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This Complete Solutions Manual contains detailed solutions to all exercises in the text
Multivariable Calculus: Concepts and Contexts, Fourth Edition (Chapters 8–13 of Calculus:
Concepts and Contexts, Fourth Edition) by James Stewart. A Student Solutions Manual is also
available, which contains solutions to the odd-numbered exercises in each chapter section, review
section, True-False Quiz, and Focus on Problem Solving section as well as all solutions to the
Concept Check questions. (It does not, however, include solutions to any of the projects.)

While I have extended every effort to ensure the accuracy of the solutions presented, I would
appreciate correspondence regarding any errors that may exist. Other suggestions or comments
are also welcome, and can be sent to me at the email address or mailing address below.
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setting and producing this manual, and Brian Betsill of TECH-arts for creating the illustrations.
Brian Karasek prepared solutions for comparison of accuracy and style in addition to proofread-
ing manuscript; his assistance and suggestions were very helpful and much appreciated. Finally,
I would like to thank Richard Stratton and Elizabeth Neustaetter of Brooks/Cole, Cengage
Learning for their trust, assistance, and patience.
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Palomar College
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8 INFINITE SEQUENCES AND SERIES
8.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) The terms �� approach 8 as � becomes large. In fact, we can make �� as close to 8 as we like by taking � sufficiently

large.

(c) The terms �� become large as � becomes large. In fact, we can make �� as large as we like by taking � sufficiently large.

2. (a) From Definition 1, a convergent sequence is a sequence for which lim
���

�� exists. Examples: {1��}, {1�2�}

(b) A divergent sequence is a sequence for which lim
���

�� does not exist. Examples: {�}, {sin�}

3. The first six terms of �� =
�

2�+ 1
are 1

3
, 2
5

, 3
7

, 4
9

, 5
11

, 6
13

. It appears that the sequence is approaching 1
2

.

lim
���

�

2�+ 1
= lim

���
1

2 + 1��
=
1

2

4. {cos(���3)}9�=1 =
�
1
2
�� 1

2
��1�� 1

2
� 1
2
� 1� 1

2
�� 1

2
��1�. The sequence does not appear to have a limit. The values will cycle

through the first six numbers in the sequence—never approaching a particular number.

5.
�
1� 1

3
� 1
5
� 1
7
� 1
9
� � � �

�
. The denominator of the nth term is the nth positive odd integer, so �� =

1

2�� 1 .

6.
�
1� 1

3 �
1
9 �

1
27 �

1
81 � � � �

�
. The denominator of the nth term is the (�� 1)st power of 3, so �� =

1

3��1
.

7. {2� 7� 12� 17� � � �}. Each term is larger than the preceding one by 5, so �� = �1 + �(�� 1) = 2 + 5(�� 1) = 5�� 3.

8.
�� 1

4 �
2
9 �� 3

16 �
4
25 � � � �

�
. The numerator of the �th term is � and its denominator is (�+ 1)2. Including the alternating signs,

we get �� = (�1)� �

(�+ 1)2
.

9.
�
1�� 2

3
� 4
9
�� 8

27
� � � �

�
. Each term is � 2

3
times the preceding one, so �� =

��2
3

���1.

10. {5� 1� 5� 1� 5� 1� � � �}. The average of 5 and 1 is 3, so we can think of the sequence as alternately adding 2 and �2 to 3.

Thus, �� = 3 + (�1)�+1 · 2.

11. �� =
3 + 5�2

�+ �2
=
(3 + 5�2)��2

(�+ �2)��2
=
5 + 3��2

1 + 1��
, so �� � 5 + 0

1 + 0
= 5 as ���. Converges

12. �� =
�3

�3 + 1
=

�3��3

(�3 + 1)��3
=

1

1 + 1��3
, so �� � 1

1 + 0
= 1 as ���. Converges

13. �� = 1� (0�2)�, so lim
���

�� = 1� 0 = 1 by (7). Converges

1
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2 ¤ CHAPTER 8 INFINITE SEQUENCES AND SERIES

