Chapter 2-The Chemist's Toolbox

MULTIPLE CHOICE

1. Significant figures represent the \qquad of a measurement.
a. accuracy
b. precision
c. both precision and accuracy
d. neither precision nor accuracy

ANS: B
PTS: 1
2. When adding and subtracting the number of significant figures in the answer is determined by
\qquad
a. the most precise number
b. the least precise number
c. the number with the most significant figures in the calculation
d. the number with the fewest significant figures in the calculation
ANS: B
PTS: 1
3. When multiplying and dividing, the number of significant figures in the answer is determined by
a. the most precise number
b. the least precise number
c. the number with the most significant figures in the calculation
d. the number with the fewest significant figures in the calculation

ANS: D
PTS: 1
4. How many significant figures are there in the number 10.00 ?
a. 1
b. 2
c. 3
d. 4
ANS: D
PTS: 1
5. How many significant figures are there in the number 10,100 ?
a. 1
b. 3
c. 4
d. 5

ANS: B
PTS: 1
6. Calculate the density with the correct number of significant figures of a 50.0 g sample of mercury with a volume of 3.66 mL .
a. $\quad 13.66 \mathrm{~g} / \mathrm{mL}$
b. $\quad 13.7 \mathrm{~mL}$
c. $\quad 183 \mathrm{~g} / \mathrm{mL}$
d. $0.0732 \mathrm{~g} / \mathrm{mL}$
e. $0.073 \mathrm{~g} / \mathrm{mL}$

ANS: B PTS: 1
7. Calculate the density to the correct number of significant figures of a 100.0 g sample of mercury which occupies a volume of $7.36 \mathrm{~cm}^{3}$.
a. $\quad 13.7 \mathrm{~g} / \mathrm{mL}$
b. $\quad 13.66 \mathrm{~g} / \mathrm{mL}$
c. $\quad 183 \mathrm{~g} / \mathrm{mL}$
d. $0.0732 \mathrm{~g} / \mathrm{mL}$
e. $\quad 0.073 \mathrm{~g} / \mathrm{mL}$

ANS: A PTS: 1
8. Determine the mass in grams of a gold sample which occupies a volume of 16.39 mL ? Gold has a density of $19.3 \mathrm{~g} / \mathrm{mL}$.
a. 0.118 g
b. 0.316 g
c. 0.849 g
d. 1.18 g
e. 316 g

ANS: E PTS: 1
9. Determine the volume occupied by 1.5 g of ethyl alcohol. The density of ethyl alcohol is $0.789 \mathrm{~g} / \mathrm{mL}$.
a. $\quad 1.9 \mathrm{~mL}$
b. $\quad 1.3 \mathrm{~mL}$
c. $\quad 0.53 \mathrm{~mL}$
d. 0.526 mL
e. $\quad 1.331 \mathrm{~mL}$

ANS: A
PTS: 1
10. Chloroform is a commonly used anesthetic with a density of $1.483 \mathrm{~g} / \mathrm{mL}$. Determine the volume of chloroform needed to deliver a 9.37 g sample of the anesthetic.
a. $\quad 0.158 \mathrm{~g}$
b. 6.32 g
c. $\quad 13.9 \mathrm{~g}$
d. 13.89 g
e. $\quad 0.0632 \mathrm{~g}$

ANS: B
PTS: 1
11. If 15.0 mL of a metal has a mass of 103.0 g , what is the density of the metal?
a. $\quad 6.87 \mathrm{~g} / \mathrm{mL}$
b. $\quad 1550 \mathrm{~g} / \mathrm{mL}$
c. $\quad 0.146 \mathrm{~g} / \mathrm{mL}$
d. $\quad 1.46 \mathrm{~g} / \mathrm{mL}$
e. None of these.

