.92-g sample of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, contains $\qquad$ mol of this compound.
A) 2.32
B) 1.65
C) 0.111
D) 0.0529
E) 0.0264

Answer: E
Diff: $2 \quad$ Page Ref: Sec. 3.4
7) A $17.6-\mathrm{g}$ sample of ammonium carbonate contains $\qquad$ mol of ammonium ions.
A) 0.366
B) 0.183
C) 0.176
D) 2.14
E) 3.47

Answer: A
Diff: $4 \quad$ Page Ref: Sec. 3.4
8) What is the empirical formula of a compound that is $52.1 \% \mathrm{C}, 13.1 \% \mathrm{H}$, and $34.7 \% \mathrm{O}$ by mass?
A) $\mathrm{C}_{2} \mathrm{HO}$
B) $\mathrm{C}_{2} \mathrm{HO}_{3}$
C) $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}_{2}$
D) $\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{O}_{2}$
E) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

Answer: E
Diff: 4 Page Ref: Sec. 3.5
9) A certain alcohol contains only three elements, carbon, hydrogen, and oxygen. Combustion of a 30.00 gram sample of the alcohol produced 57.30 grams of $\mathrm{CO}_{2}$ and 35.22 grams of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the alcohol?
Answer: $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
Diff: $4 \quad$ Page Ref: Sec. 3.5
10) Lithium and nitrogen react to produce lithium nitride:

$$
6 \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

How many moles of $\mathrm{N}_{2}$ are needed to react with 0.710 mol of lithium?
A) 4.26
B) 0.710
C) 0.237
D) 2.13
E) 0.118

Answer: E
Diff: $2 \quad$ Page Ref: Sec. 3.6
11) The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ produces $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ :

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The reaction of 5.5 mol of $\mathrm{O}_{2}$ will produce $\qquad$ mol of $\mathrm{H}_{2} \mathrm{O}$.
A) 5.5
B) 5.0
C) 2.0
D) 4.4
E) 1.0

Answer: D
Diff: $2 \quad$ Page Ref: Sec. 3.6
12) Magnesium and nitrogen react in a combination reaction to produce magnesium nitride:

$$
3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}
$$

In a particular experiment, a $10.1-\mathrm{g}$ sample of $\mathrm{N}_{2}$ reacts completely. The mass of Mg consumed is
$\qquad$ g.
A) 8.76
B) 26.3
C) 35.1
D) 0.92
E) 13.9

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.6
13) The combustion of ammonia in the presence of excess oxygen yields $\mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ :

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The combustion of 57.6 g of ammonia consumes $\qquad$ g of oxygen.
A) 27.0
B) 28.8
C) 54.1
D) 189
E) 94.6

Answer: D
Diff: 3 Page Ref: Sec. 3.6
14) Lithium and nitrogen react to produce lithium nitride:

$$
6 \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

How many moles of lithium nitride are produced when 0.400 mol of lithium react in this fashion?
A) 0.133
B) 0.800
C) 0.0667
D) 1.20
E) 0.200

Answer: A
Diff: $2 \quad$ Page Ref: Sec. 3.6
15) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

$$
6 \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

How many moles of lithium are needed to produce 0.20 mol of $\mathrm{Li}_{3} \mathrm{~N}$ when the reaction is carried out in the presence of excess nitrogen?
A) 0.10
B) 0.60
C) 0.067
D) 0.13
E) 1.2

Answer: B
Diff: 2 Page Ref: Sec. 3.6
16) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

How many moles of $\mathrm{H}_{2}$ are produced by the decomposition of 3.55 mol of sodium azide?
A) 2.37
B) 10.7
C) 5.33
D) 1.18
E) 1.78

Answer: C
Diff: $2 \quad$ Page Ref: Sec. 3.6
17) Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

How many grams of sodium azide are required to produce 30.5 g of nitrogen?
A) 1.63
B) 0.726
C) 70.8
D) 47.2
E) 106.2

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.6
18) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

How many moles of $\mathrm{O}_{2}$ are consumed when 4.11 mol of magnesium burns?
A) 0.169
B) 0.487
C) 4.11
D) 8.22
E) 2.06

Answer: E
Diff: $2 \quad$ Page Ref: Sec. 3.6
19) Calcium carbide $\left(\mathrm{CaC}_{2}\right)$ reacts with water to produce acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ :

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

Production of 3.3 g of $\mathrm{C}_{2} \mathrm{H}_{2}$ requires consumption of $\qquad$ g of $\mathrm{H}_{2} \mathrm{O}$.
A) 1.2
B) 2.3
C) 4.6
D) 480
E) 0.048