14. �� =
�3

�+ 1
=

�3��

(�+ 1)��
=

�2

1 + 1��2
, so �� �� as ��� since lim

���
�2 =� and lim

���
(1 + 1��2) = 1. Diverges

15. Because the natural exponential function is continuous at 0, Theorem 5 enables us to write

lim
���

�� = lim
���

	1�� = 	lim���(1��) = 	0 = 1� Converges

16. �� =
3�+2

5�
=
323�

5�
= 9

�
3
5

��, so lim
���

�� = 9 lim
���

�
3
5

��
= 9 · 0 = 0 by (7) with 
 = 3

5
. Converges

17. If �� =
2��

1 + 8�
, then lim

���
�� = lim

���
(2��)��

(1 + 8�)��
= lim

���
2�

1��+ 8
=
2�

8
=

�

4
. Since tan is continuous at �

4
, by

Theorem 5, lim
���

tan

�
2��

1 + 8�

�
= tan

�
lim

���
2��

1 + 8�

�
= tan

�

4
= 1. Converges

18. Using the last limit law for sequences and the continuity of the square root function,

lim
���

�� = lim
���

�
�+ 1

9�+ 1
=

�
lim

���
�+ 1

9�+ 1
=

	
lim

���
1 + 1��

9 + 1��
=

�
1

9
=
1

3
. Converges

19. �� =
(�1)��1 �
�2 + 1

=
(�1)��1
�+ 1��

, so 0 � |��| = 1

�+ 1��
� 1

�
� 0 as ���, so �� � 0 by the Squeeze Theorem and

Theorem 4. Converges

20. �� =
(�1)��3

�3 + 2�2 + 1
. Now |��| = �3

�3 + 2�2 + 1
=

1

1 + 2
�
+ 1

�3

� 1 as ���, but the terms of the sequence {��}

alternate in sign, so the sequence �1� �3� �5� � � � converges to �1 and the sequence �2� �4� �6� � � � converges to +1.

This shows that the given sequence diverges since its terms don’t approach a single real number.

21. �� =
	� + 	��

	2� � 1 · 	
��

	��
=
1 + 	�2�

	� � 	��
� 0 as ��� because 1 + 	�2� � 1 and 	� � 	�� ��. Converges

22. �� = cos(2��). As ���, 2��� 0, so cos(2��)� cos 0 = 1 because cos is continuous. Converges

23. �� = �2	�� =
�2

	�
. Since lim

���
�2

	�

H
= lim

���
2�

	�

H
= lim

���
2

	�
= 0, it follows from Theorem 2 that lim

���
�� = 0. Converges

24. 2��� as ���, so since lim
���

arctan� = �
2

, we have lim
���

arctan 2� = �
2

. Converges

25. 0 � cos2 �

2�
� 1

2�
[since 0 � cos2 � � 1], so since lim

���
1

2�
= 0,



cos2 �

2�

�
converges to 0 by the Squeeze Theorem.

26. �� = � cos�� = �(�1)�. Since |��| = ��� as ���, the given sequence diverges.

27. 
 =
�
1 +

2

�

��

� ln 
 = � ln

�
1 +

2

�

�
, so

lim
���

ln 
 = lim
���

ln(1 + 2��)

1��
H
= lim

���

�
1

1 + 2��

��
� 2

�2

�
�1��2 = lim

���
2

1 + 2��
= 2 �

lim
���

�
1 +

2

�

��

= lim
���

	ln � = 	2, so by Theorem 2, lim
���

�
1 +

2

�

��

= 	2. Convergent
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SECTION 8.1 SEQUENCES ¤ 3

28. �� =
�
�
21+3� = (21+3�)1�� = (2123�)1�� = 21��23 = 8 · 21��, so

lim
���

�� = 8 lim
���

21�� = 8 · 2lim���(1��) = 8 · 20 = 8 by Theorem 5, since the function �(�) = 2� is continuous at 0.

Convergent

29. �� =
(2�� 1)!
(2�+ 1)!

=
(2�� 1)!