ANS: A
PTS: 1
12. The density of gold is $19.3 \mathrm{~g} / \mathrm{mL}$. If the current price of gold is $\$ 56.75$ per gram, what is the volume of a nugget of gold worth $\$ 150.00$?
a. $\quad 1.15 \mathrm{~mL}$
b. $\quad 0.868 \mathrm{~mL}$
c. $\quad 1.72 \mathrm{~mL}$
d. $\quad 1.27 \mathrm{~mL}$
e. $\quad 0.137 \mathrm{~mL}$

ANS: E PTS: 1
13. Which is the standard SI unit for mass?
a. gram
b. pound
c. ounce
d. kilogram
e. ton

ANS: D PTS: 1
14. Which is the standard SI unit for length?
a. meter
b. feet
c. mile
d. kilometer
e. centimeter

ANS: A PTS: 1
15. Which is the correct SI unit for time?
a. meter
b. hour
c. second
d. minute
e. gram

ANS: C
PTS: 1
16. Which of these represents the SI prefix for micro (μ)?
a. $\quad 10^{-6}$
b. 10^{-3}
c. 10^{-9}
d. 10^{-2}
e. 10^{6}

ANS: A
PTS: 1
17. Which of these represents the SI prefix for centi (c)?
a. $\quad 10^{-6}$
b. 10^{-3}
c. 10^{-1}
d. 10^{-2}
e. 10^{6}

ANS: D
PTS: 1
18. Which of these represents the SI prefix for mega (M)?
a. 10^{9}
b. 10^{6}
c. 10^{3}
d. 10^{-2}
e. 10^{-6}

ANS: B PTS: 1
19. The diameter of the nucleus of an atom is approximately 1×10^{-13} meters. If 1 nm is equal to 10

Angstroms, what is the diameter of the nucleus in Angstroms? ($1 \mathrm{~nm}=1 \times 10^{-9}$ meter $)$
a. $1 \times 10^{-21} \mathrm{~A}$
b. $1 \times 10^{-6} \mathrm{~A}$
c. $1 \times 10^{-5} \mathrm{~A}$
d. $1 \times 10^{-4} \mathrm{~A}$
e. $1 \times 10^{-3} \mathrm{~A}$

ANS: E PTS: 1
20. Convert 89.5 meters to millimeters.
a. $\quad 8.95 \times 10^{4} \mathrm{~mm}$
b. $\quad 8.95 \times 10^{-4} \mathrm{~mm}$
c. $\quad 8.95 \times 10^{2} \mathrm{~mm}$
d. $8.95 \times 10^{-2} \mathrm{~mm}$
e. None of these.

ANS: A PTS: 1
21. Which of the following is not true.
a. $1 \mathrm{~cm}=.01 \mathrm{~m}$
b. $\quad 100 \mathrm{~cm}=1 \mathrm{~m}$
c. $1 \mathrm{~cm}=100 \mathrm{~m}$
d. $.01 \mathrm{~cm}=.0001 \mathrm{~m}$
e. $\quad 10000 \mathrm{~cm}=100 \mathrm{~m}$

ANS: C
PTS: 1
22. Given that $1 \mathrm{in}=2.54 \mathrm{~cm}$, which of the following is true?
a. $\quad 1 \mathrm{in}^{2}=2.54 \mathrm{~cm}^{2}$
b. $\quad 1 \mathrm{in}^{2}=5.08 \mathrm{~cm}^{2}$
c. $\quad 1 \mathrm{in}^{2}=6.45 \mathrm{~cm}^{2}$
d. $\quad 1 \mathrm{in}^{2}=1.27 \mathrm{~cm}^{2}$
e. None of these.

ANS: C PTS: 1
23. One m^{3} equals \qquad .
a. $\quad 1000 \mathrm{~mm}^{3}$
b. $1,000,000 \mathrm{~mm}^{3}$
c. $1,000,000,000 \mathrm{~mm}^{3}$
d. $1,000,000,000,000 \mathrm{~mm}^{3}$
ANS: C
PTS: 1
24. One milliliter is equal to \qquad .
a. 2.54 cubic inches
b. 1000 liters
c. 1 cubic centimeter
d. 16.39 cubic inches

ANS: C
PTS: 1
25. $\quad 1.00 \mathrm{in}^{3}$ equals \qquad .
a. $\quad 2.54 \mathrm{~cm}^{3}$
b. $\quad 7.62 \mathrm{~cm}^{3}$
c. $\quad 16.4 \mathrm{~cm}^{3}$
d. $.394 \mathrm{~cm}^{3}$

ANS: C
PTS: 1
26. The long jump record is 8.90 m . What is the length in inches? $(1 \mathrm{~m}=39.37$ inches $)$
a. 9.73 inches
b. 293 inches
c. 350 inches
d. 4204 inches
e. 5000 inches