Answer: C
Diff: 3 Page Ref: Sec. 3.6
20) Lead (II) carbonate decomposes to give lead (II) oxide and carbon dioxide:

$$
\mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$\qquad$ grams of lead (II) oxide will be produced by the decomposition of 7.50 g of lead (II) carbonate?
A) 0.41
B) 2.50
C) 0.00936
D) 6.26
E) 7.83

Answer: D
Diff: 3 Page Ref: Sec. 3.6
21) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

$$
6 \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

In a particular experiment, $5.50-\mathrm{g}$ samples of each reagent are reacted. The theoretical yield of lithium nitride is $\qquad$ g .
A) 5.53
B) 4.60
C) 27.6
D) 9.20
E) 13.7

Answer: D
Diff: $3 \quad$ Page Ref: Sec. 3.7
22) Magnesium burns in air with a dazzling brilliance to produce magnesium oxide:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

When 2.00 g of magnesium burns, the theoretical yield of magnesium oxide is $\qquad$ g.
A) 2.00
B) 3.32
C) 0.0823
D) 1.66
E) 6.63

Answer: B
Diff: $3 \quad$ Page Ref: Sec. 3.7
23) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})
$$

A $4.00-\mathrm{g}$ sample of CaO is reacted with 3.86 g of $\mathrm{H}_{2} \mathrm{O}$. How many grams of water remains after completion of reaction?
A) 0.00
B) 0.00793
C) 2.57
D) 1.04
E) 0.143

Answer: C
Diff: 4
24) If 2352 grams of $\mathrm{FeS}_{2}$ is allowed to react with 1408 grams of $\mathrm{O}_{2}$ according to the following equation, how many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced?

$$
\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}
$$

Answer: 1280
Diff: $4 \quad$ Page Ref: Sec. 3.7
25) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})
$$

In a particular experiment, a $1.50-\mathrm{g}$ sample of CaO is reacted with excess water and 1.48 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ is recovered. What is the percent yield in this experiment?
A) 99
B) 0.99
C) 2.16
D) 74.8
E) 101.2

Answer: D
Diff: $4 \quad$ Page Ref: Sec. 3.7

### 3.4 Short Answer Questions

1) Complete and balance the following reaction, given that elemental rubidium reacts with elemental sulfur to form $\mathrm{Rb}_{2} \mathrm{~S}$ (s).

$$
\mathrm{Na}(\mathrm{~s})+\mathrm{S}(\mathrm{~s}) \rightarrow
$$

$\qquad$
Answer: $\rightarrow \mathrm{Na}_{2} \mathrm{~S}$ (s)
Diff: 3 Page Ref: Sec. 3.2
2) A compound was found to contain $90.6 \%$ lead $(\mathrm{Pb})$ and $9.4 \%$ oxygen. The empirical formula for this compound is $\qquad$ .
Answer: $\mathrm{Pb}_{3} \mathrm{O}_{4}$
Diff: 3 Page Ref: Sec. 3.5
3) The combustion of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ in the presence of excess oxygen yields $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ :

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When 7.3 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ burns in the presence of excess $\mathrm{O}_{2}$, $\qquad$ g of $\mathrm{CO}_{2}$ is produced.
Answer: 22
Diff: 3 Page Ref: Sec. 3.6
4) Under appropriate conditions, nitrogen and hydrogen undergo a combination reaction to yield ammonia:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A 9.3-g sample of hydrogen requires $\qquad$ $g$ of $N_{2}$ for a complete reaction.
Answer: 43
Diff: $3 \quad$ Page Ref: Sec. 3.6
5) Water can be formed from the stoichiometric reaction of hydrogen with oxygen:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A complete reaction of 5.0 g of $\mathrm{O}_{2}$ with excess hydrogen produces $\qquad$ g of $\mathrm{H}_{2} \mathrm{O}$.
Answer: 5.6
Diff: $3 \quad$ Page Ref: Sec. 3.6
6) The combustion of carbon disulfide in the presence of excess oxygen yields carbon dioxide and sulfur dioxide:

$$
\mathrm{CS}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

The combustion of 15 g of $\mathrm{CS}_{2}$ in the presence of excess oxygen yields $\qquad$ g of $\mathrm{SO}_{2}$.
Answer: 25
Diff: 3 Page Ref: Sec. 3.6

### 3.5 True/False Questions

1) The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1 mole of that element.
Answer: TRUE
Diff: 2 Page Ref: Sec. 3.4
2) The molecular weight is ALWAYS a whole-number multiple of the empirical formula weight. Answer: TRUE
Diff: 1 Page Ref: Sec. 3.5
3) A great deal of the carbon dioxide produced by the combustion of fossil fuels is absorbed into the oceans.
Answer: TRUE
Diff: 2 Page Ref: Sec. 3.6
4) The quantity of product that is calculated to form when all of the limiting reagent reacts is called the actual yield.
Answer: FALSE
Diff: 1 Page Ref: Sec. 3.7