(2�+ 1)(2�)(2�� 1)! =
1

(2�+ 1)(2�)
� 0 as ���. Converges

30. �� =
sin 2�

1 +
�
�

. |��| � 1

1 +
�
�

and lim
���

1

1 +
�
�
= 0, so �1

1 +
�
�
� �� � 1

1 +
�
�

� lim
���

�� = 0 by the

Squeeze Theorem. Converges

31. {0� 1� 0� 0� 1� 0� 0� 0� 1� � � �} diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to

either one (or any other value) for � sufficiently large.

32. lim
���

(ln�)2

�
H
= lim

���
2(ln�)(1��)

1
= 2 lim

���
ln�

�
H
= 2 lim

���
1��

1
= 0, so by Theorem 3, lim

���
(ln�)2

�
= 0. Convergent

33. �� = ln(2�
2 + 1)� ln(�2 + 1) = ln

�
2�2 + 1

�2 + 1

�
= ln

�
2 + 1��2

1 + 1��2

�
� ln 2 as ���. Convergent

34. 0 � |��| = 3�

�!
=
3

1
· 3
2
· 3
3
· · · · · 3

(�� 1) ·
3

�
� 3

1
· 3
2
· 3
�

[for � � 2] = 27

2�
� 0 as ���, so by the Squeeze

Theorem and Theorem 4, {(�3)���!} converges to 0.

35. From the graph, it appears that the sequence converges to 1.

{(�2�	)�} converges to 0 by (7), and hence {1 + (�2�	)�}
converges to 1 + 0 = 1.

36. From the graph, it appears that the sequence converges to a number

greater than 3.

lim
���

�� = lim
���

�
� sin

�
��
�

�
= lim

���

sin
�
��
�
�



��
�
�

· �

= lim
��0+

sin�

�
· �

�
� = ��

�
�
�
= 1 · � = ��
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4 ¤ CHAPTER 8 INFINITE SEQUENCES AND SERIES

37. From the graph, it appears that the sequence converges to 1
2

.

As ���,

�� =

�
3 + 2�2

8�2 + �
=

	
3��2 + 2

8 + 1��
�

�
0 + 2

8 + 0
=

�
1

4
=
1

2
,

so lim
���

�� =
1
2

.

38. From the graph, it appears that the sequence converges to 5�

5 =
�
�
5� � �

�
3� + 5� � �

�
5� + 5� =

�
�
2
�
�
5�

=
�
�
2 · 5� 5 as ���

�
lim

���
21�� = 20 = 1

�
Hence, �� � 5 by the Squeeze Theorem.

Alternate solution: Let 
 = (3� + 5�)1��. Then

lim
���

ln 
 = lim
���

ln (3� + 5�)

�
H
= lim

���
3� ln 3 + 5� ln 5

3� + 5�
= lim

���

�
3
5

��
ln 3 + ln 5�
3
5

��
+ 1

= ln 5,

so lim
���


 = 	ln 5 = 5, and so
�

�
�
3� + 5�

�
converges to 5.

39. From the graph, it appears that the sequence {��} =


�2 cos�

1 + �2

�
is

divergent, since it oscillates between 1 and �1 (approximately). To

prove this, suppose that {��} converges to �. If �� =
�2

1 + �2
, then

{��} converges to 1, and lim
���

��

��
=

�

1
= �. But ��

��
= cos�, so

lim
���

��

��
does not exist. This contradiction shows that {��} diverges.

40. From the graph, it appears that the sequence approaches 0.

0 � �� =
1 · 3 · 5 · · · · · (2�� 1)

(2�)�
=

1

2�
· 3
2�
· 5
2�
· · · · · 2�� 1

2�

� 1

2�
· (1) · (1) · · · · · (1) = 1

2�
� 0 as ���

So by the Squeeze Theorem,


1 · 3 · 5 · · · · · (2�� 1)

(2�)�

�
converges to 0.

41. (a) �� = 1000(1�06)
� � �1 = 1060, �2 = 1123�60, �3 = 1191�02, �4 = 1262�48, and �5 = 1338�23.