ANS: C PTS: 1
27. The long jump record is 8.90 m . What is the length in yards? $(1 \mathrm{yd}=0.9144 \mathrm{~m})$
a. 9.73 inches
b. 293 inches
c. 350 inches
d. 4204 inches
e. 5000 inches
ANS: A
PTS: 1
28. A football field is 100.0 yards long. What is its length in meters? $(1 \mathrm{yd}=0.9144 \mathrm{~m})$
a. $\quad 0.09144 \mathrm{~m}$
b. $\quad 91.44 \mathrm{~m}$
c. 274.32 m
d. 334 m
e. $9.144 \times 10^{3} \mathrm{~m}$

ANS: B
PTS: 1
29. A football field is 100 yards long. What is its length in centimeters? $(1 \mathrm{yd}=0.9144 \mathrm{~m})$
a. $\quad 0.09144 \mathrm{~cm}$
b. $\quad 91.44 \mathrm{~cm}$
c. 274.32 cm
d. 334 cm
e. $\quad 9.144 \times 10^{3} \mathrm{~cm}$

ANS: E PTS: 1
30. How many kilograms of calcium are there in a 173 pounds of calcium? (1 pound $=454$ grams $)$
a. $\quad 1.1 \mathrm{~kg}$
b. 78.54 kg
c. $\quad 1.1 \times 10^{2} \mathrm{~kg}$
d. $\quad 3.8 \times 10^{4} \mathrm{~kg}$
e. $7.85 \times 10^{4} \mathrm{~kg}$

ANS: E PTS: 1
31. Most races are now measured in kilometers. What is the distance in miles a runner must complete in a 10 kilometer run. $(1 \mathrm{~km}=0.62137 \mathrm{mile})$
a. 3.1 miles
b. 6.2 miles
c. $\quad 16.1$ miles
d. 32.2 miles
e. 62.137

ANS: B PTS: 1
32. Convert 2.50×10^{4}. meters to miles (1 mile $=5280$ feet $)$.
a. $\quad 76.2$ miles
b. $\quad 6.35$ miles
c. $\quad 15.5$ miles
d. 155 miles
e. 186 miles

ANS: C PTS: 1
33. Convert $10.5 \mathrm{~mm} / \mathrm{s}$ to $\mathrm{ft} / \mathrm{hr}$.
a. $\quad 124 \mathrm{ft} / \mathrm{hr}$
b. $\quad 9.57 \times 10^{-6} \mathrm{ft} / \mathrm{hr}$
c. $.0344 \mathrm{ft} / \mathrm{hr}$
d. $37800 \mathrm{ft} / \mathrm{hr}$
e. None of these.
ANS: A
PTS: 1
34. Which of these numbers has the most significant figures?
a. 0.5071
b. 0.201
c. $\quad 6.02 \times 10^{23}$
d. 51
e. 103

ANS: A
PTS: 1
35. Solve the problem.
$3.728+6.272$
a. 10
b. 10.0
c. $\quad 10.00$
d. 10.000
e. 10.0000

ANS: D
PTS: 1
36. Solve the problem.
$3.72 \times 10^{8} \times 9.26 \times 10^{-3}$
a. $\quad 3.44 \times 10^{6}$
b. 4.02×10^{10}
c. 3.45×10^{5}
d. $\quad 3.44 \times 10^{-4}$
e. 4.02×10^{-10}

ANS: A PTS: 1
37. Solve the problem.
$1.5 \times 10^{3}+3.14 \times 10^{4}-1.21 \times 10^{2}=?$
a. $\quad 3.28 \times 10^{4}$
b. $\quad 3.30 \times 10^{3}$
c. $\quad 3.3 \times 10^{-4}$
d. 3.30×10^{5}
e. 3.43×10^{9}

ANS: A
PTS: 1
38. Solve the problem.
$\left(5.46 \times 10^{7}+3.13 \times 10^{6}\right) \times\left(7.65 \times 10^{5}\right)$
a. $\quad 65.7 \times 10^{18}$
b. $\quad 130.7 \times 10^{18}$
c. 4.42×10^{13}
d. 2.39×10^{12}
e. 65.7×10^{8}

ANS: C
PTS: 1
39. Solve the problem.
$\left(3.21 \times 10^{10}-3.13 \times 10^{12}\right) \div\left(7.65 \times 10^{5}\right)$
a. $\quad 4.13 \times 10^{6}$
b. 2.37×10^{18}
c. $\quad 65.7 \times 10^{18}$
d. -23.7×10^{17}
e. -4.04×10^{6}

ANS: E
PTS: 1
40. Solve the problem.
$(12.67 \times 4.23) \div 23.42$
a. 2.3
b. 2.29
c. 2.228
d. 2.88
e. 2.2884

ANS: B
PTS: 1
41. 0.01% is equivalent to which of the following?
a. $\quad 100 \mathrm{ppm}$
b. $\quad 100 \mathrm{ppb}$
c. 0.000001 ppm
d. 0.000001 ppb
e. None of these.