(b) lim
���

�� = 1000 lim
���

(1�06)�, so the sequence diverges by (7) with 
 = 1�06 � 1.
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SECTION 8.1 SEQUENCES ¤ 5

42. (a) Substitute 1 to 6 for � in �� = 100

�
1�0025� � 1
0�0025

� �

�
to get �1 = $0, �2 = $0�25, �3 = $0�75, �4 = $1�50,

�5 = $2�51, and �6 = $3�76.

(b) For two years, use 2 · 12 = 24 for � to get $70�28.

43. (a) We are given that the initial population is 5000, so �0 = 5000. The number of catfish increases by 8% per month and is

decreased by 300 per month, so �1 = �0 + 8%�0 � 300 = 1�08�0 � 300, �2 = 1�08�1 � 300, and so on. Thus,

�� = 1�08���1 � 300.

(b) Using the recursive formula with �0 = 5000, we get �1 = 5100, �2 = 5208, �3 = 5325 (rounding any portion of a

catfish), �4 = 5451, �5 = 5587, and �6 = 5734, which is the number of catfish in the pond after six months.

44. ��+1 =

�
1
2�� if �� is an even number

3�� + 1 if �� is an odd number
When �1 = 11, the first 40 terms are 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,

16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4. When �1 = 25, the first 40 terms are 25, 76, 38,

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4.

The famous Collatz conjecture is that this sequence always reaches 1, regardless of the starting point �1.

45. (a) �1 = 1, ��+1 = 4� �� for � � 1. �1 = 1, �2 = 4� �1 = 4� 1 = 3, �3 = 4� �2 = 4� 3 = 1,

�4 = 4� �3 = 4� 1 = 3, �5 = 4� �4 = 4� 3 = 1. Since the terms of the sequence alternate between 1 and 3,

the sequence is divergent.

(b) �1 = 2, �2 = 4� �1 = 4� 2 = 2, �3 = 4� �2 = 4� 2 = 2. Since all of the terms are 2, lim
���

�� = 2 and hence, the

sequence is convergent.

46. (a) Since lim
���

�� = �, the terms �� approach � as � becomes large. Because we can make �� as close to � as we wish,

��+1 will also be close, and so lim
���

��+1 = �.

(b) �1 = 1, �2 =
1

1 + �1
=

1

1 + 1
=
1

2
= 0�5, �3 =

1

1 + �2
=

1

1 + 1
2

=
2

3
	 0�66667,

�4 =
1

1 + �3
=

1

1 + 2
3

=
3

5
= 0�6, �5 =

1

1 + �4
=

1

1 + 3
5

=
5

8
= 0�625,

�6 =
1

1 + �5
=

1

1 + 5
8

=
8

13
	 0�61538, �7 =

1

1 + �6
=

1

1 + 8
13

=
13

21
	 0�61905,

�8 =
1

1 + �7
=

1

1 + 13
21

=
21

34
	 0�61765, �9 =

1

1 + �8
=

1

1 + 21
34

=
34

55
	 0�61818,

�10 =
1

1 + �9
=

1

1 + 34
55

=
55

89
	 0�61800. It appears that lim

���
�� 	 0�618; hence, the sequence is convergent.

(c) If � = lim
���

�� then lim
���

��+1 = � also, so � must satisfy

� = 1�(1 + �) � �2 + �� 1 = 0 � � = �1+�
5

2 	 0�618 (since � has to be non-negative if it exists).
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6 ¤ CHAPTER 8 INFINITE SEQUENCES AND SERIES

47. (a) Let �� be the number of rabbit pairs in the nth month. Clearly �1 = 1 = �2. In the nth month, each pair that is

2 or more months old (that is, ���2 pairs) will produce a new pair to add to the ���1 pairs already present. Thus,

�� = ���1 + ���2, so that {��} = {��}, the Fibonacci sequence.

(b) �� =
��+1

��
� ���1 =

��

���1
=

���1 + ���2
���1

= 1 +
���2
���1

= 1 +
1

���1 /���2
= 1 +

1

���2
. If � = lim

���
��,

then � = lim
���

���1 and � = lim
���

���2, so � must satisfy � = 1 +
1

�
� �2 � �� 1 = 0 � � = 1+

�
5

2

[since � must be positive].

48. For

�

2,
�
2
�
2,
�
2
�
2
�
2, � � �

�
, �1 = 21�2, �2 = 23�4, �3 = 27�8, � � �, so �� = 2

(2��1)�2� = 21�(1�2
�).

lim
���

�� = lim
���

21�(1�2
�) = 21 = 2.

Alternate solution: Let � = lim
���

��. (We could show the limit exists by showing that {��} is bounded and increasing.)

Then � must satisfy � =
�
2 · � � �2 = 2� � �(�� 2) = 0. � 6= 0 since the sequence increases, so � = 2.

49. �� =
1

2�+ 3
is decreasing since ��+1 =

1

2(�+ 1) + 3
=

1

2�+ 5
�

1

2�+ 3
= �� for each � � 1. The sequence is

bounded since 0 � �� � 1
5

for all � � 1. Note that �1 = 1
5

.

50. �� =
2�� 3
3�+ 4

defines an increasing sequence since for �(�) = 2�� 3
3�+ 4

,

� 0(�) =
(3�+ 4)(2)� (2�� 3)(3)

(3�+ 4)2
=

17

(3�+ 4)2
� 0. The sequence is bounded since �� � �1 = � 1

7 for � � 1,

and �� �
2�� 3
3�

�
2�

3�
=
2

3
for � � 1.

51. The terms of �� = �(�1)� alternate in sign, so the sequence is not monotonic. The first five terms are �1, 2, �3, 4, and �5.

Since lim
���

|��| = lim
���

� =�, the sequence is not bounded.

52. �� = �+
1

�
defines an increasing sequence since the function �(�) = �+

1

�
is increasing for � � 1. [�0(�) = 1� 1��2 � 0

for � � 1.] The sequence is unbounded since �� �� as ���. (It is, however, bounded below by �1 = 2.)

53. Since {��} is a decreasing sequence, �� � ��+1 for all � � 1. Because all of its terms lie between 5 and 8, {��} is a

bounded sequence. By the Monotonic Sequence Theorem, {��} is convergent; that is, {��} has a limit �. � must be less than

8 since {��} is decreasing, so 5 � � � 8.

54. (a) Let �� be the statement that ��+1 � �� and �� � 3. �1 is obviously true. We will assume that �� is true and

then show that as a consequence ��+1 must also be true. ��+2 � ��+1 
 �
2 + ��+1 �

�
2 + �� 
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SECTION 8.1 SEQUENCES ¤ 7

2 + ��+1 � 2 + �� 
 ��+1 � ��, which is the induction hypothesis. ��+1 � 3 
 �
2 + �� � 3 


2 + �� � 9 
 �� � 7, which is certainly true because we are assuming that �� � 3. So �� is true for all �, and so

�1 � �� � 3 (showing that the sequence is bounded), and hence by the Monotonic Sequence Theorem, lim
���

�� exists.

(b) If � = lim
���

��, then lim
���

��+1 = � also, so � =
�
2 + � � �2 = 2 + � 
 �2 � �� 2 = 0 


(�+ 1)(�� 2) = 0 
 � = 2 [since � can’t be negative].

55. �1 = 1, ��+1 = 3� 1

��
. We show by induction that {��} is increasing and bounded above by 3. Let �� be the proposition

that ��+1 � �� and 0 � �� � 3. Clearly �1 is true. Assume that �� is true. Then ��+1 � �� � 1

��+1
�

1

��
�

� 1

��+1
� � 1

��
. Now ��+2 = 3� 1

��+1
� 3� 1

��
= ��+1 
 ��+1. This proves that {��} is increasing and bounded

above by 3, so 1 = �1 � �� � 3, that is, {��} is bounded, and hence convergent by the Monotonic Sequence Theorem.