ANS: A PTS: 1
42. Which of these is the correct scientific notation for $6,000,220$?
a. $\quad 6.022 \times 10^{5}$
b. 6.00022×10^{5}
c. 6.00022×10^{6}
d. 6.00022×10^{-5}
e. $\quad 6.00022 \times 10^{-6}$

ANS: C PTS: 1
43. Which of the following is correctly written in scientific notation?
a. $\quad 50.0 \times 10^{6}$
b. 4.02×10^{216}
c. $1 \times 10^{-6.8}$
d. $1.005 \times 10^{-9.05}$
e. 10^{-5}

ANS: B PTS: 1
44. Which of these is incorrectly matched?
a. centi c 10^{-2}
b. mega $\mathrm{M} \quad 10^{6}$
c. milli $\mathrm{m} \quad 10^{-3}$
d. nano $\mathrm{n} \quad 10^{9}$
e. micro $\mu \quad 10^{-6}$

ANS: D PTS: 1

Figure 2-1

45. Refer to Figure 2-1. What is the pH of the solution after 8 mL of base have been added.
a. 3
b. 4
c. 6
d. 7
e. 8

ANS: B
PTS: 1
46. Refer to Figure 2-1. What affect was there on the pH of the solution when the volume of base added was increased from 8 mL to 13 mL ?
a. The pH dropped by a value of 4 .
b. The pH increased by a value of 4 .
c. The pH remained relatively unchanged.
d. The pH increased by a value of 10 .
e. The pH increased by a value of 20 .

ANS: B PTS: 1
47. Refer to Figure 2-1. Which of these statements is true based on the data provided by the graph.
a. The pH of the solution is must be determined algebraically.
b. The pH of the solution is relatively unaffected by the addition of base.
c. The pH of the solution is 7 when approximately 12 mL of base have been added.
d. The pH of the solution is relatively constant with addition of the first 14 mL of base.
e. The pH of the solution rises significantly when the volume is increased from 14 mL to 18 mL .

ANS: C PTS: 1
48. Which of these numbers has the four significant figures?
a. 0.3211
b. 0.201
c. 6.02×10^{23}
d. 5100
e. 0.0103

ANS: A
PTS: 1
49. Solve the problem.
131.7×1.05
a. 1.38×10^{3}
b. 1.38×10^{2}
c. 1.3×10^{3}
d. 1.3×10^{3}
e. 1.3×10^{-3}

ANS: B PTS: 1
50. Solve the problem.
$33.5 \div 3.011$
a. $\quad 1.11 \times 10^{1}$
b. $\quad 1.11 \times 10^{3}$
c. 1.113×10^{1}
d. 1.11×10^{2}
e. 1.112587×10^{1}

ANS: A
PTS: 1
51. Which of these is the correct normal decimal notation for 5.23×10^{-4} ?
a. 0.0523
b. 0.00523
c. 0.0000523
d. 0.000523
e. 52,300

ANS: D PTS: 1
52. Which of these is the correct normal notation for 7.77×10^{7} ?
a. 0.000000777
b. 0.0777
c. 7,770
d. 7,770,000
e. $77,700,000$

ANS: E
PTS: 1
53. Which of these is the correct normal notation for 8.14×10^{5} ?
a. 0.0000814
b. 0.000814
c. 81.400
d. 814,000
e. $81,400,000$

ANS: D
PTS: 1
54. Which of these series correctly orders the values given from smallest to largest?
I. $\quad 100 \mathrm{~cm}$
II. 1 km
III. 10 m
IV. $100,000 \mathrm{~mm}$
a. I $<$ II $<$ III $<$ IV
b. $\mathrm{II}<\mathrm{I}<\mathrm{IV}<\mathrm{III}$
c. $\mathrm{I}<\mathrm{II}=\mathrm{III}<\mathrm{IV}$
d. I $<$ IV $<$ III $<$ II
e. I < III < IV < II