If � = lim
���

��, then lim
���

��+1 = � also, so � must satisfy � = 3� 1�� � �2 � 3�+ 1 = 0 � � = 3±�
5

2
.

But � � 1, so � = 3+
�
5

2
.

56. �1 = 2, ��+1 =
1

3� ��
. We use induction. Let �� be the statement that 0 � ��+1 � �� � 2. Clearly �1 is true, since

�2 = 1�(3� 2) = 1. Now assume that �� is true. Then ��+1 � �� � ���+1 � ��� � 3� ��+1 � 3� �� �

��+2 =
1

3� ��+1
� 1

3� ��
= ��+1. Also ��+2 � 0 [since 3� ��+1 is positive] and ��+1 � 2 by the induction

hypothesis, so ��+1 is true. To find the limit, we use the fact that lim
���

�� = lim
���

��+1 � � = 1
3��

�

�2 � 3�+ 1 = 0 � � = 3±�
5

2
. But � � 2, so we must have � = 3��

5
2

.

57. (0�8)� � 0�000001 � ln(0�8)� � ln(0�000001) � � ln(0�8) � ln(0�000001) � � �
ln(0�000001)

ln(0�8)
�

� � 61�9, so � must be at least 62 to satisfy the given inequality.

58. (a) If � is continuous, then �(�) = �
�
lim

���
��



= lim

���
�(��) = lim

���
��+1 = lim

���
�� = � by Exercise 46(a).

(b) By repeatedly pressing the cosine key on the calculator (that is, taking cosine of the previous answer) until the displayed

value stabilizes, we see that � 	 0�73909.

59. (a) Suppose {��} converges to �. Then ��+1 =
���

�+ ��
� lim

���
��+1 =

� lim
���

��

�+ lim
���

��
� � =

��

�+ �
�

�2 + �� = �� � �(�+ �� �) = 0 � � = 0 or � = �� �.

(b) ��+1 =
���

�+ ��
=

�
�

�

�
��

1 +
��

�

�

�
�

�

�
�� since 1 + ��

�
� 1.
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8 ¤ CHAPTER 8 INFINITE SEQUENCES AND SERIES

(c) By part (b), �1 �
�
�

�

�
�0, �2 �

�
�

�

�
�1 �

�
�

�

�2
�0, �3 �

�
�

�

�
�2 �

�
�

�

�3
�0, etc. In general, �� �

�
�

�

��

�0,

so lim
���

�� � lim
���

�
�

�

��

· �0 = 0 since � � �.
�

By (7)� lim
���


� = 0 if � 1 � 
 � 1. Here 
 = �

�
� (0� 1) .

�

(d) Let � � �. We first show, by induction, that if �0 � �� �, then �� � �� � and ��+1 � ��.

For � = 0, we have �1 � �0 =
��0

�+ �0
� �0 =

�0(�� �� �0)

�+ �0
� 0 since �0 � �� �. So �1 � �0.

Now we suppose the assertion is true for � = �, that is, �	 � �� � and �	+1 � �	. Then

�� �� �	+1 = �� �� ��	

�+ �	
=

�(�� �) + ��	 � ��	 � ��	

�+ �	
=

�(�� �� �	)

�+ �	
� 0 because �	 � �� �. So

�	+1 � �� �. And �	+2 � �	+1 =
��	+1

�+ �	+1
� �	+1 =

�	+1(�� �� �	+1)

�+ �	+1
� 0 since �	+1 � �� �. Therefore,

�	+2 � �	+1. Thus, the assertion is true for � = � + 1. It is therefore true for all � by mathematical induction.

A similar proof by induction shows that if �0 � �� �, then �� � �� � and {��} is decreasing.

In either case the sequence {��} is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim
���

�� = �� �.