ANS: E
PTS: 1
55. Which of these series correctly orders the values given from smallest to largest?
I. $\quad 0.001 \mathrm{Mg}$
II. $2,000,000 \mathrm{ng}$
III. 1 Gg
IV. $100,000 \mathrm{cg}$
a. \quad III $<$ II $<$ II $<$ IV
b. $\mathrm{II}<\mathrm{I}<$ IV $<$ III
c. $\mathrm{II}<\mathrm{I}=\mathrm{IV}<\mathrm{III}$
d. $\mathrm{I}<$ IV $=$ III $<$ II
e. I < III < IV < II

ANS: C PTS: 1
56. Because of the high heat and humidity in the summer in Death Valley, California, a hiker requires about 1 quart of water for every two miles traveled on foot. If the density of water is $0.999 \mathrm{~g} / \mathrm{mL}$ at 45(C, how many kilograms of water are required for a person to walk 30 kilometers in Death Valley? ($1 \mathrm{~L}=1.0567 \mathrm{qt} ; 1 \mathrm{~km}=0.62317 \mathrm{mi}$)
a. 8.8 kg
b. 70 kg
c. 350 kg
d. 700 kg
e. $8.8 \times 10^{3} \mathrm{~kg}$

ANS: A
PTS: 1
57. A sample of molten iron occupies of a volume of $7.11 \times 10^{-3} \mathrm{~L}$. If the density of iron is $7.86 \mathrm{~g} / \mathrm{cm}^{3}$, what is the mass of iron in grams in the sample?
a. $\quad 0.000904 \mathrm{~g}$
b. $\quad 0.0559 \mathrm{~g}$
c. $\quad 0.904 \mathrm{~g}$
d. $\quad 1.105 \mathrm{~g}$
e. 55.85 g

ANS: E
PTS: 1
58. An irregular shaped piece of metal with a mass of 220 g was placed in a graduated cylinder that contained 35.00 mL of water. This raised the water level to 52.50 mL . What is the density of the metal?
a. $\quad 0.285 \mathrm{~g} / \mathrm{mL}$
b. $4.19 \mathrm{~g} / \mathrm{mL}$
c. $\quad 17.5 \mathrm{~g} / \mathrm{mL}$
d. $12.6 \mathrm{~g} / \mathrm{mL}$
e. $\quad 38.5 \mathrm{~g} / \mathrm{mL}$

ANS: D PTS: 1
59. An irregular shaped piece of metal with a mass of 105 g was placed in a graduated cylinder that contained 25.00 mL of water. This raised the water level to 45.35 mL . What is the density of the metal?
a. $\quad 0.238 \mathrm{~g} / \mathrm{mL}$
b. $2.3 \mathrm{~g} / \mathrm{mL}$
c. $4.2 \mathrm{~g} / \mathrm{mL}$
d. $5.16 \mathrm{~g} / \mathrm{mL}$
e. $20.35 \mathrm{~g} / \mathrm{mL}$

ANS: D
PTS: 1
60. Convert 4.5 inches to meters. ($2.54 \mathrm{~cm}=1$ inch)
a. 0.1143 m
b. $\quad 1.77 \mathrm{~m}$
c. $\quad 11.43 \mathrm{~m}$
d. 0.0177 m
e. 1143 m

ANS: A
PTS: 1
61. Determine the volume in liters of a 1.00 ounce bottle. $(1.06 \mathrm{qt}=1 \mathrm{~L} ; 32$ ounces $=1 \mathrm{qt})$
a. $\quad 0.0295 \mathrm{~L}$
b. 0.03125 L
c. 0.03313 L
d. 30.2 L
e. $\quad 33.9 \mathrm{~L}$

ANS: A
PTS: 1
62. A regulation soccer field is 110.0 yards in length. Calculate the length in millimeters. (1.094 yards $=1$ m)
a. $\quad 0.101 \mathrm{~mm}$
b. $\quad 1.01 \mathrm{~mm}$
c. $\quad 100.5 \mathrm{~mm}$
d. $1.01 \times 10^{4} \mathrm{~mm}$
e. $1.01 \times 10^{5} \mathrm{~mm}$

ANS: E
PTS: 1
63. A 5 foot 7 inch track athlete weighs 110 pounds. What his her height in cm and her weight in kilograms? ($2.54 \mathrm{~cm}=1 \mathrm{inch} ; 454 \mathrm{~g}=1$ pound)
a. $\quad 14.5 \mathrm{~cm} \quad 242 \mathrm{~kg}$
b. $152 \mathrm{~cm} \quad 49.9 \mathrm{~kg}$
c. $\quad 170 \mathrm{~cm} \quad 49.9 \mathrm{~kg}$
d. $\quad 154 \mathrm{~cm} \quad 242 \mathrm{~kg}$
e. $\quad 152 \mathrm{~cm} \quad 4.99 \times 10^{4} \mathrm{~kg}$

ANS: C PTS: 1
64. Chemical waste is often shipped in 55-gallon drums. What is the weight in pounds of a 55 -gallon drum if the density of the waste is $1.5942 \mathrm{~g} / \mathrm{cm}^{3}$? $(454 \mathrm{~g}=1$ pound; $0.9463 \mathrm{~L}=1$ quart; 4 quarts $=1$ gallon $)$
a. 130 lbs
b. 730 lbs
c. 810 lbs
d. $4.5 \times 10^{4} \mathrm{lbs}$
e. $5.9 \times 10^{4} \mathrm{lbs}$

ANS: B PTS: 1
65. Solve the problem.
$5.6 \times 10^{2} \times 7.41 \times 10^{3}=$?
a. $\quad 232 \times 10^{1}$
b. 7.55×10^{5}
c. 2.32×10^{5}
d. 4.1×10^{6}
e. 232×10^{5}

ANS: D PTS: 1
66. What is the mass in kilograms of a 25.00 pound dumbbell? ($454 \mathrm{~g}=1$ pound)
a. $\quad 1.377 \times 10^{-3} \mathrm{~kg}$
b. $\quad 1.377 \mathrm{~kg}$
c. $\quad 11.35 \mathrm{~kg}$
d. $\quad 1.377 \times 10^{3} \mathrm{~kg}$
e. $1.135 \times 10^{7} \mathrm{~kg}$

ANS: C PTS: 1
67. An international group of zookeepers with successful breeding programs made the following animal exchanges last year. Using the same bartering system, how many monkeys can a zoo obtain in exchange for 15 flamingos?

3 oryxes $=1$ tiger	2 flamingos $=1$ anteater
1 camel $=6$ anteaters	5 lemurs $=1$ rhino
1 rhino $=4$ monkeys	3 lemurs $=1$ camel
3 monkeys $=1$ tiger	1 rhino $=4$ oryxes

a. 3 monkeys
b. 5 monkeys
c. 8 monkeys
d. 12 monkeys
e. 15 monkeys

ANS: A
PTS: 1
68. Which of these samples of aluminum will occupy the greatest volume? (Density of aluminum $=2.70$ $\mathrm{g} / \mathrm{cm}^{3} ; 454 \mathrm{~g}=1$ pound)
a. $\quad 10,000 \mathrm{~g}$
b. 25 pounds
c. 1 kg
d. $5 \times 10^{-2} \mathrm{~L}$
e. $2,000 \mathrm{~mL}$

ANS: B
PTS: 1
69. Which of these samples of water will have the greatest mass?(Density of water $=1.00 \mathrm{~g} / \mathrm{cm}^{3} ; 454 \mathrm{~g}=$ 1 pound)
a. $\quad 10,000 \mathrm{~g}$
b. 25 pounds
c. 1 kg
d. $5 \times 10^{-2} \mathrm{~L}$
e. $2,000 \mathrm{~mL}$

ANS: B PTS: 1
70. Solve the following equation for y .
$3 y+24=6 y-3$
a. 3
b. 6
c. 7
d. 8
e. 12

ANS: C
PTS: 1
71. Solve the following equation for y .
$3 \mathrm{y}=24$
a. 3
b. 6
c. 7
d. 8
e. 12

ANS: D
PTS: 1
72. Solve the following equation for z .
$2(z+6)-10=42$
a. 6
b. 10
c. 12
d. 20
e. 40

ANS: D
PTS: 1
73. Solve the following equation for z .
$4 z \div 2 z+3=30$
a. 2
b. 6.25
c. 10
d. 11
e. 13.5

ANS: E
PTS: 1
74. Solve the following equation for $\mathrm{x}: 13 \mathrm{x}=\mathrm{x}+156$
a. 13
b. 20
c. 1
d. 7
e. 12

ANS: A
PTS: 1