60. �1 = 1, �2 = 1 + 1
1+1

= 3
2
= 1�5, �3 = 1 + 1

5�2
= 7

5
= 1�4, �4 = 1+ 1

12�5
= 17

12
= 1�416,

�5 = 1 +
1

29�12
= 41

29
	 1�413793, �6 = 1 + 1

70�29
= 99

70
	 1�414286, �7 = 1 + 1

169�70
= 239

169
	 1�414201,

�8 = 1+
1

408�169 =
577
408 	 1�414216. Notice that �1 � �3 � �5 � �7 and �2 � �4 � �6 � �8. It appears that the odd terms

are increasing and the even terms are decreasing. Let’s prove that �2��2 � �2� and �2��1 � �2�+1 by mathematical

induction. Suppose that �2	�2 � �2	. Then 1 + �2	�2 � 1 + �2	 �
1

1 + �2	�2
�

1

1 + �2	
� 1 +

1

1 + �2	�2
� 1 +

1

1 + �2	
� �2	�1 � �2	+1 �

1 + �2	�1 � 1 + �2	+1 � 1

1 + �2	�1
�

1

1 + �2	+1
� 1 +

1

1 + �2	�1
� 1 +

1

1 + �2	+1
� �2	 � �2	+2.

We have thus shown, by induction, that the odd terms are increasing and the even terms are decreasing. Also all terms lie

between 1 and 2, so both {��} and {��} are bounded monotonic sequences and therefore convergent by the

Monotonic Sequence Theorem. Let lim
���

�2� = �. Then lim
���

�2�+2 = � also. We have

��+2 = 1 +
1

1 + 1 + 1� (1 + ��)
= 1 +

1

(3 + 2��) � (1 + ��)
=
4 + 3��

3 + 2��
, so �2�+2 =

4 + 3�2�
3 + 2�2�

. Taking limits of both

sides, we get � = 4 + 3�

3 + 2�
� 3�+ 2�2 = 4 + 3� � �2 = 2 � � =

�
2 [since � � 0]. Thus,

lim
���

�2� =
�
2.

Similarly, we find that lim
���

�2�+1 =
�
2. Since the even terms approach

�
2 and the odd terms also approach

�
2, it

follows that the sequence as a whole approaches
�
2, that is, lim

���
�� =

�
2.
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LABORATORY PROJECT LOGISTIC SEQUENCES ¤ 9

LABORATORY PROJECT Logistic Sequences

1. To write such a program in Maple it is best to calculate all the points first and then graph them. One possible sequence of

commands [taking �0 =
1
2 and � = 1�5 for the difference equation] is

t:=’t’;p(0):=1/2;k:=1.5;

for j from 1 to 20 do p(j):=k*p(j-1)*(1-p(j-1)) od;

plot([seq([t,p(t)] t=0..20)],t=0..20,p=0..0.5,style=point);

In Mathematica, we can use the following program:

p[0]=1/2

k=1.5

p[j_]:=k*p[j-1]*(1-p[j-1])

P=Table[p[t],{t,20}]

ListPlot[P]

With �0 =
1
2 and � = 1�5:

� �� � �� � ��

0 0�5 7 0�3338465076 14 0�3333373303

1 0�375 8 0�3335895255 15 0�3333353318

2 0�3515625 9 0�3334613309 16 0�3333343326

3 0�3419494629 10 0�3333973076 17 0�3333338329

4 0�3375300416 11 0�3333653143 18 0�3333335831

5 0�3354052689 12 0�3333493223 19 0�3333334582

6 0�3343628617 13 0�3333413274 20 0�3333333958

With �0 =
1
2

and � = 2�5:

� �� � �� � ��

0 0�5 7 0�6004164790 14 0�5999967417

1 0�625 8 0�5997913269 15 0�6000016291

2 0�5859375 9 0�6001042277 16 0�5999991854

3 0�6065368651 10 0�5999478590 17 0�6000004073

4 0�5966247409 11 0�6000260637 18 0�5999997964

5 0�6016591486 12 0�5999869664 19 0�6000001018

6 0�5991635437 13 0�6000065164 20 0�5999999491

Both of these sequences seem to converge
�
the first to about 13 , the second to about 0.60

�
.
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10 ¤ CHAPTER 8 INFINITE SEQUENCES AND SERIES

With �0 =
7
8

and � = 1�5:

� �� � �� � ��

0 0�875 7 0�3239166554 14 0�3332554829

1 0�1640625 8 0�3284919837 15 0�3332943990

2 0�2057189941 9 0�3308775005 16 0�3333138639

3 0�2450980344 10 0�3320963702 17 0�3333235980

4 0�2775374819 11 0�3327125567 18 0�3333284655

5 0�3007656421 12 0�3330223670 19 0�3333308994

6 0�3154585059 13 0�3331777051 20 0�3333321164

With �0 =
7
8

and � = 2�5:

� �� � �� � ��

0 0�875 7 0�6016572368 14 0�5999869815

1 0�2734375 8 0�5991645155 15 0�6000065088

2 0�4966735840 9 0�6004159972 16 0�5999967455

3 0�6249723374 10 0�5997915688 17 0�6000016272

4 0�5859547872 11 0�6001041070 18 0�5999991864

5 0�6065294364 12 0�5999479194 19 0�6000004068

6 0�5966286980 13 0�6000260335 20 0�5999997966

The limit of the sequence seems to depend on �, but not on �0.

2. With �0 =
7
8 and � = 3�2:

� �� � �� � ��

0 0�875 7 0�5830728495 14 0�7990633827

1 0�35 8 0�7779164854 15 0�5137954979

2 0�728 9 0�5528397669 16 0�7993909896

3 0�6336512 10 0�7910654689 17 0�5131681132

4 0�7428395416 11 0�5288988570 18 0�7994451225

5 0�6112926626 12 0�7973275394 19 0�5130643795

6 0�7603646184 13 0�5171082698 20 0�7994538304

It seems that eventually the terms fluctuate between two values (about 0�5 and 0�8 in this case).
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LABORATORY PROJECT LOGISTIC SEQUENCES ¤ 11

3. With �0 =
7
8

and � = 3�42:

� �� � �� � ��

0 0�875 7 0�4523028596 14 0�8442074951

1 0�3740625 8 0�8472194412 15 0�4498025048

2 0�8007579316 9 0�4426802161 16 0�8463823232

3 0�5456427596 10 0�8437633929 17 0�4446659586

4 0�8478752457 11 0�4508474156 18 0�8445284520

5 0�4411212220 12 0�8467373602 19 0�4490464985

6 0�8431438501 13 0�4438243545 20 0�8461207931

With �0 =
7
8

and � = 3�45:

� �� � �� � ��

0 0�875 7 0�4670259170 14 0�8403376122

1 0�37734375 8 0�8587488490 15 0�4628875685

2 0�8105962830 9 0�4184824586 16 0�8577482026

3 0�5296783241 10 0�8395743720 17 0�4209559716

4 0�8594612299 11 0�4646778983 18 0�8409445432

5 0�4167173034 12 0�8581956045 19 0�4614610237

6 0�8385707740 13 0�4198508858 20 0�8573758782

From the graphs above, it seems that for � between 3�4 and 3�5, the terms eventually fluctuate between four values. In the

graph below, the pattern followed by the terms is 0�395� 0�832� 0�487� 0�869� 0�395� � � �. Note that even for � = 3�42 (as in the

first graph), there are four distinct “branches”; even after 1000 terms, the first and third terms in the pattern differ by about

2× 10�9, while the first and fifth terms differ by only 2× 10�10. With �0 =
7
8 and � = 3�48:
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12 ¤ CHAPTER 8 INFINITE SEQUENCES AND SERIES

4.

�0 = 0�5, � = 3�7 �0 = 0�501, � = 3�7

�0 = 0�75, � = 3�9 �0 = 0�749, � = 3�9

�0 = 0�5, � = 3�999

From the graphs, it seems that if �0 is changed by 0�001, the whole graph changes completely. (Note, however, that this might

be partially due to accumulated round-off error in the CAS. These graphs were generated by Maple with 100-digit accuracy,

and different degrees of accuracy give different graphs.) There seem to be some some fleeting patterns in these graphs, but on

the whole they are certainly very chaotic. As � increases, the graph spreads out vertically, with more extreme values close to 0

or 1.
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